Gravitational Waves from Dark Matter

lason Baldes In collaboration with Camilo Garcia-Cely arXiv:1809.01198

EoS Solstice meeting, Brussels 20 December 2018

2012. Discovery of the Brout Englert Higgs boson

2012. Discovery of the Brout Englert Higgs boson

2016. Direct Detection of Gravitational Waves

2012. Discovery of the Brout Englert Higgs boson

2016. Direct Detection of Gravitational Waves

Let us merge the two ideas.

Actually already done

by Witten '84, Hogan '86, ...

PHYSICAL REVIEW D

VOLUME 30, NUMBER 2

15 JULY 1984

Cosmic separation of phases

Edward Witten* Institute for Advanced Study, Princeton, New Jersey 08540 (Received 9 April 1984)

Actually already done by Witten '84, Hogan '86, ... PHYSICAL REVIEW D VOLUME 30, NUMBER 2 Institute for Advanced Study, Princeton, New Jersey 08540 (Received 9 April 1984)

- Symmetry is typically restored at high T.
- Violent events (e.g. cosmological phase transitions) produce gravitational waves.

From a simulation by Weir et. al.

Since then

- Detected Higgs and GWs.
- Quantitative understanding of the predicted GW spectra has improved.
- Oncrete future proposals such as LISA have been developed.
- UISA pathfinder has successfully flown.

From a simulation by Weir et. al.

Since then

- Detected Higgs and GWs.
- Quantitative understanding of the predicted GW spectra has improved.
- Oncrete future proposals such as LISA have been developed.
- UISA pathfinder has successfully flown.

The idea here is to explore a simple case study as to the feasibility of using GWs to detect SSB in a dark sector. $_{4/15}$

The Model: $SU(3)_C \times SU(2)_L \times U(1)_Y \times SU(2)_D$

$$\mathcal{L} \supset -\frac{1}{4} F_D \cdot F_D + (\mathcal{D}H_D)^{\dagger} (\mathcal{D}H_D) - \mu_2^2 H_D^{\dagger} H_D - \lambda_\eta (H_D^{\dagger} H_D)^2 - \lambda_{h\eta} H_D^{\dagger} H_D H^{\dagger} H_D$$

The Model: $SU(3)_C \times SU(2)_L \times U(1)_Y \times SU(2)_D$

$$\mathcal{L} \supset -\frac{1}{4} F_D \cdot F_D + (\mathcal{D}H_D)^{\dagger} (\mathcal{D}H_D) - \mu_2^2 H_D^{\dagger} H_D - \lambda_\eta (H_D^{\dagger} H_D)^2 - \lambda_{h\eta} H_D^{\dagger} H_D H^{\dagger} H_D$$

Custodial SO(3) symmetry

Dark gauge bosons, A, are stable and form the DM!

The Model: $SU(3)_C \times SU(2)_L \times U(1)_Y \times SU(2)_D$

$$\mathcal{L} \supset -\frac{1}{4} F_D \cdot F_D + (\mathcal{D}H_D)^{\dagger} (\mathcal{D}H_D) - \mu_2^2 H_D^{\dagger} H_D - \lambda_\eta (H_D^{\dagger} H_D)^2 - \lambda_{h\eta} H_D^{\dagger} H_D H^{\dagger} H_D$$

Custodial SO(3) symmetry

Dark gauge bosons, A, are stable and form the DM!

Potential possibilities

- Standard Potential with Mass terms Hambye 0811.0172
- ② Classically Scale Invariant

- Hambye, Strumia 1306.2329, - Hambye, Strumia, Teresi 1805.01473

Relic abundance for $m_A \gg \overline{m_{h_D}}$

$$g_D pprox 0.9 imes \sqrt{rac{m_A}{1~{
m TeV}}}$$

Direct Detection

For
$$m_A \gtrsim \mathcal{O}(100)$$
 GeV, need $\theta \lesssim 0.2$.

Relic abundance for $m_A \gg m_{h_D}$

$$g_D pprox 0.9 imes \sqrt{rac{m_A}{1~{
m TeV}}}$$

Direct Detection

For
$$m_A\gtrsim \mathcal{O}(100)$$
 GeV, need $heta\lesssim 0.2$.

Gauge coupling g_D

- Determines relic abundance.
- Generates a thermal barrier \rightarrow first order PT.

Relic abundance for $m_A \gg m_{h_D}$

$$g_D pprox 0.9 imes \sqrt{rac{m_A}{1~{
m TeV}}}$$

Direct Detection

For
$$m_A\gtrsim \mathcal{O}(100)$$
 GeV, need $heta\lesssim 0.2$.

Gauge coupling g_D

- Determines relic abundance.
- Generates a thermal barrier \rightarrow first order PT.

Close link between parameters determing $\Omega_{\rm DM}$ and SSB $_{6/15}$

Finite temperature effective potential

$$V_{\text{eff}} = V_{\text{tree}}(\phi) + V_1^0(\phi) + V_1^T(\phi, T) + V_{\text{Daisy}}(\phi, T)$$

Finite temperature effective potential

$$V_{\text{eff}} = V_{\text{tree}}(\phi) + V_1^0(\phi) + V_1^T(\phi, T) + V_{\text{Daisy}}(\phi, T)$$

Thermal Contribution

$$\frac{2\pi^2}{T^4} V_1^T(\phi, T) = \int_0^\infty y^2 \operatorname{Log} \left(1 - e^{-\sqrt{y^2 + m_i^2(\phi)/T^2}} \right) \mathrm{d}y$$
$$\approx -\frac{\pi^4}{45} + \frac{\pi^2 m^2}{12T^2} - \frac{\pi m^3}{6T^3} - \frac{m^4}{32T^4} \operatorname{Ln} \left(\frac{m^2}{220T^2} \right)$$

Euclidean Action

$$S_3 = 4\pi \int r^2 \left(\frac{1}{2} \left(\frac{d\phi_i}{dr} \right)^2 + \Delta V(\phi, \eta, T) \right) dr$$

Nucleation when $\Gamma/V \sim T^4 e^{-S_3/T} \sim H^4$.

Euclidean Action

$$S_3 = 4\pi \int r^2 \left(\frac{1}{2} \left(\frac{d\phi_i}{dr} \right)^2 + \Delta V(\phi, \eta, T) \right) dr$$

Nucleation when $\Gamma/V \sim T^4 e^{-S_3/T} \sim H^4$.

Euclidean Action

$$S_3 = 4\pi \int r^2 \left(\frac{1}{2} \left(\frac{d\phi_i}{dr} \right)^2 + \Delta V(\phi, \eta, T) \right) dr$$

Nucleation when
$$\Gamma/V \sim T^4 e^{-S_3/T} \sim H^4$$
.

Find the latent heat and timescale of the PT

$$\alpha = \frac{1}{\rho_{\rm rad}} \left(1 - T \frac{\partial}{\partial T} \right) \left(V[\phi_0, \eta_0] - V[\phi_n, \eta_n] \right) \Big|_{T_n}$$
$$\beta = -\frac{d}{dt} \left(\frac{S_3}{T} \right) = H T_n \frac{d}{dT} \left(\frac{S_3}{T} \right) \Big|_{T_n}$$

Euclidean Action

$$S_3 = 4\pi \int r^2 \left(\frac{1}{2} \left(\frac{d\phi_i}{dr} \right)^2 + \Delta V(\phi, \eta, T) \right) dr$$

Nucleation when
$$\Gamma/V \sim T^4 e^{-S_3/T} \sim H^4$$
.

Find the latent heat and timescale of the PT

Results

Results

LISA can test only limited parameter space of standard, polynomial type, potentials. BBO can do somewhat better. But we are really after a scenario which generically returns a lot of supercooling.

Classically Scale Invariant Potential

- Hambye, Strumia 1306.2329

Potential at T = 0

$$V_1^0(\eta)\simeq rac{9g_D^4\eta^4}{512\pi^2}\,\left({
m Ln}\left[rac{\eta}{v_\eta}
ight]-rac{1}{4}
ight)$$

The thermal contribution of the gauge bosons is added to this.

DM relic density

DM relic density

DM and PT possibilities

• Regime (i): standard freeze-out.

- (ia). $T_n > \Lambda_{\rm QCD}$.
- (ib). ${\cal T}_n < \Lambda_{\rm QCD}.$ (QCD effects must be added to $V_{\rm eff}.)$

DM and PT possibilities

- Regime (i): standard freeze-out.
 - (ia). $T_n > \Lambda_{\text{QCD}}$.
 - (ib). ${\cal T}_n < \Lambda_{\rm QCD}.$ (QCD effects must be added to $V_{\rm eff}.)$
- Regime (ii): super-cool DM.

(iia).
$$T_n > \Lambda_{\text{QCD}}$$
.

(iib). $T_n < \Lambda_{\rm QCD}$. (QCD effects must be added to $V_{\rm eff}$.)

Super-cool DM - Hambye, Strumia, Teresi 1805.01473

$$Y_{\rm DM}|_{\rm super-cool} = Y_{\rm DM}^{\rm eq} \frac{T_{\rm RH}}{T_{\rm infl}} \left(\frac{T_{\rm end}}{T_{\rm infl}}\right)^3$$

DM and PT possibilities

Regime (i): standard freeze-out.

(ia). T_n > Λ_{QCD}.
(ib). T_n < Λ_{QCD}. (QCD effects must be added to V_{eff}.)

Regime (ii): super-cool DM.

(iia). T_n > Λ_{QCD}.
(iib). T_n < Λ_{QCD}. (QCD effects must be added to V_{eff}.)

Super-cool DM - Hambye, Strumia, Teresi 1805.01473

$$|Y_{\mathrm{DM}}|_{\mathrm{super-cool}} = Y_{\mathrm{DM}}^{\mathrm{eq}} rac{T_{\mathrm{RH}}}{T_{\mathrm{infl}}} \left(rac{T_{\mathrm{end}}}{T_{\mathrm{infl}}}
ight)^3$$

Regime (ia) and (iia) are ameable for testing using GWs!

GW signal Regime (ia) - Freezeout

GW signal Regime (iia) - Super-cool DM

Super-cool DM

$$Y_{\mathrm{DM}}|_{\mathrm{super-cool}} = Y_{\mathrm{DM}}^{\mathrm{eq}} rac{T_{\mathrm{RH}}}{T_{\mathrm{infl}}} \left(rac{T_{\mathrm{end}}}{T_{\mathrm{infl}}}
ight)^3$$

Here $g_D \simeq 1$ and $m_A \gtrsim 370$ TeV.

GW signal Regime (iia) - Super-cool DM

Super-cool DM

$$Y_{\mathrm{DM}}|_{\mathrm{super-cool}} = Y_{\mathrm{DM}}^{\mathrm{eq}} rac{T_{\mathrm{RH}}}{T_{\mathrm{infl}}} \left(rac{T_{\mathrm{end}}}{T_{\mathrm{infl}}}
ight)^3$$

Here $g_D \simeq 1$ and $m_A \gtrsim 370$ TeV.

Summary

Summary

- Extensively studied the PTs for spin-one DM.
- Case study for sensitivity of future GW observatories to DM models.
- LISA, which will launch in 2034, will test scenarios with significant supercooling.
- ET also has some sensitivity.
- More advanced instruments needed for polynomial potentials.
- Phase transitions: another pheno avenue to explore in your favourite models.
- Much work still needed → exciting times ahead.

The terms of the one-loop effective potential

Effective Potential

$$V_{\text{eff}} = V_{\text{tree}}(\phi) + V_1^0(\phi) + V_1^T(\phi, T) + V_{\text{Daisy}}(\phi, T)$$

$$V_1^{0}(\phi) = \sum_{i} \frac{g_i(-1)^F}{64\pi^2} \left\{ m_i^4(\phi) \left(\text{Log}\left[\frac{m_i^2(\phi)}{m_i^2(v)}\right] - \frac{3}{2} \right) + 2m_i^2(\phi)m_i^2(v) \right\}$$

$$V_1^{T}(\phi, T) = \sum_{i} \frac{g_i(-1)^F T^4}{2\pi^2} \times \int_0^\infty y^2 \operatorname{Log}\left(1 - (-1)^F e^{-\sqrt{y^2 + m_i^2(\phi)/T^2}}\right) \mathrm{d}y$$

$$V_{\text{Daisy}}^{\phi}(\phi, T) = \frac{T}{12\pi} \Big\{ m_{\phi}^{3}(\phi) - \big[m_{\phi}^{2}(\phi) + \Pi_{\phi}(\phi, T) \big]^{3/2} \Big\}$$

Direct Detection - Limit on Mixing

2/2