Physics at Lepton Colliders

Paolo Giacomelli INFN Bologna

> EOS Solstice meeting Bruxelles, 20/12/2018

Thanks to A. Blondel and P. Janot and other collaborators

The proposed future Lepton Colliders

- The proposed future Lepton Colliders
 - Circular Colliders

- The proposed future Lepton Colliders
 - Circular Colliders
 - Linear Colliders

- The proposed future Lepton Colliders
 - Circular Colliders
 - Linear Colliders
- Discovery potential

- The proposed future Lepton Colliders
 - Circular Colliders
 - Linear Colliders
- Discovery potential
- EW observables

- The proposed future Lepton Colliders
 - Circular Colliders
 - Linear Colliders
- Discovery potential
- EW observables
- The Higgs factory

- The proposed future Lepton Colliders
 - Circular Colliders
 - Linear Colliders
- Discovery potential
- EW observables
- The Higgs factory
- pp collider at 100 TeV

- The proposed future Lepton Colliders
 - Circular Colliders
 - Linear Colliders
- Discovery potential
- EW observables
- The Higgs factory
- pp collider at 100 TeV

- The proposed future Lepton Colliders
 - Circular Colliders
 - Linear Colliders
- Discovery potential
- EW observables
- The Higgs factory
- pp collider at 100 TeV
- Conclusions

- The proposed future Lepton Colliders
 - Circular Colliders
 - Linear Colliders
- Discovery potential
- EW observables
- The Higgs factory
- pp collider at 100 TeV
- JDEA
- Conclusions

<u>Caveat</u>

- The proposed future Lepton Colliders
 - Circular Colliders
 - Linear Colliders
- Discovery potential
- EW observables
- The Higgs factory
- pp collider at 100 TeV
- JDEA
- Conclusions

<u>Caveat</u>

Cannot possibly cover all the physics landscape!

- The proposed future Lepton Colliders
 - Circular Colliders
 - Linear Colliders
- Discovery potential
- EW observables
- The Higgs factory
- pp collider at 100 TeV
- JDEA
- Conclusions

<u>Caveat</u>

Cannot possibly cover all the physics landscape!

A personal selection applied...

The Future Circular Colliders CDR and cost review to appear Q4 2018 for ESU

- International collaboration to Study Colliders fitting in a new ~100 km infrastructure, fitting in the *Genevois*
- Ultimate goal: ~16 T magnets 100 TeV pp-collider (FCC-hh)
- → defining infrastructure requirements
- Two possible first steps:
- e⁺e⁻ collider (FCC-ee) High Lumi, E_{CM} =90-400 GeV
- *HE-LHC* 16T ⇒ 27 TeV in LEP/LHC tunnel
- **Possible addition:**
- p-e (FCC-he) option

From European Strategy in 2013: "ambitious post-LHC accelerator project" Study kicked-off in Geneva in Feb 2014

20/12/2018

The Future Circular Colliders CDR and cost review to appear Q4 2018 for ESU

- International collaboration to Study Colliders fitting in a new ~100 km infrastructure, fitting in the *Genevois*
- Ultimate goal: ~16 T magnets 100 TeV pp-collider (FCC-hh)
- → defining infrastructure requirements
- Two possible first steps:
- e⁺e⁻ collider (FCC-ee) High Lumi, E_{CM} =90-400 GeV
- *HE-LHC* 16T ⇒ 27 TeV in LEP/LHC tunnel
- **Possible addition:**
- p-e (FCC-he) option

and cheapest way to 100 TeV. That combination also produces the most physics. It is the assumption in the following.

From European Strategy in 2013: "ambitious post-LHC accelerator project" Study kicked-off in Geneva in Feb 2014

20/12/2018

The Future Circular Colliders CDR and cost review to appear Q4 2018 for ESU

- International collaboration to Study Colliders fitting in a new ~100 km infrastructure, fitting in the *Genevois*
- Ultimate goal: ~16 T magnets 100 TeV pp-collider (FCC-hh)
- → defining infrastructure requirements
- Two possible first steps:
- e⁺e⁻ collider (FCC-ee) High Lumi, E_{CM} =90-400 GeV
- *HE-LHC* 16T ⇒ 27 TeV in LEP/LHC tunnel
- **Possible addition:**
- p-e (FCC-he) option

the way by FCC-ee is probably the fastest and cheapest way to 100 TeV. That combination also produces the most physics. It is the assumption in the following. also a good start for μC!

From European Strategy in 2013: "ambitious post-LHC accelerator project" Study kicked-off in Geneva in Feb 2014

20/12/2018

CLD

2 T solenoid Full Si tracker SiW HG EM calorimeter Sci.-steel HG HCAL calorimeter Muon detector with RPCs

CLD

2 T solenoid Full Si tracker SiW HG EM calorimeter Sci.-steel HG HCAL calorimeter Muon detector with RPCs **IDEA**

2 T thin solenoidSi vertexWire chamberDual Readout calorimeterMPGD-based Muon detector

CLD

2 T solenoid Full Si tracker SiW HG EM calorimeter Sci.-steel HG HCAL calorimeter Muon detector with RPCs **IDEA**

2 T thin solenoid Si vertex Wire chamber Dual Readout calorimeter MPGD-based Muon detector

CDR to be published in January 2019

Possible Timeline of the FCCs

Technical Schedule for each of the 3 options

schedule constrained by 16 T magnets & CE

- \rightarrow earliest possible physics starting dates
- FCC-ee: 2039
- FCC-hh: 2043
- HE-LHC: 2040 (with HL-LHC stop LS5 / 2034)

Physics at Lepton Colliders - Paolo Giacomelli

- 1) Qinhuangdao, Hebei Province (Completed in 2014)
- 2) Huangling, Shanxi Province (Completed in 2017)
- 3) Shenshan, Guangdong Province(Completed in 2016)
- 4) Baoding (Xiong an), Hebei Province (Started in August 2017)
- 5) Huzhou, Zhejiang Province (Started in March 2018)
- 6) Chuangchun, Jilin Province (Started in May 2018)

Linear colliders: ILC

Center of mass energy 250 GeV, upgradable to 500 GeV and possibly to 1 TeV Accelerating gradient 31.5 MeV/m Max. Iuminosity ($\sqrt{s}=250$ GeV) 1.5 x 10³⁴ cm⁻²s⁻¹

Physics at Lepton Colliders - Paolo Giacomelli

Linear colliders: ILC

To be hosted by Japan Site selected is Kitakami

Decision pending by Japan since 2013...

XFEL built at DESY is a 10% version of the ILC.

Linear colliders: ILC

20/12/2018

NFN

Physics at Lepton Colliders - Paolo Giacomelli

Linear colliders: CLIC

Center of mass energy 380 GeV, upgradable to 1.5 TeV and possibly to 3 TeV Accelerating gradient ~100 MeV/m Max. luminosity (\sqrt{s} =380 GeV) 1.5 x 10³⁴ cm⁻²s⁻¹

Future lepton colliders luminosities

Clear advantage in luminosity for circular colliders vs. linear colliders. Linear colliders (CLIC) have higher energy reach, but less than a pp collider.

20/12/2018

Physics at Lepton Colliders - Paolo Giacomelli

FCC-ee Run Plan

Working point	Z, years 1-2	Z, later	ww	HZ	tt threshold	365 GeV
Lumi/IP (10 ³⁴ cm ⁻² s ⁻¹)	100	200	31	7-5	0.85	1.5
Lumi/year (2 IP)	26 ab-1	52 ab-1	8.1 ab ⁻¹	1.95 ab-1	0.22 ab-1	0.39 ab-1
Physics goal (ab ⁻¹)	150		10	5	0.2	1.5
Run time (year)	2	2	1	3	1	4

indicative: total ~15 years

O(1/3) of the machine cost comes O(10) years after start

FCC-ee Run Plan

Working point	Z, years 1-2	Z, later	ww	HZ	tt threshold	365 GeV
Lumi/IP (10 ³⁴ cm ⁻² s ⁻¹)	100	200	31	7-5	0.85	1.5
Lumi/year (2 IP)	26 ab-1	52 ab-1	8.1 ab ⁻¹	1.95 ab-1	0.22 ab-1	0.39 ab-1
Physics goal (ab ⁻¹)	150		10	5	0.2	1.5
Run time (year)	2	2	1	3	1	4

indicative: total ~15 years

O(1/3) of the machine cost comes O(10) years after start

Event statistics :					
Z peak	E _{cm} : 91 GeV	5x10 ¹²	$e^+e^- \rightarrow Z$	LEP x 10 ⁵	100 keV
WW threshold	E _{cm} : 161 GeV	10 ⁸	$e^+e^- \rightarrow WW$	LEP x 2.10 ³	300 keV
ZH threshold	E _{cm} : 240 GeV	10 ⁶	$e^+e^- \rightarrow ZH$	Never done	1 MeV
tt threshold	E _{cm} : 350 GeV	10 ⁶	$e^+e^- \rightarrow t\bar{t}$	Never done	2 MeV

FCC-ee discovery potential

Today we do not know how nature will surprise us. A few things that FCC-ee could discover :

- EXPLORE the 10-100 TeV energy scale
 - With precision measurements of the properties of the Z, W, Higgs, and top particles
 - 20-50 fold improved precision on ALL electroweak observables (EWPO)
 - \rightarrow m_Z, Γ_{Z} , m_W, m_{top}, sin² θ_{w}^{eff} , R_b, α_{QED} (m_z), α_{s} (m_z), top EW couplings ...
 - 10 fold more precise Higgs couplings measurements
 - \twoheadrightarrow Break model dependence with $\Gamma_{\rm H}$ accurate measurement

DISCOVER that the Standard Model does not fit

- Then extra weakly-coupled and Higgs-coupled particles exist
- Understand the underlying physics through effects via loops
- DISCOVER a violation of flavour conservation / universality
 - e.g., with $B^o \rightarrow K^{*0}\tau^+\tau^-$ or $B_S \rightarrow \tau^+\tau^-$ in 10¹² bb events
- DISCOVER dark matter as invisible decays of Higgs or Z
- DISCOVER very weakly coupled particles in the 5-100 GeV mass range
 - Such as right-handed neutrinos, dark photons, ...
 - May help understand dark matter, universe baryon asymmetry, neutrino masses

NB Not only a «Higgs Factory», «Z factory» and «top» are important for 'discovery potential'

EW observables at FCC-ee

Observable	Measurement	Current precision	FCC-ee stat.	Possible syst.	Challenge
m _z (MeV)	Lineshape	91187.5 ± 2.1	0.005	< 0.1	QED corr.
Г _z (MeV)	Lineshape	2495.2 ± 2.3	0.008	* < 0.1	QED / EW
R _i	Peak	20.767 ± 0.025	0.001	< 0.001	Statistics
R _b	Peak	0.21629 ± 0.00066	0.000003	< 0.00006	g ightarrow bb
N_{v}	Peak	2.984 ± 0.008	0.00004	< 0.004	Lumi meast
$sin^2 \theta_w^{eff}$	A _{FB} ^{μμ} (peak)	0.23148 ± 0.00016	0.000003	<0.000005	Beam energy
$1/lpha_{ extsf{QED}}(extsf{m}_{ extsf{z}})$	A _{FB} ^{μμ} (off-peak)	128.952 ± 0.014	0.004	< 0.004	QED / EW
$lpha_{ m s}({ m m_z})$	R _I	0.1196 ± 0.0030	0.00001	<0.0002	New Physics
m _w (MeV)	Threshold scan	80385 ± 15	0.6	< 0.6	EW Corr.
Г _w (MeV)	Threshold scan	2085 ± 42	1.5	<1.5	EW Corr.
N_{v}	e⁺e⁻→ γZ, Z→ νν, II	2.92 ± 0.05	0.001	< 0.001	?
$\alpha_{s}(m_{W})$	$B_{had} = (\Gamma_{had} / \Gamma_{tot})_W$	B _{had} = 67.41 ± 0.27	0.00018	< 0.0001	CKM Matrix
m _{top} (MeV)	Threshold scan	173340 ± 760 ± 500	20	<40	QCD corr.
Γ_{top} (MeV)	Threshold scan	?	40	<40	QCD corr.
λ_{top}	Threshold scan	μ = 1.2 ± 0.3	0.08	< 0.05	QCD corr.
ttZ couplings	√s = 365 GeV	~30%	~2%	<2%	QCD corr

* work to do: check if we can improve

EW observables at FCC-ee

Observable	Measurement	Current precision	FCC-ee stat.	Possible syst.	Challenge
m _z (MeV)	Lineshape	91187.5 ± 2.1	0.005	< 0.1	QED corr.
Г _z (MeV)	Lineshape	2495.2 ± 2.3	0.008	* < 0.1	QED / EW
R _I	Peak	20.767 ± 0.025	0.001	< 0.001	nts!
R _b	Peak	0.21629 ± 0.00066	0.000003	< 0.00	→bb
N_{v}	Peak	2.984 ± 0.008	0.00004	easur	Lumi meast
$sin^2 \theta_w^{eff}$	A _{FB} ^{μμ} (peak)	0.23148 ± 0.00016	0.be		Beam energy
$1/lpha_{ extsf{QED}}(extsf{m_z})$	$A_{FB}^{\mu\mu}$ (off-peak)	128.952 ± 0.01		< 0.004	QED / EW
$\alpha_{s}(m_{z})$	R _I	0.110	0.00001	<0.0002	New Physics
m _w (MeV)	Threshold scan	+ acro	0.6	< 0.6	EW Corr.
$Γ_{\sf w}$ (MeV)	Threshold	2085 ± 42	1.5	<1.5	EW Corr.
N_{v}	eta el	2.92 ± 0.05	0.001	< 0.001	?
$\alpha_{s}(m_{w})$	$_{ad}/\Gamma_{tot})_{W}$	B _{had} = 67.41 ± 0.27	0.00018	< 0.0001	CKM Matrix
m at i	Threshold scan	173340 ± 760 ± 500	20	<40	QCD corr.
Grea	Threshold scan	?	40	<40	QCD corr.
λ_{top}	Threshold scan	μ = 1.2 ± 0.3	0.08	< 0.05	QCD corr.
ttZ couplings	√s = 365 GeV	~30%	~2%	<2%	QCD corr

* work to do: check if we can improve

Higgs Factory

Higgs provides a very good reason why we need a lepton (e^+e^- or $\mu\mu$) collider

"Higgstrahlung" process close to threshold

Production cross section has a maximum at near threshold ~200 fb

 10^{34} /cm²/s \rightarrow 20'000 HZ events per year

Z – tagging by missing mass

For a Higgs of 125 GeV, a centre of mass energy of 240-250 GeV is optimal
 → kinematical constraint near threshold for high precision in mass, width, selection purity

Higgs production at FCC-ee

FCC-ee 5 ab-1@240 GeV ~1.5 ab⁻¹@365 GeV **Higgs Factory!**

	FCC-ee	FCC-ee
	240 GeV	365 GeV
Total Integrated Luminosity (ab ⁻¹)	5	1.5
# Higgs bosons from e⁺e⁻→HZ	1,000,000	180,000
# Higgs bosons from fusion process	25,000	45,000

Higgs couplings to Z

- Recoil method provides a unique opportunity for a decay-mode independent measurement of the HZ coupling
 - Higgs events are tagged with the Z boson decays, independently of Higgs decay mode, m_{recoil} = m_H
 - Expected precision 0.7% on the ZH cross section
 - Using only leptonic Z decays and only a measurement at 240 GeV so far

Z-tagging by missing mass

g_{HZZ} to ±0.2% and many other partial widths
empty recoil = invisible width
'funny recoil' = exotic Higgs decay
easy control below threshold

5 ab⁻¹

90 100 110 120 130 140 150

m_{Recoil} (GeV)

Physics at Lepton Colliders - Paolo Giacomelli

- Total Higgs boson width can be extracted from a combination of measurements in a model independent way
 - 1) tagging Higgs final states

$$\sigma(ee \to ZH) \cdot BR(H \to ZZ) \propto \frac{g_{HZ}^4}{\Gamma}$$

2) measurements of vector boson fusion production at 365 GeV

$$\frac{\sigma(ee \rightarrow ZH) \cdot BR(H \rightarrow WW) \cdot \sigma(ee \rightarrow ZH) \cdot BR(H \rightarrow bb)}{\sigma(ee \rightarrow \nu\nu H) \cdot BR(H \rightarrow bb)}$$

$$\propto \frac{g_{HZ}^2 \cdot g_{HW}^2}{\Gamma} \cdot \frac{g_{HZ}^2 \cdot g_{Hb}^2}{I} \cdot \frac{I}{g_{HW}^2 \cdot g_{Hb}^2} = \frac{g_{HZ}^4}{\Gamma}$$
3) combination of all measurements
recision obtainable on $\delta\Gamma_H/\Gamma_H \sim 1.6\%$

Ρ

√s (GeV)

Higgs boson couplings, ZH→{łX

CLD: 15% improvement due to higher lepton efficiency

Higgs boson couplings, ZH→{łbb

CLD: 20% improvement due to higher lepton efficiency and better b tagging

Higgs boson couplings, ZH→qqbb

Ongoing work, should lead to better results in TDR

CLD: 35% improvement due to better b tagging and particle flow

Precision Higgs coupling measurements

- Absolute coupling measurements enabled by HZ cross section and total width measurement
- Data at 365 GeV constrain total width
 - ♀ only used H→bb in fusion production so far
- Tagging individual Higgs final states to extract various Higgs couplings
- Couplings extracted from model-independent fit
- Statistical uncertainties are shown for 5 ab⁻¹@240 GeV and 1.5 ab⁻¹@365 GeV (from arXiv:1308.6176)
 - all measurements are under review / are being redone
 - possible improvements of 10-35% on cross section measurements

in %	FCC-ee 240 GeV	+FCC-ee 365 GeV	+HL-LHC
δ g Hzz	0.25	0.22	0.21
δ g_{Hww}	1.3	0.47	0.44
$\delta {f g}_{{\sf Hbb}}$	1.4	0.68	0.58
$\delta \mathbf{g}_{Hcc}$	1.8	1.23	1.20
$\delta {f g}_{{\sf H}{\sf g}{\sf g}}$	1.7	1.03	0.83
δ g _{Ηττ}	1.4	0.8	0.71
δ g _{Ηµµ}	9.6	8.6	3.4
δ g_{Hγγ}	4.7	3.8	1.3
$\delta \mathbf{g}_{\mathbf{Htt}}$			3.3
δΓ _Η	2.8	1.56	1.3

Several couplings improve further by doing a combined fit with HL-LHC

Comparison with other e⁺e⁻ colliders

Collider	µ Coll125	ILC ₂₅₀	CLIC ₃₈₀	LEP3240	CEPC ₂₅₀	FCC-ee ₂₄₀	FCC-ee ₃₆₅
Years	6	15	7	6	7	3	4
Lumi (ab⁻¹)	0.005	2	0.5	3	5	5	1.5
δm _H (MeV)	0.1	14	110	10	5	7	6
δΓ _Η / Γ _Η (%)	6.1	3.8	6.3	3.7	2.6	2.8	1.6
δg _{Hb} / g _{Hb} (%)	3.8	1.8	2.8	1.8	1.3	1.4	o.68
δ g_{HW /} g_{HW} (%)	3.9	1.7	1.3	1.7	1.2	1.3	0.47
δg _{Hτ} / g _{Hτ} (%)	6.2	1.9	4.2	1.9	1.4	1.4	0.80
δg _{Hγ} / g _{Hγ} (%)	n.a.	6.4	n.a.	6.1	4.7	4.7	3.8
δg _{Hμ /} g _{Hμ} (%)	3.6	13	n.a.	12	6.2	9.6	8.6
δg _{HZ /} g _{HZ} (%)	n.a.	0.35	0.80	0.32	0.25	0.25	0.22
δ g_{Hc /} g_{Hc} (%)	n.a.	2.3	6.8	2.3	1.8	1.8	1.2
δg _{Hg /} g _{Hg} (%)	n.a.	2.2	3.8	2.1	1.4	1.7	1.0
BR _{invis} (%) _{95%CL}	SM	< 0.3	< 0.6	< 0.5	< 0.15	< 0.3	< 0.25
BR _{EXO} (%) _{95%CL}	SM	< 1.8	< 3.0	< 1.6	< 1.2	< 1.2	< 1.1

Green = best Red = worst

Comparison with other e+e- colliders

Collider	µ Coll125	ILC ₂₅₀	CLIC ₃₈₀	LEP3240	CEPC ₂₅₀	FCC-ee ₂₄₀	FCC-ee ₃₆₅
Years	6	15	7	6	7	3	
Lumi (ab ⁻¹)	0.005	2	0.5	3	5	5	uider
δm_{H} (MeV)	0.1	14	110	10	5		6
δΓ _Η / Γ _Η (%)	6.1	3.8	6.3	3.7	11	69	1.6
δ g_{Hb} / g_{Hb} (%)	3.8	1.8	2.8		over	1.4	o.68
δ g_{HW /} g_{HW} (%)	3.9	1.7	1.2	r edge	1.2	1.3	0.47
δg _{Hτ} /g _{Hτ} (%)	6.2	1.9	cles	1.9	1.4	1.4	0.80
δ g_{Hγ} , g_{Hγ} (%)	n.a.		30	6.1	4.7	4.7	3.8
δ g_{Hμ} / g_{Hμ} (%)		ha	n.a.	12	6.2	9.6	8.6
δ g_{HZ} / g_{HZ} (%)	, Cep	0.35	0.80	0.32	0.25	0.25	0.22
δg _H	0	2.3	6.8	2.3	1.8	1.8	1.2
-C-ee	n.a.	2.2	3.8	2.1	1.4	1.7	1.0
Invis (%) _{95%CL}	SM	< 0.3	< 0.6	< 0.5	< 0.15	< 0.3	< 0.25
BR _{EXO} (%) _{95%CL}	SM	< 1.8	< 3.0	< 1.6	< 1.2	< 1.2	< 1.1

Green = best Red = worst

- ➡ Very large HZ datasets allow g_{ZH} measurements of extreme precision
- Indirect and model-dependent probe of Higgs self-coupling

A precision on $\delta \kappa_{\lambda}$ of $\pm 40\%$ can be achieved, and of $\pm 35\%$ in combination with HL-LHC. If c_Z if fixed to its SM value, then the precision on $\delta \kappa_{\lambda}$ improves to $\pm 20\%$

electron Yukawa coupling

- s-channel Higgs production
 - unique opportunity for measurement close to SM sensitivity
 - ighly challenging; $\sigma(ee \rightarrow H) = 1.6$ fb;

various Higgs decay channels studied

- studied monochromatization scenarios
 - baseline: 6 MeV energy spread, L
 = 2 ab⁻¹
 - optimized: 10 MeV energy spread, L = 7 ab⁻¹
 - Iimit ~3.5 times SM in both cases

Physics at Lepton Colliders - Paolo Giacomelli

Higgs boson to invisible decays are predicted for instance in the Higgs-portal model of Dark Matter.

- Follows FCC-ee ZH cross section measurement
- for visualization BR(H->inv) = 100%
- 95%CL upper limit using 5ab⁻¹ is 0.47%
- Study using leptonic Z decays in Eur. Phys. J. C (2017) 77: 116
- Hadronic Z decays under study. Show similar performance

Excellent opportunities for BSM Higgs searches

Simulation of heavy neutrino decay in a FCC-ee detector

100 TeV

FCC-hh parameters

Hadron collider parameters (pp)

parameter	FCC-hh		HE-LHC	(HL) LHC			
collision energy cms [TeV]	100		27	14			
dipole field [T]		16	16	8.3			
circumference [km]	100		100		100 27		27
beam current [A]	0.5		1.12	(1.12) 0.58			
bunch intensity [10 ¹¹]	1 (0.5)		2.2	(2.2) 1.15			
bunch spacing [ns]	25 (12.5)		25 (12.5)	25			
norm. emittance γε _{x,y} [μm]	2.2 (1.1)		2.5 (1.25)	(2.5) 3.75			
ΙΡ β [*] _{x,y} [m]	1.1	0.3	0.25	(0.15) 0.55			
luminosity/IP [10 ³⁴ cm ⁻² s ⁻¹]	5	30	28	(5) 1			
peak #events / bunch Xing	170	1000 (500)	800 (400)	(135) 27			
stored energy / beam [GJ]	8.4		1.4	(0.7) 0.36			
SR power / beam [kW]	2400		100	(7.3) 3.6			
transv. emit. damping time [h]	1.1		3.6	25.8			
initial proton burn off time [h]	17.0	3.4	3.0	(15) 40			

FCC-hh is a HUGE discovery machine (if nature ...), but not only.

FCC-hh is a HUGE discovery machine (if nature ...), but not only.

FCC-hh physics is dominated by three features:

FCC-hh is a HUGE discovery machine (if nature ...), but not only.

FCC-hh physics is dominated by three features:

ex: strongly coupled new particles up to >30 TeV Excited quarks, Z', W', up to ~tens of TeV <u>Give the final word on natural Supersymmetry, extra Higgs etc.</u>. reach up to 5-20 TeV Sensitivity to high energy phenomena in e.g. WW scattering

FCC-hh is a HUGE discovery machine (if nature ...), but not only.

FCC-hh physics is dominated by three features:

✓ Highest center of mass energy → a big step in high mass reach!
 ex: strongly coupled new particles up to >30 TeV
 Excited quarks, Z', W', up to ~tens of TeV
 <u>Give the final word on natural Supersymmetry, extra Higgs etc.</u>. reach up to 5-20 TeV
 Sensitivity to high energy phenomena in e.g. WW scattering

HUGE production rates for single and multiple production of SM bosons (H, W, Z) and quarks

- Higgs precision tests using ratios to e.g. γγ/μμ/ ττ/ZZ, ttH/ttZ @<% level</p>
- Precise determination of triple Higgs coupling (~3% level) and quartic Higgs coupling
- detection of rare decays $H \rightarrow V\gamma$ (V= ρ , ϕ , J/ ψ , Υ , Z...)
- search for invisibles (DM searches, RH neutrinos in W decays)
- renewed interest for long lived (very weakly coupled) particles.
- rich top and HF physics program

FCC-hh is a HUGE discovery machine (if nature ...), but not only.

FCC-hh physics is dominated by three features:

Fighest center of mass energy → a big step in high mass reach!
 ex: strongly coupled new particles up to >30 TeV
 Excited quarks, Z', W', up to ~tens of TeV
 <u>Give the final word on natural Supersymmetry, extra Higgs etc.</u>. reach up to 5-20 TeV
 Sensitivity to high energy phenomena in e.g. WW scattering

HUGE production rates for single and multiple production of SM bosons (H, W, Z) and quarks

- Higgs precision tests using ratios to e.g. γγ/μμ/ ττ/ZZ, ttH/ttZ @<% level</p>
- Precise determination of triple Higgs coupling (~3% level) and quartic Higgs coupling
- detection of rare decays $H \rightarrow V\gamma$ (V= $\rho, \phi, J/\psi, \Upsilon, Z...$)
- search for invisibles (DM searches, RH neutrinos in W decays)
- renewed interest for long lived (very weakly coupled) particles.
- rich top and HF physics program
- Cleaner signals for high P_t physics
 - Illows clean signals for channels presently difficult at LHC (e.g. H \rightarrow bb)

Higgs self-coupling at FCC-hh

Details in arXiv:1606.09408 and arXiv1802.01607 20/12/2018 Physics at Lepto

IDEA detector layout

Detector for circular lepton collider

IDEA detector concept

IDEA detector concept based on:

- Si vertex detector
- Excellent particle-ID (wire chamber)
- Very low material budget
- Thin Magnet 2 Tesla field
- Preshower
- Dual readout calorimeter
- Muon detector

IDEA detector concept based on:

- Si vertex detector
- Excellent particle-ID (wire chamber)
- Very low material budget
- Thin Magnet 2 Tesla field
- Preshower
- Dual readout calorimeter
- Muon detector

Same detector concept proposed for both **FCC-ee** and **CEPC**!

IDEA is described in **both** CDRs.

IDEA detector concept based on:

- Si vertex detector
- Excellent particle-ID (wire chamber)
- Very low material budget
- Thin Magnet 2 Tesla field
- Preshower
- Dual readout calorimeter
- Muon detector

Same detector concept proposed for both FCC-ee and CEPC! IDEA is described in both CDRs.

Initially proposed by Italy and INFN, but now looking for international collaborators ! A lot of interesting R&D to be performed and excellent physics prospects ahead of us!

- **IDEA** detector concept based on:
 - Si vertex detector
 - Excellent particle-ID (wire chamber)
 - Very low material budget
 - Thin Magnet 2 Tesla field
 - Preshower
 - Dual readout calorimeter
 - Muon detector

shutterstock.com · 619952063

Same detector concept proposed for both FCC-ee and CEPC! IDEA is described in both CDRs.

Initially proposed by Italy and INFN, but now looking for international collaborators ! A lot of interesting R&D to be performed and excellent physics prospects ahead of us!

Performed in September 2018 at the CERN H4 beam line

Performed in September 2018 at the CERN H4 beam line

Performed in September 2018 at the CERN H4 beam line

Performed in September 2018 at the CERN H4 beam line

IDEA slice test

Performed in September 2018 at the CERN H4 beam line

IDEA slice test

Performed in September 2018 at the CERN H4 beam line

- Several future lepton colliders are being proposed
 - Circular: FCC-ee and CEPC
 - Linear: I) and CLIC
- Circular colliders have much larger luminosities, while linear colliders can reach higher energies
- Circular lepton colliders can later be replaced by very high energy pp colliders
 - the sequential implementation of a lepton and a hadron collider maximises the physics reach
- Attractive scenarios of staging and implementation (budget!) cover more than 50 years of exploratory physics, taking full advantage of the <u>synergies and complementarities</u>

- Several future lepton colliders are being proposed
 - Circular: FCC-ee and CEPC
 - Linear: I) and CLIC
- Circular colliders have much larger luminosities, while linear colliders can reach higher energies
- Circular lepton colliders can later be replaced by very high energy pp colliders
 - the sequential implementation of a lepton and a hadron collider maximises the physics reach
- Attractive scenarios of staging and implementation (budget!) cover more than 50 years of exploratory physics, taking full advantage of the <u>synergies and complementarities</u>

CEPC could start at the beginning of the 2030s

- Several future lepton colliders are being proposed
 - Circular: FCC-ee and CEPC
 - Linear: I) and CLIC
- Circular colliders have much larger luminosities, while linear colliders can reach higher energies
- Circular lepton colliders can later be replaced by very high energy pp colliders
 - the sequential implementation of a lepton and a hadron collider maximises the physics reach
- Attractive scenarios of staging and implementation (budget!) cover more than 50 years of exploratory physics, taking full advantage of the <u>synergies and complementarities</u>

CEPC could start at the beginning of the 2030s FCC-ee could start seamlessly at the end of HL-LHC

- Several future lepton colliders are being proposed
 - Circular: FCC-ee and CEPC
 - Linear: I) and CLIC
- Circular colliders have much larger luminosities, while linear colliders can reach higher energies
- Circular lepton colliders can later be replaced by very high energy pp colliders
 - the sequential implementation of a lepton and a hadron collider maximises the physics reach
- Attractive scenarios of staging and implementation (budget!) cover more than 50 years of exploratory physics, taking full advantage of the <u>synergies and complementarities</u>

CEPC could start at the beginning of the 2030s FCC-ee could start seamlessly at the end of HL-LHC FCC-ee and CEPC promise the <u>best</u> EW and Higgs measurements

Backup

A successful model!

 $\frac{\text{PHYSICS WITH VERY HIGH ENERGY}}{e^+e^- \text{ COLLIDING BEAMS}}$

CERN 76-18 8 November 1976

L. Camilleri, D. Cundy, P. Darriulat, J. Ellis, J. Field,
H. Fischer, E. Gabathuler, M.K. Gaillard, H. Hoffmann,
K. Johnsen, E. Keil, F. Palmonari, G. Preparata, B. Richter,
C. Rubbia, J. Steinberger, B. Wiik, W. Willis and K. Winter

ABSTRACT

This report consists of a collection of documents produced by a Study Group on Large Electron-Positron Storage Rings (LEP). The reactions of

Did these people know that we would be running HL-LHC in that tunnel >60 years later?

ECFA 84/85 CERN 84-10 5 September 1984

pp 2009-2039

Let's not be SHY!

LARGE HADRON COLLIDER IN THE LEP TUNNEL

<mark>e+e-</mark> 1989-2000

Circular e⁺e⁻ colliders: FCC-ee, CepC

- Basic measurements similar for all e+e-colliders
 - Some differences in experimental conditions

• $e^+e^- \rightarrow HZ$ at $\sqrt{s} = 240-250$ GeV : Higgs boson are tagged with a Z and $m_{Recoil} = m_H$

- Measure σ_{HZ} ($\propto g_{HZ}^2$) independently of H decay: absolute determination of g_{HZ}
- Measure $\sigma_{HZ} \times BR(H \rightarrow invisible)$ and many exclusive decays $\sigma_{HZ} \times BR(H \rightarrow XX)$
- Infer Higgs width $\Gamma_{\rm H}$ from $\sigma_{\rm HZ} \times BR(H \rightarrow ZZ)$ ($\propto g_{\rm HZ} 4/\Gamma_{\rm H}$)
- Fit couplings g_{HX} from BR(H \rightarrow XX) and Γ_{H} in a model-independent manner
- ◆ e^+e^- → HZ completed with WW fusion at $\sqrt{s} = 350-365$ GeV at FCC-ee
 - \bullet Improves all precisions, especially on g_{HW} and Γ_{H}
 - \bullet First glance at top Yukawa coupling λ_t and Higgs self coupling λ_H (next slides)

«First look of the physics case of TLEP» (original name of FCC-ee): 398 quotes today

HEP 398 records found 1 - 25 ▶ jump to record: 1	HEP 430 records found 1 - 25 by jump to record: 1
1. Probing TeV scale origin of neutrino mass at lepton colliders P.S. Bhupal Dev, Rabindra N. Mohapatra, Yongchao Zhang. Mar 29, 2018. 48 pp. e-Print: arXiv:1803.11167 [hep-ph] PDF References BibTeX LaTeX(US) LaTeX(EU) Harvmac EndNote ADS Abstract Service	1. Future Circular Collider Study (FCC) Tobias Golling (Geneva U.). 2016. 6 pp. Conference: <u>C15-08-31.1</u> , p.559-564 <u>Proceedings</u> <u>References</u> <u>BibTeX</u> <u>LaTeX(US)</u> <u>LaTeX(EU)</u> <u>Harvmac</u> <u>EndNote</u> <u>Link to Fulltext</u> <u>Detailed record</u>
Detailed record 2. Review of top and EW physics at future colliders Marcel Vos (Valencia U., IFIC). 2017. 10 pp. Published in PoS EPS-HEP2017 (2017) 471 Conference: C17-07-05 Proceedings	2. A Deeper Probe of New Physics Scenarii at the LHC A. Djouadi (Orsay, LPT). 2017. 12 pp. Conference: <u>C17-07-09.3</u> , p.44-55 <u>Proceedings</u> <u>References BibTeX LaTeX(US) LaTeX(EU) Harvmac EndNote</u> <u>Link to Fulltext</u> <u>Detailed record</u>
<u>References BibTeX LaTeX(US) LaTeX(EU) Harvmac EndNote</u> <u>Link to PoS server; Link to Fulltext</u> <u>Detailed record</u> 3 Electroweak Physics at Future e ⁺ e ⁻ Colliders	3. Effective Field Theory Approaches to Particle Physics Beyond the Standard Model Zhengkang Zhang (Michigan U.). 2018. 246 pp. <u>References BibTeX LaTeX(US) LaTeX(EU) Harvmac EndNote</u> <u>Link to Fulltext; Link to Fulltext</u> <u>Detailed record</u>
Elizabeth Locci (Saclay), On Behalf Of The Fcc Design Study Group. 2018. 10 pp. Published in PoS EPS-HEP2017 (2018) 449 Conference: <u>C17-07-05 Proceedings</u> <u>References BibTeX LaTeX(US) LaTeX(EU) Harvmac EndNote</u> <u>Link to PoS server; Link to Fulltext</u> <u>Detailed record</u>	 4. Measuring the triple Higgs self-couplings in two Higgs doublet model Nasuf Sonmez. Jun 23, 2018. 15 pp. 17-FEN-054, 17-FEN-054 e-Print: arXiv:1806.08963 [hep-ph] PDF References BibTeX LaTeX(US) LaTeX(EU) Harvmac EndNote ADS Abstract Service Detailed record
4. Muon g-2 and dark matter in models with vector-like fermions Enrico Maria Sessolo (NCBJ, Warsaw), Kamila Kowalska (Tech. U., Dortmund (ma Published in PoS EPS-HEP2017 (2017) 338 Conference: <u>C17-07-05 Proceedings</u> <u>References BibTeX LaTeX(US) LaTeX(EU) Harvmac EndNote Link to PoS server; Link to Fulltext</u>	5. Doubly-Charged Scalars in the Type-II Seesaw Mechanism: Fundamental Symmetry Tests and High P.S. Bhupal Dev (McDonnell Ctr. Space Sci.), Michael J. Ramsey-Musolf (Massachusetts U., Amherst & Caltech, Kellogg Lab), Ye ACFI T18-10, ACFI-T18-10 e-Print: <u>arXiv:1806.08499 [hep-ph] PDF</u> <u>References BibTeX LaTeX(US) LaTeX(EU) Harvmac EndNote</u> <u>ADS Abstract Service</u> <u>Detailed record</u>
Detailed record	6. The Higgs boson decays with the lepton flavor violation

Much more than a Higgs factory!

O.M. Boyarkin, G.G. Boyarkina, D.S. Vasileuskaya (Belarus State U.). 2018. 18 pp.

Published in Int.J.Mod.Phys. A33 (2018) no.17, 1850103 DOI: <u>10.1142/S0217751X18501038</u>

References | BibTeX | LaTeX(US) | LaTeX(EU) | Harvmac | EndNote

Detailed record

7. α_s status and perspectives (2018)

David d'Enterria. Jun 15, 2018. 5 pp. Conference: <u>C18-04-16.1</u> e-Print: <u>arXiv:1806.06156</u> [hep-ex] | <u>PDF</u> <u>References | BibTeX | LaTeX(US) | LaTeX(EU) | Harvmac | EndNote</u>

20/12/2018

Physics at Lepton Colliders - Paolo Giacomelli

Conclusion from Precision Calculations Mini-Workshop in January 2018:

The necessary theoretical work is doable in 5-10 years perspective, due to steady progress in methods and tools, including the recent completion of NNLO SM corrections to EWPOS. This statement is conditional to a strong support by the funding agencies and the overall community. Appropriate financial support and training programs for these precision calculations are mandatory.

Several EFTs will achieve sensitivity exceeding 50 TeV (decoupling physics!) junction with FCC-hh EFTs under progress by Jorge de Blas

The FCC-ee does not produce pairs of Higgses from which one can extract λ_{H} but the ZH cross-section receives a E_{cm} - dependent correction from it.

- \neg \sqrt{s} dependence of the "effective" g_{HZ} and g_{HW} to the Higgs self-coupling
 - Accessible from the high-precision runs at 240, (350), and 365 GeV
 - Arising from Higgs-triangle and -loop diagrams

- Higgs self-coupling precision at FCC-ee : ~40%
 - Improved to ~20% if g_{HZ} is fixed to its SM value
- Unique FCC-ee synergy between the runs at 240 and 365 GeV
 - Calls for the highest luminosity (4IP's ? Longer runs ?)

Patrick Janot

Higgs properties @ Circular Lepton Colliders 1 June 2018 investigating now : the possibility
of reaching 5σ observation of
Higgs self coupling at FCC-ee:
4 detectors

+ recast of running scenario

arXiv:1507.08169

To the extent that the qqbar \rightarrow tt Z/H contributions are subdominant:

- Identical production dynamics:

o correlated QCD corrections, correlated scale dependence o correlated α_s systematics

- $m_Z \sim m_H \Rightarrow$ almost identical kinematic boundaries:
 - o correlated PDF systematics
 - o correlated m_{top} systematics

For a given y_{top} , we expect $\sigma(ttH)/\sigma(ttZ)$ to be predicted with great precision

Ratios of BRs

For rare decays ($\mu\mu$, $\gamma\gamma$, γ Z) normalize to H \rightarrow ZZ well measured at FCC-ee

Total construction duration 7 years
First sectors ready after 4.5 years

Future Circular Collider Study Michael Benedikt 9th IPAC Vancouver, 3 May 2018

CERN

20/12/2018

28

Distance between detector cavern and service cavern 50 m.

common layouts for hh & ee

FCC-eh and ERL

LHeC or FCC-eh function as an addon to LHC or FCC-hh respectively: additional 10 km circumference Electron Recirculating Linac (ERL).

The possibility to collide FCC-ee with FCC-hh is not considered in the framework of the study

In the case of FCC-eh it could profit from the -- then existing -- FCC-hh, and, perhaps, from considerable RF of the -- then dismantled -- FCC-ee

FCC-eh

"Ampere-class" machine

IMPLEMENTATION AND RUN PLAN

Three sets of RF cavities for FCC-ee & Booster:

- Installation as LEP (≈30 CM/winter)
- high intensity (Z, FCC-hh): 400 MHz mono-cell cavities, ≈ 1MW source
- high energy (W, H, t): 400 MHz four-cell cavities, also for W machine
- booster and t machine complement: 800 MHz four-cell cavities
- Adaptable 100 MW, 400 MHz RF power distribution system +High efficiency
- → Spreads the funding profile

"high gradient" machine

Physics at Lepton Colliders - Paolo Giacomelli

FCC-hh discovery potential

Physics at a 100 TeV pp collider: CERN Yellow Report (2017) no.3

- 1) Standard Model processes: <u>https://arxiv.org/pdf/1607.01831v1.pdf</u>
- 2) Higgs and EW symmetry breaking studies: <u>https://arxiv.org/pdf/1606.09408v1.pdf</u>
- 3) Beyond the Standard Model phenomena: <u>https://arxiv.org/abs/1606.00947</u>
- 4) Heavy ions at the Future Circular Collider: <u>https://arxiv.org/abs/1605.01389</u>

Now proceeding to ascertain these cross-section calculations with real detector and simulations...

Higgs events rates

SM Higgs: event rates at 100 TeV

	gg→H	VBF	WH	ZH	ttH	HH
N ₁₀₀	24 x 10 ⁹	2.1 x 10 ⁹	4.6 x 10 ⁸	3.3 x 10 ⁸	9.6 x 10 ⁸	3.6 x 10 ⁷
N100/N14	180	170	100	110	530	390

 $N_{100} = \sigma_{100 \text{ TeV}} \times 30 \text{ ab}^{-1}$ $N_{14} = \sigma_{14 \text{ TeV}} \times 3 \text{ ab}^{-1}$

HIGGS PHYSICS

Higgs couplings g_{Hxx} precisions

hh, eh precisions assume SM or ee measurements FCC-hh : H→ ZZ to serve as cross-normalization

for ttH, combination of ±4% (model dependent)HL-LHC with FCC-ee will lead to ttH coupling to ± 3%... model independent!

for g_{HHH} investigating now : the possibility of reaching 5σ
observation at FCC-ee:
4 detectors

+ recast of running scenario

	g _{Hxx}	FCC-ee	FCC-hh	FCC-eh
	ZZ	0.22 %	< 1% *	
	WW	0.47%		
	Γ_{H}	1.6%		
	γγ	4.2%	<1%	
	Ζγ		1%	
7	ttH	13%	1%	
	bb	0.7%		0.5%
	ττ	0.8%		
	сс	0.7%		1.8%
	gg	1.0%		
	μμ	8.6%	1-2%	
	uu,dd	Н→ ργ?	Η→ ργ?	
	SS	Н→ фγ?	Н→ фү?	
	ee	$ee \rightarrow H$		
7	НН	40%	~3-5%	20%
	inv, exo	<0.55%	10-3	5%

Summary

Another example of Synergy and complementarity while ee covers a large part of space very cleanly , its either 'white' in lepton flavour or the result of EWPOs etc Observation at FCC –hh or eh would test flavour mixing matrix!

- Systematic assessment of heavy neutrino signatures at colliders.
- First looks at FCC-hh and FCC-eh sensitivities.
- Golden channels:
 - FCC-hh: LFV signatures and displaced vertex search
 - FCC-eh: LFV signatures and displaced vertex search
 - FCC-ee: Indirect search via EWPO and displaced vertex search

Eros Cazzato (Universit detailed study required for all FCCs – especially FCC-hh to understand feasibility at all 5722

Examples of complementarity

Higgs Physics

- ee \rightarrow ZH fixes Higgs width and HZZ coupling , (and many others)
- FCC-hh gives huge statistics of HH events for Higgs self-coupling and ttH and rare decays, including invisible.

Search for Heavy Physics

- ee gives precision measurements (m_z m_w to < 0.6 MeV, m_{top} 10 MeV, etc...) sensitive to heavy physics up to ... 100 TeV (for weak couplings)
- FCC-hh gives access to direct observation at unprecedented energies Also huge statistics of Z, W H and top → rare decays

Sector QCD

- ee gives $\alpha_s \pm 0.0002$ (R_{had} at Z, W and taus) also H \rightarrow gg events (gluon fragmentation!)
- ep provides structure functions and $\alpha_s \pm 0.0002$
- all this improves the signal and background predictions for new physics signals at FCC-hh

Heavy Neutrinos

- ee: very powerful and clean, but flavour-blind
- hh and eh more difficult, but potentially flavour sensitive

NB this is very much work in progress!!

Vector Boson Scattering (VBS)

- First opportunity to measure precisely the V_LV_L component that unitarizes VBS at high energy (barely 3σ at HL-LHC)
- Sets constraints on detector acceptance (fwd jets at η≈4)
- Study W+/-W+/- (same-sign) channel
- Large WZ background at FCC-hh
- 3-4% precision on W_LW_L scattering achievable with full dataset!

- Production ratio σ(ttH)/σ(ttZ)
- Predicted 1% precision [1507.08169]
- Measure $\sigma(ttH)/\sigma(ttZ)$ in $H/Z \rightarrow bb$ mode in the boosted regime, in the **semi-leptonic** channel
- Perform simultaneous fit of double Z and H peak

300

λ_{H} at FCC-hh

$\lambda_{\text{H}}~$ at the few percent level

Table 1.2: Target precision for the parameters relative to the measurement of various Higgs couplings, the Higgs self-coupling λ , Higgs branching ratios B and ratios thereof. Notice that lagrangian couplings have a precision that is typically half that of what is shown here, since all rates and branching ratios depend quadratically on the couplings.

Observable	Parameter	Precision (stat)	Precision (stat+syst)
$\mu = \sigma(H) \times B(H \to \mu\mu)$	$\delta \mu / \mu$	0.5%	0.9%
$\mu = \sigma(H) \times B(H \to \gamma \gamma)$	$\delta \mu / \mu$	0.1%	1%
$\mu = \sigma(H) \times B(H \to 4\mu)$	$\delta \mu / \mu$	0.2%	1.6%
$\mu = \sigma(t\bar{t}H) \times B(H \to b\bar{b})$	$\delta \mu / \mu$	1%	tbd
$\mu = \sigma(HH) \times B(H \to \gamma\gamma)B(H \to b\bar{b})$	$\delta\lambda/\lambda$	3.5%	5.0%
$R = B(H \to \mu\mu)/B(H \to 4\mu)$	$\delta R/R$	0.6%	1.3%
$R = B(H \to \gamma \gamma)/B(H \to 2e2\mu)$	$\delta R/R$	0.17%	0.8%
$R = B(H o \gamma \gamma)/B(H o 2\mu)$	$\delta R/R$	0.6%	1.4%
$B(H \rightarrow \text{invisible})$	B@95%CL	1×10^{-4}	2.5×10^{-4}

λ_{H} at FCC-hh

$\lambda_{\text{H}}~$ at the few percent level

Table 1.2: Target precision for the parameters relative to the measurement of various Higgs couplings, the Higgs self-coupling λ , Higgs branching ratios B and ratios thereof. Notice that lagrangian couplings have a precision that is typically half that of what is shown here, since all rates and branching ratios depend quadratically on the couplings.

Observable	Parameter	Precision (stat)	Precision (stat+syst)
$\mu = \sigma(H) \times B(H \to \mu\mu)$	$\delta \mu / \mu$	0.5%	0.9%
$\mu = \sigma(H) \times B(H \to \gamma \gamma)$	$\delta \mu / \mu$	0.1%	1%
$\mu = \sigma(H) \times B(H \to 4\mu)$	$\delta \mu / \mu$	0.2%	1.6%
$\mu = \sigma(t\bar{t}H) \times B(H \to b\bar{b})$	$\delta \mu / \mu$	1%	tbd
$\mu = \sigma(HH) \times B(H \to \gamma\gamma)B(H \to b\bar{b})$	$\delta\lambda/\lambda$	3.5%	5.0%
$R = B(H \to \mu\mu)/B(H \to 4\mu)$	$\delta R/R$	0.6%	1.3%
$R = B(H o \gamma \gamma)/B(H o 2e2\mu)$	$\delta R/R$	0.17%	0.8%
$R = B(H o \gamma \gamma)/B(H o 2\mu)$	$\delta R/R$	0.6%	1.4%
$B(H \rightarrow \text{invisible})$	B@95%CL	1×10^{-4}	2.5×10^{-4}

To reach a precision on λ_{H} at the few percent level requires a linear collider of at least 3 TeV (ILC 500 GeV can obtain a ±30% indication and CLIC 3 TeV estimate is ±10%)

Supersymmetry

In supersymmetry top partner is "stop squark".

FCC-ee: Indirect, but more "spectrum independent", for a model. FCC-hh: Direct confirmation, but direct might be hidden.