Observation of single top quark production in association with a Z boson

Willem Verbeke

Ghent University

December 20, 2018

arXiv:1812.05900

Willem Verbeke

Single top quark production at the LHC

The tZq process

- small cross section: $\sigma(tZq) \approx 1 \text{ pb}$
- target leptonic decays of Z and top (3% branching fraction, but experimentally cleanest)
- final state with 3l + b jet + forward jet

- remained undiscovered with 2016 data:
 - CMS: 3.1 s.d. exp., **3.7 s.d.** obs.
 - ATLAS: 5.4 s.d. exp., **4.2** s.d. obs.

Designed new analysis aimed at discovery

Willem Verbeke

CMS particle reconstruction

- Muon: tracker track, small energy deposit in calorimeters, hits in outer muon system
- Electron: tracker track, ECAL cluster, brehmstrahlung
- charged hadron : tracker track, HCAL energy deposit
- photon : ECAL energy deposit
- neutral hadron: HCAL energy deposit

reconstruct particles using an **optimized combination of all subdetectors** (particle-flow)

Willem Verbeke

Observation of tZq: EOS winter solstice

December 20, 2018 4 / 15

tZq event display

CMS Experiment at the LHC, CERN Data recorded: 2017-Oct-16 05:01:09.248576 GMT Run / Event / LS: 305112 / 1683658016 / 979

Lepton MVA

- large nonprompt lepton background in previous CMS search
- tigh cut-based ID + relative isolation was used
- switch to machine learning based lepton MVA (similar to ttH observation)

Calorimeter Tracker

- train multivariate discriminant
- use properties of closest jet (Deep CSV, $\frac{P_{T}^{jet}}{P_{T}^{\ell}}$, P^{jet} orthogonal to lepton axis
- trained and optimized gradient boosted forest (BDT) in TMVA
- trained and optimized densely connected deep neural network in Tensorflow (with Keras)

Willem Verbeke

Observation of tZq: EOS winter solstice

December 20, 2018 6 / 15

Lepton MVA performance

Outline of analysis strategy

categorize events according to jet content:

- 2-3 jets, 1 b-tagged: most sensitive category
- ≥ 4 jets, 1 b-tagged: good sensitivity, not considered previously
- 2 b jets: good sensitivity
- events with less jets have very little sensitivity to tZq

require presence of Z-candidate:

- Z candidate present → most sensitivity because of Z → ℓℓ in signal
- no Z candidate → very small fraction of signal → do not consider for analysis

discriminate signal from background:

- even in signal enriched regions signal much smaller than backgrounds
- exploit tendency of tZq to have a forward jet \rightarrow jet with high $|\eta|$ value and large dijet mass
- combine with other kinematic differences into gradient boosted forest (BDT)

3 signal enriched event categories, BDT trained in each one

$\begin{array}{l} \text{Backgrounds} \\ \text{WZ} \rightarrow 3\ell\nu, \text{ZZ} \rightarrow 4\ell \end{array}$

- signal-like leptons
- tends to have few jets

tτΖ

- signal-like leptons
- several jets and b jets

Nonprompt e/μ

- Drell-Yan $\rightarrow 2\ell$ and $t\overline{t} \rightarrow 2\ell$
- third lepton from jet-fragmentation

Conversions

• dominated by $Z\gamma$, t \overline{t} + γ with $\gamma^{(*)} \rightarrow 2\ell$

rare processes

- $t\overline{t} + H$, triboson, tWZ, ...
- very small

Willem Verbeke

2/3 jets, 1 b-tagged:

 \geq 2 b jets:

- WZ is dominant background in 2/3 jets, 1 b-tagged category
- $\bullet~t\bar{t}Z$ is dominant background in \geq 4 jets, 1 b-tagged and \geq 2 b jets categories
- nonprompt background largely killed by lepton MVA

December 20, 2018 9 / 15

Data-driven prediction of nonprompt lepton background

- measure probability that nonprompt lepton passing a loose lepton selection also passes full selection
- apply this probability to events where one or more leptons fail full selection

Willem Verbeke

Control regions (simulated backgrounds)

predictions of search variables checked in 3 control regions:

- WZ : 3ℓ , OSSF pair, Z candidate present, 0 b jets (orthogonal to SR), $E_T^{miss} > 50 \text{ GeV}$
- ZZ : 4ℓ , 2 OSSF pairs, both forming Z candidate
- $X\gamma$: 3ℓ , OSSF pair, no dilepton Z candidate, trilepton mass compatible with Z mass

Results

good agreement between data and expectation in three categories

large excess of events over background-only hypothesis

Willem Verbeke

Observation of tZq: EOS winter solstice

December 20, 2018 12 / 15

Signal significance

2016 Data :

 Observed (expected) significance of 7.2 (5.6) s.d.

2017 Data :

 Observed (expected) significance of 5.4 (6.0) s.d.

 $\mu = 1.36 \stackrel{+0.22}{_{-0.20}} (\text{stat}) \stackrel{+0.14}{_{-0.12}} (\text{syst})$ $\mu = 1.03 \stackrel{+0.18}{_{-0.17}} (\text{stat}) \stackrel{+0.14}{_{-0.12}} (\text{syst})$

Observation of tZq in both 2016 and 2017 datasets! total observed (expected) significance of 8.2 (7.7) s.d.

$$\frac{\sigma(tZq \to t\ell\ellq)}{\sigma^{SM}(tZq \to t\ell\ellq)} = \mu = 1.18 \ ^{+0.14}_{-0.13} \ (\text{stat}) \ ^{+0.11}_{-0.10} \ (\text{syst}) \ ^{+0.04}_{-0.04} \ (\text{theo})$$

$$\sigma(tZq \to t\ell\ellq) = 111 \pm 13 \ (\text{stat})^{+11}_{-9} \ (\text{syst}) \ \text{fb}$$

(all significances computed in asymptotic approximation of test statistic)

Future plans

tZq kinematics are uniquely sensitive to new physics:

- tZq is sensitive to a large number of SM interactions (WWZ coupling, tbW and ttZ vertices, bW → tZ amplitude)
- several cancellations in SM
- modified interactions can lead to anomalous energy growth
- would be seen in for instance P_T^{top} and P_T^Z

plans for full Run II result (nearly double the data volume):

- differential measurement in variables most sensitive to new physics
- EFT interpretation

Conclusions

- new search for tZq was designed and carried out on the 2016 and 2017 data sets
- nonprompt lepton background, which limited earlier CMS searches, severely reduced by usage of machine learning for lepton identification
- new analysis strategy designed from the bottom up

tZq is observed with a significance of 8.2 s.d. (7.7 s.d. expected)

$$\sigma(tZq \rightarrow t\ell^+\ell^-q) = 111^{+13}_{-13} \text{ (stat)}^{+11}_{-9} \text{ (syst) fb}$$

Backup: Discriminating variables (2-3 jets, 1 b-tagged)

Backup: Discriminating variables (4 jets, 1 b-tagged)

Backup: Discriminating variables (2 b jets)

Willem Verbeke

Backup: Lepton p_T spectra (WZ enriched region)

Backup: Lepton p_T spectra (2-3 jets 1 b-tagged)

Backup: Lepton p_T spectra (high purity region)

Backup: Z boson p_T (High purity region)

Backup:Nonprompt closure in MC

- measure "fake-rate" in QCD enriched region in data
- nonprompt background comes from Drell-Yan and tt
- verify that fake-rate measured in QCD MC can predict Drell-Yan and $t\bar{t}$ backgrounds
- closure tests in tt MC (fake-rate prediction VS direct MC prediction):

Largest systematic uncertainties

Uncertainty	Impact (%)
Experimental	
lepton selection	3.2
trigger efficiency 2016 (2017)	1.0 (1.1)
jet energy scale 2016 (2017)	0.9 (3.1)
b-tagging efficiency 2016 (2017)	0.7 (1.2)
nonprompt normalization	4.1
ttZ normalization	1.0
luminosity 2016 (2017)	1.2 (1.3)
pileup	1.9
other	1.3
Theoretical	
final-state radiation	2.0
tZq QCD scale	2.0
tīZ QCD scale	1.4