The SoLid experiment EOS Solstice meeting

Simon Vercaemer 20 December 2018

niversiteit

Antwerpen

SoLid

SoLid goals

Goals

 Resolve the reactor antineutrino anomaly

- Observed $\bar{\nu}_e$ deficit at short baseline
- Propose ~ 1 eV sterile neutrino as explanation
- Detect from disappearance pattern
- SoLid observes reactor as close as 6.2 m

20/12/2018

Goals

- Resolve the reactor antineutrino anomaly
- Observe the 5 MeV bump
 - Observed $\bar{\nu}_e$ excess at $E_{vis} \approx 5 \text{ MeV}$
 - Size of excess seems fission fraction dependent
 - SoLid observes 93.5% enriched ²³⁵U reactor

SoLid goals

Goals

- Resolve the reactor antineutrino anomaly
- Observe the 5 MeV bump
- Search for heavy neutral leptons (HNL)
 - $\bar{\nu}_e$ can oscillate to any mass state kinematically allowed
 - Able to probe HNL up to \sim 9 MeV
 - Decay products of HNL can be observed
 - Physics program extension

The BR2 reactor

- 60 MW $_{therm}$ nuclear reactor $\rightarrow \sim 10^{19} \ \bar{\nu}_e \ s^{-1}$
- Falling energy spectrum, up to 9 MeV
- Twisted compact core
 → Ideal for oscillation search
- Experimental hall starting at 5 m from reactor core

Observe neutrinos through inverse beta decay

$$ar{
u}_e + p
ightarrow n + e^+$$

using a voxelised hybrid scintillator detector.

- Hybrid: Combination of PVT and ZnS(Ag) scintillators
 - **PVT:** Bulk of the detector.

Detect positron, gammas and crossing muons

- **ZnS(Ag):** Localized, doped with ⁶LiF Capture and detect neutron: $n + {}^{6}Li \rightarrow {}^{3}H + \alpha$
- Scintillator identification by PSD
- Voxelized: Provides location information
 - $5 \times 5 \times 5$ cm³ cubes
 - Optical isolation via Tyvek

The SoLid detector

- 16×16 cube planes
- 50 planes (1.6 ton)
- Light extraction via XY grid of wavelength shifting fibres
- Fibres read out via SiPMs in frame structure
- Detector in cooled container, surrounded by 0.5 m of shielding (H₂O and HDPE)

Neutrino interaction

- Neutrino interacts
- 2 Positron scintillates in PVT
- S Neutron captures on ⁶Li after thermalization
- α and ³H scintillate in ZnS(Ag)

Neutrino interaction

Neutrino detection

- Sea level neutrino detector next to a nuclear reactor
 - ightarrow High rate of EM background ($\gamma,~\mu$)
 - → Make use of positron-neutron coincidence, trigger on neutron signal

Neutron trigger

- Large time constant of ZnS(Ag) gives rise to long signals
 → lots of peaks
- Count peaks over threshold (PoT)
- Consider neutron if channel PoT value exceeds threshold
- Read buffer (500 μs back) over several planes (3 both sides) for positron signal

Correlated backgrounds

- Cosmic ray muon crosses the detector
- Spallation on material
 → high energy neutron
- Neutron thermalizes and captures
 - Initial collisions of sufficient energy for proton scintillation
 - Nearly identical time constant to IBD
- Apply muon veto

Correlated backgrounds

- Cosmic ray interaction creates neutrons high up in the atmosphere
- High energy neutron reaches the detector
- Neutron thermalizes and captures
 - Sufficient energy in initial collisions for proton scintillation
 - Nearly identical time constant to IBD
- No corresponding muon

- Cosmic ray induced
 - Muon spallation
 - Atmospheric neutrons

Correlated backgrounds

- Part of the Uranium decay chain
- Both environmental and contamination

1
$$e^{214}$$
Bi $\rightarrow e^{214}$ Po $+ e^{-1}$
 e^{-1} in PVT,
very similar to IBD prompt
 $Q_{\beta} = 3.2$ MeV
 $\langle E_{vis} \rangle = 2.5$ MeV
2 e^{214} Po $\rightarrow e^{210}$ Pb $+ \alpha$
 α in ZnS(Ag),
very similar to IBD delayed
 $t_{1/2} = 164 \ \mu s$
 $\tau_{IBD} = 64 \ \mu s$

- Cosmic ray induced
 - Muon spallation
 - Atmospheric neutrons

•
$$\beta-lpha$$
 decay chains

Neutrino observation

- Stable data taking since April, accumulated over 100 days of reactor on data
- Excess consistent with expectations has been observed (internal results, not yet public)
- Working on characterization of correlated backgrounds, in particular at low energies

HNL search

- Not the design goal
- Initial phases of analysis
- No neutron involved
 - → Have to rely on secondary trigger for HNL data: threshold trigger

Threshold trigger

- 2.5 MeV threshold
- Simple XY coincidence requirement
- Reads entire plane (64 channels) for 6.4 μ s
- Designed for muons

HNL event topology

- **()** $\bar{\nu}_e$ from reactor oscillates to HNL
- e HNL decays
- O Emission of e^-, e^+ and u from decay point
 - u carries away energy invisibly, e^+ and e^- carry the rest
 - Due to relatively low energy and cube size, signal is mostly contained in one or two cubes (except e⁺ decay gammas)

Detection probabilities

- Trigger efficiency, no reconstruction
- Efficiency dominated by neutrino energy, not HNL mass
- Reducing threshold trigger level gives access to exponentially more neutrinos

S. Vercaemer

HNL backgrounds

- e^+e^- scintillation is a single signal \rightarrow no correlated backgrounds
- Neutrino correlated backgrounds are accidental for HNL
 - \rightarrow Require muon and neutron veto
- Relatively quiet environment

S. Vercaemer

- Collecting data since April
- First looks at data are very promising, neutrinos are coming soon
- First steps in heavy neutral lepton analysis taken