Exploring the lifetime frontier

Supplementary detectors

Simon Knapen Institute for Advanced Study

Princeton, USA

Winter Solstice EOS meeting I2 / 20 / I8

V. Gligorov, SK, M. Papucci, D. Robinson: 1708.09395 V. Gligorov, SK, B. Nachman, M. Papucci, D. Robinson: 1810.03636

Long-lived particles at the LHC

Many options, great progress in recent years

Large community white paper to appear soon

A. De Roeck, Trieste 2017

Long-lived particles at the LHC

Many options, great progress in recent years

Large community white paper to appear soon

A. De Roeck, Trieste 2017

Key questions:

- Where does a search break down & how to identify holes?
- Can we do low mass (≤ 10 GeV) displaced decays?

Long-lived particles at the LHC

Many options, great progress in recent years

Large community white paper to appear soon

A. De Roeck, Trieste 2017

Key questions:

Where does a search break down & how to identify holes?

• Can we do low mass (≤ 10 GeV) displaced decays?

Finding Long-Lived Particles

ATLAS and CMS are very good at searching for high mass LLPs...

- ... but for low masses they suffer from:
 - 1. Tight trigger requirements
 - 2. Backgrounds

~ 10 nuclear

(ATLAS)

Finding Long-Lived Particles

ATLAS and CMS are very good at searching for high mass LLPs...

- ... but for low masses they suffer from:
 - 1. Tight trigger requirements
 - 2. Backgrounds

A typical hadron has a chance of

- ~ 10^{-5} to punch through calorimeter...
 - ... but the LHC makes ~ $10^9 \text{ K}_{\text{L}}$ mesons /s

~ 10 nuclear interaction lengths (ATLAS)

Finding Long-Lived Particles

ATLAS and CMS are very good at searching for high mass LLPs...

- ... but for low masses they suffer from:
 - 1. Tight trigger requirements
 - 2. Backgrounds

A typical hadron has a chance of

- ~ 10^{-5} to punch through calorimeter...
 - ... but the LHC makes ~ $10^9 \text{ K}_{\text{L}}$ mesons /s

~ 10 nuclear interaction lengths (ATLAS)

Solution: Dedicated detector with ~ 3 to 4 times more shielding

Detectors for the lifetime frontier

"Ambitious" proposals

SHiP

MATHUSLA

Detectors for the lifetime frontier

"Ambitious" proposals

SHiP

"Modest" proposals

CODEX-b

Miliqan

Detectors for the lifetime frontier

"Ambitious" proposals

Miliqan

LHCb Cavern

Shielded space: 10m x 10m x 10m (20m x 10m x 10m if DELPHI is removed) Roughly 25m from IP

Data acquisition will be moved to surface for run 3

CODEX-b simulation framework

Implemented in DD4hep package

https://dd4hep.web.cern.ch/dd4hep/

- Veto cone
 - Two Pb absorbers
 - Active layer (Si)
- Concrete wall (3.2 m)
- CODEX-b detector

Tested with muon particle gun

By Biplab Dey, Markus Frank, Ben Couturier and Jongho Lee

Tentative geometry for tracking

Face station (6x)

- 6 RPC layers on each surface
- 4 cm inter layer distance

Inner station (5x)

- 3 RPC layers on each surface
- 4 cm inter layer distance

Tentative geometry for tracking

Motivation

Face station (6x)

- 6 RPC layers on each surface
- 4 cm inter layer distance

Inner station (5x)

- 3 RPC layers on each surface
- 4 cm inter layer distance

- Faces stations: recover acceptance for particles with low boost
- Inner stations: minimize distance to first tracked point

Main backgrounds

Needed for full background suppression:

- need 10⁻⁴ 10⁻⁵ muon veto
- ~ 32 interaction lengths (7 concrete + 25 Pb) → roughly 4.5 m of Pb

(Verified with pythia 8 + GEANT 4 simulation, numbers and figures in back-up slides)

Background calibration

- Measured charged flux at different points in UX85A
- Good amount of data: 50k hits in 17 days (results for later day)
- Use to calibrate background simulation

By Biplab Dey, Heinrich Schindler, Victor Coco, Raphael Dumps and Jongho Lee*

* CERN summer student

Exotic B decays

Different assumptions for lifetime in literature, need to recast the limits when comparing experiments!

Exotic B + Higgs decays

Model:
$$\mathcal{L} \supset \mu \varphi H H^{\dagger} + \frac{\lambda}{2} \varphi^2 H^{\dagger} H$$

 10^{-6} 4 57 LHCb, 3 fb 10^{-8} IARN $\sin^2 \theta$ 10^{-10} FASER CODEX-b SHiP 10^{-12} MATHUSLA 10^{-14} 5.00.51.0 2.0 $m_{\varphi} \; (\text{GeV})$

See back-up slides or "Physics for beyond colliders" report for axion-like particles and heavy neutral leptons.

With $\lambda = 1.6 \times 10^{-3}$ Br $(h \rightarrow 2\varphi) \approx 0.01$

Production

For low masses, ATLAS/CMS are background limited, CODEX-b and MATHUSLA have an edge

ATLAS reach: A. Coccaro, et al.: 1605.02742

Moving forward

Ongoing work on theory side: finishing benchmark models (back-up slides, see also upcoming "Physics Beyond Colliders" report)

Ongoing work on the LHCb side

- Background data analysis
- Detector design and simulation
- On track for a detector paper in Summer 2019

CODEX-b Team

Theory: J. Evans, SK, M. Papucci, H. Ramani, D. Robinson

LHCb: J. Lee, V. Coco, B. Dey, R. Dumps, V. Gligorov, H. Schindler, P. Ilten, T. Szumlak, X. Vidal + many others...

Support from LHCb computing & simulation: M. Frank, B. Couturier, D. Muller, G. Corti

Still growing, and we welcome new collaborators!

What would an "ideal" detector look like?

- √s = 13 TeV
- As close as possible to IP
- B field for momentum measurement
- High resolution tracker (vertex reco)
- as high lumi as possible

What would an "ideal" detector look like?

- √s = 13 TeV
- As close as possible to IP
- B field for momentum measurement
- High resolution tracker (vertex reco)
- as high lumi as possible

L3 magnet (0.5 T)

er (vertex reco)

Most of this is present in ALICE cavern (At this time, there is no firm plan for a ALICE heavy ion program during run 5)

ALICE detector

A Laboratory for Long-Lived eXotics (AL3X)

Reuse the L3 magnet and (perhaps) the ALICE TPC

Similar strategy as for CODEX-b: use thick shield with active veto to reduce the backgrounds

V. Gligorov, SK, B. Nachman, M. Papucci, D. Robinson: 1810.03636

Upgrading Interaction Point 2

Needed:

- move the IP with 11.25 m
- ~ 100 fb⁻¹

```
Similar to IP8 (LHCb)
```

Possible challenges:

- luminosity sharing
- beam optics
- cost?

Most obvious failure mode at this moment

Backgrounds

More complicated than for CODEX-b, due to beam pipe

Needed for full background suppression:

- need 10⁻⁸ muon veto
- fast trigger layers for the TPC (few muons per collision)
- ~ 40 interaction lengths (e.g 1 m Fe from magnet doors + 9 m steel + 2.5 m W)

(Verified with pythia 8 + GEANT 4 simulation)

Reach for Higgs decays

Comparable sensitivity to MATHUSLA

Reach for B decays

For exotic B decays, AL3X = SHiP + MATHUSLA

Supplementary detectors

CODEX-b:

- Probe decent fraction of SHiP + MATHUSLA parameter space
- Simple, relatively inexpensive detector

Supplementary detectors

CODEX-b:

- Probe decent fraction of SHiP + MATHUSLA parameter space
- Simple, relatively inexpensive detector

AL3X:

- Probe all or more of SHiP + MATHUSLA parameter space
- Contingent upon:
 - ALICE heavy ion program
 - Upgrade of the interaction point

Interesting developments also for MATHUSLA, SHiP, FASER, MOEDAL and MiliQan

very non-exhaustive list!

Existing detectors & upgrades

Triggers!

- LHCb triggerless readout
- CMS track trigger, ATLAS FTK
- HLT keeps getting smarter (e.g. track multiplicity triggers?)

very non-exhaustive list!

Existing detectors & upgrades

Triggers!

- LHCb triggerless readout
- CMS track trigger, ATLAS FTK
- HLT keeps getting smarter (e.g. track multiplicity triggers?)

<u>Upgrades</u>

- Timing detectors
- CMS high granularity forward calorimeter

very non-exhaustive list!

Existing detectors & upgrades

Triggers!

- LHCb triggerless readout
- CMS track trigger, ATLAS FTK
- HLT keeps getting smarter (e.g. track multiplicity triggers?)

<u>Upgrades</u>

- Timing detectors
- CMS high granularity forward calorimeter

Analysis improvements

- Dark showers / hidden valleys (now largely a theory problem in my opinion)
- Quirks (GEANT implementation appears to be the bottleneck)

Thanks!

Greenland shark, lifespan up to 400 years

Back-up

Backgrounds

neutrons / K_L + secondaries

pythia 8 + GEANT 4 simulation

- need 10⁻⁴ 10⁻⁵ muon veto, easily achieved with a few redundant layers
- neutrons dominate, with ~ 5% chance of scattering on air in the box
- secondary neutrinos completely negligible

SHiP

Beam dump experiment at the SPS accelerator

1708.09389: J. Feng et. al.

Ultra-forward detector on LHC beam line

Some specs:

- ~ 5-10 meters long
- ~ 400 meters from IP
- Need small but good tracker

Main use:

- light sterile neutrinos
- dark photons
- other light LLPs

Substantially less reach than SHiP but much cheaper (For some signals, competition from Fermilab's SeaQuest experiment)

(200 m)² detector, above CMS

* = i.p = current boundary of unused CERN property on west side of site 200m 150m VL Lift construction base

Some specs:

- 200 m x 200 m x 25 m (smaller designs considered)
- Construct in 9 m x 9 m x 25 m modules
- RPC's for tracking

MATHUSLA

Use timing to reject cosmic rays

Main use:

- Exotic Higgs decays
- LLPs which require high \sqrt{s}
- Most light LLPs (except dark photon)

Reconstruction efficiency (proof of concept)

- Require 6 hits per track
- Require minimum momentum of 600 MeV per track

$c\tau$ (m)	$m_{arphi} \ [B o X_s arphi]$			$m_{\gamma_{ m d}} \; [h o \gamma_{ m d} \gamma_{ m d}]$				
	0.5	1.0	2.0	0.5	1.2	5.0	10.0	20.0
0.05	_	_	_	0.39	0.48	0.50	_	_
0.1	_	_	_	0.48	0.63	0.73	0.14	_
1.0	0.71	0.74	0.83	0.59	0.75	0.82	0.84	0.86
5.0	0.55	0.64	0.75	0.60	0.76	0.83	0.86	0.88
10.0	0.49	0.58	0.74	0.59	0.75	0.84	0.86	0.88
50.0	0.38	0.48	0.74	0.57	0.75	0.82	0.87	0.88
100.0	0.39	0.45	0.73	0.62	0.77	0.83	0.87	0.89
500.0	0.33	0.40	0.75	_	-	_	_	_

low boost

high boost

Reconstruction efficiency (proof of concept)

- Require 6 hits per track
- Require minimum momentum of 600 MeV per track

$c\tau$ (m)	$m_{arphi} \; [B o X_s arphi]$			$m_{\gamma_{ m d}} \left[h o \gamma_{ m d} \gamma_{ m d} ight]$				
	0.5	1.0	2.0	0.5	1.2	5.0	10.0	20.0
0.05	_	_	_	0.39	0.48	0.50	_	_
0.1	_	_	_	0.48	0.63	0.73	0.14	_
1.0	0.71	0.74	0.83	0.59	0.75	0.82	0.84	0.86
5.0	0.55	0.64	0.75	0.60	0.76	0.83	0.86	0.88
10.0	0.49	0.58	0.74	0.59	0.75	0.84	0.86	0.88
50.0	0.38	0.48	0.74	0.57	0.75	0.82	0.87	0.88
100.0	0.39	0.45	0.73	0.62	0.77	0.83	0.87	0.89
500.0	0.33	0.40	0.75	_	—	—	_	_
	low boost			high boost				

600 MeV cut

Reconstruction efficiency (proof of concept)

- Require 6 hits per track
- Require minimum momentum of 600 MeV per track

$c\tau$ (m)	$m_{arphi} \ [B o X_s arphi]$			$m_{\gamma_{ m d}} \; [h o \gamma_{ m d} \gamma_{ m d}]$					
	0.5	1.0	2.0	0.5	1.2	5.0	10.0	20.0	
0.05	_	_	_	0.39	0.48	0.50	_	_	
0.1	_	_	-	0.48	0.63	0.73	0.14	_	
1.0	0.71	0.74	0.83	0.59	0.75	0.82	0.84	0.86	
5.0	0.55	0.64	0.75	0.60	0.76	0.83	0.86	0.88	
10.0	0.49	0.58	0.74	0.59	0.75	0.84	0.86	0.88	
50.0	0.38	0.48	0.74	0.57	0.75	0.82	0.87	0.88	
100.0	0.39	0.45	0.73	0.62	0.77	0.83	0.87	0.89	
500.0	0.33	0.40	0.75	-	\ -	_	—	_	
	low boost				h	nigh boo	ost		
0 MeV cut						small o _l overlap	oening ping de	angle, ecay pr	

Backgrounds

with mb crosssection, scattering probability is ~ 10^{-3}

~ 10^7 events but can be veto-ed with shield veto + front face of the box

Backgrounds

Reduced by the shield:

- neutrons scattering on air
- $\bullet \ K_L$

Need ~ 40 interaction lengths + 10^{-8} muon veto

BG species	Full shield	d (S ₁ -S ₂)	Evade shield	Net BG flux/event into detector	BG rate	
	shield veto rate	BG flux/event	BG flux/event		per 100 fb ⁻¹	
$n + \bar{n} (> 0.5 \text{GeV})$		$3. \times 10^{-14}$	_	$2. \times 10^{-7}$	$\lesssim 10$	
$p + \bar{p}$	$2. \times 10^{-6}$	$4. \times 10^{-15}$	—	$2. \times 10^{-7}$	_	
μ	0.008	$1. \times 10^{-11}$	0.007	0.008	—	
e	$3. \times 10^{-7}$	$2. \times 10^{-15}$	—	$2. \times 10^{-7}$	—	
K_L^0	—	$5. \times 10^{-17}$	—	$4. \times 10^{-9}$	$\ll 1$	
K_S^0	—	$1. \times 10^{-17}$	—	$1. \times 10^{-9}$	$\ll 1$	
γ	—	$6. \times 10^{-16}$	—	$3. \times 10^{-8}$	—	
π^{\pm}	$1. \times 10^{-6}$	$5. \times 10^{-15}$	—	$2. \times 10^{-7}$	—	
$\nu+\bar{\nu}~(>0.25{\rm GeV})$	—	0.2	0.02	0.2	$\lesssim 10$	

GEANT4 simulation: Low background setup appears possible

More general models

Reach

Complementary reach compared to main LHCb detector

(Branching ratio to muons is irrelevant for CODEX-b)

Hidden glueballs (Neutral Naturalness)

ATLAS / CMS pay double penalty at low mass:

- Backgrounds go up
- Requiring a second displaced vertex kills the signal rate

Heavy neutral leptons

- Production: any SM decay with neutrinos (c, b, τ, W & Z decays)
- Decay: Mix back to off-shell SM neutrino (N→3v, N→ℓ hadrons, N→vℓℓ)

10^{-2} 10^{-4} $\overline{\underbrace{O}_{e_{N}}^{e_{N}}} 10^{-6}$ NA62 --- DUNE 10^{-8} SHiP FASER MATHUSĿA CODEX-b 10^{-10} 0.2 10 1 m_N [GeV] $U_{\mu N}$ and $U_{\tau N}$ in the back-up material

Example: U_{eN}

18xx.xxxxx: J. Evans, SK, M. Papucci, H. Ramani D. Robinson

Heavy neutral leptons

- Production: any SM decay with neutrinos (c, b, τ, W & Z decays)
- Decay: Mix back to off-shell SM neutrino (N→3v, N→ℓ hadrons, N→vℓℓ)

18xx.xxxx: J. Evans, SK, M. Papucci, H. Ramani D. Robinson

see also: Heo, Hirsch, Wang: 1803.02212

Heavy neutral leptons

- Production: any SM decay with neutrinos (c, b, τ, W & Z decays)
- Decay: Mix back to off-shell SM neutrino (N→3v, N→ℓ hadrons, N→vℓℓ)

18xx.xxxx: J. Evans, SK, M. Papucci, H. Ramani D. Robinson