Reconstruction of displaced objects in CMS

Jessica Prisciandaro EOS solstice meeting

20.12.2018

Introduction and outline

Objective: reconstruction of displaced decays

Introduction and outline

Where are we standing today?

- Particle flow in CMS
- Jet reconstruction and classification
- Hadronic τ reconstruction

First steps towards displaced vertex reconstruction:

- Tagger for displaced jets
- Reconstruction of displaced object in specific analyses
- Proper description of nuclear interaction

Particle Flow

Combines infos from all the sub-detectors

- Reconstruct five classes of particles: muons, electrons, photons, charged and neutral hadrons
- $\frac{1}{2}$ Jet and hadronic τ reconstruction/identification

Jet reconstruction

How does it look like?

Jet tagging - DeepJet

Two taggers currently supported in CMS:

- DeepCSV
- DeepJet: convolutional networks, significantly outperforms DeepCSV

Jet tagging - DeepJet

Two taggers currently supported in CMS:

- DeepCSV
- DeepJet: convolutional networks, significantly outperforms DeepCSV

Tau reconstruction

Standard e/µ reconstruction for leptonic decays

 $\frac{1}{2}$ 5 hadronic τ decay mode considered

Low particle multiplicity compared to QCD jets

Tau reconstruction

Hadron Plus Strip algorithm

- Inputs: PF candidates in AK4 jet
- Sonsider all the possible decay modes:
 - $\tau^{\pm} \rightarrow [1,3]h^{\pm}+[0-2]\pi^{0}+v_{\tau}$
- Search for $\rho(770)$ and $a_1(1260)$ intermediate

resonances

Highest p_T candidate taken

Properties of τ decay:

- Decays isolated from hadronic activity
- Long lifetime : Displaced tracks and decay vertices
- Solution $\frac{1}{2}$ Low particle multiplicity (m_t = 1.778 GeV)

Tau identification

- BDT to discriminate taus from jets. Based on :
 - Lifetime
 - Decay mode
 - Particle multiplicity
 - Charged/neutral isolation sum

Cut-based discriminator agains muon:
 misidentification probability < 0.5%

BDT discriminator agains electrons

Global tagger with τ ?

Feasible, but..

- Iarger number of features to include
- larger dataset needed
- How to calibrate?
- Interplay among classes to be studied

Based on DeepJet, additional class for LLP objects:

- Final jets may be non-pointing in the direction of the gluino
- Ghost tagging cannot be used
- -Tag jets as displaced if most of their p stems from a LLP decay vertex
- Jet $p_T > 30 \text{ GeV}$

Tracking efficiency

Displaced charged hadrons have necessary to decay in the tracker

- Muon displaced have specific reconstruction algorithms with no requirements in the tracker
- No dedicated algorithm for electron displaced

17

Nuclear interaction

Nuclear interaction provides a source of displaced vertices
Precise map of the detector material needed

Is this the right direction?

- Displaced object decay products may decay in larger cone than the usual CMS jet
- Alternative vertex reconstruction algorithm might be more efficient
- Jets can be used to recover part of neutrals

Summary

- Reconstruction in CMS is not optimised for displaced object
- Fixed Fixed
 - develop of reconstruction algorithm dedicated to long lived particles
 - good understanding and modelling of background sources

Backup

CMS Average Pileup (pp, \sqrt{s} =13 TeV)

