Flux compactifications

and their application(s)

HEP@VUB Meeting - Brussels, March 28

Markus Dierigl - UU and UvA

based on: several works with W. Buchmuller, F. Ruehle, and J. Schweizer and 1611.03798 (JHEP) with W. Buchmuller, E. Dudas and J. Schweizer 1804.07497 (JHEP) with W. Buchmuller and E. Dudas

Outlook

- Compactifications
- Kaluza-Klein (KK) tower of effective fields
- Lorentz structure of fields
- Problems for compactifications
- Magnetic flux
- Vector field background
- Effect on charged states
- Application for GUTs
- Massless scalar field
- Review: Hierarchy problem for scalar fields
- 5d example with finite corrections
- 6d with flux leads to vanishing corrections
- Explicitly for 1-loop
- Symmetry arguments for all-loop
- Conclusion (Summary and Outlook)

Compactification

- Start with higher-dimensional quantum field theory
- In order to account for our visible dimensions keep four non-compact dimensions
- The remaining dimensions should be "invisible" at our energies and have to be compact (here: circle or torus)

KK-tower in circle compactification

Assume a complex scalar field in 5d compactified on a circle:

$$
\varphi\left(x_{\mu}, y+2 \pi L\right)=\varphi\left(x_{\mu}, y\right)
$$

Can be decomposed into Fourier modes

$$
\varphi\left(x_{\mu}, y\right)=\frac{1}{\sqrt{2 \pi L}} \sum_{n=-\infty}^{\infty} e^{i n \frac{y}{L}} \varphi_{n}\left(x_{\mu}\right)
$$

with mode functions only depending on non-compact coordinates

What does this imply in lower-dimensional effective theory?

The 4d action is obtained by integrating over internal space:

$$
\begin{aligned}
S & =\int d^{4} x d y\left(\partial_{\mu} \bar{\varphi} \partial^{\mu} \varphi-\partial_{y} \bar{\varphi} \partial_{y} \varphi\right) \\
& =\int d^{4} x \int_{0}^{2 \pi L} d y \sum_{n, m} \frac{1}{2 \pi L} e^{i(n-m) \frac{y}{L}}\left(\partial_{\mu} \bar{\varphi}_{m} \partial^{\mu} \varphi_{n}-\frac{n m}{L^{2}} \bar{\varphi}_{m} \varphi_{n}\right) \\
& =\int d^{4} x \sum_{n}\left(\partial_{\mu} \bar{\varphi}_{n} \partial^{\mu} \varphi_{n}-\frac{n^{2}}{L^{2}} \bar{\varphi}_{n} \varphi_{n}\right)
\end{aligned}
$$

- Infinite number of 4 d fields
- Most of the fields are massive of the order of the compactification scale
- The collection of fields is called Kaluza-Klein tower

Lorentz structure in compactification

- All type of fields have similar Kaluza-Klein expansion
- The Lorentz character can be affected by compactification

Consider 5d theory on circle:

$$
\begin{array}{ll}
\text { Scalar: } & \varphi \rightarrow \varphi_{n} \\
\text { Vector: } & A_{M} \rightarrow\left(A_{\mu}\right)_{n},\left(A_{y}\right)_{n} \\
\text { Metric: } & g_{M N} \rightarrow\left(g_{\mu \nu}\right)_{n},\left(g_{5 \mu}\right)_{n},\left(g_{55}\right)_{n}
\end{array}
$$

[Kaluza ' 21, Klein '26]
Fermion : $\quad \Psi \rightarrow\left(\psi_{L}\right)_{n},\left(\psi_{R}\right)_{n}$

Other internal spaces

- Many properties of the lower dimensional action depend on the geometry of the internal space
- Torus: Two circles lead in general to two KK-towers
- Orbifold: "Folding" of a smooth space
- Calabi-Yau compactifications: Used in string theory (becomes complicated and mathematical fast)

Challenges

- In presence of gravity the geometry becomes dynamical (the internal space has to satisfy Einstein equations, one has to find minima for geometrical parameters with large enough masses) \rightarrow Moduli stabilization
- Fermions not chiral (higher-dimensional give rise to both four-dimensional chiralities)
- Hard to generate hierarchies in interactions (fields are spread in internal space, lower-dimensional interactions are determined by overlap)

Magnetic Flux

- Magnetic field in higher dimensions:

$$
\begin{aligned}
& F_{M N}=\partial_{M} A_{N}-\partial_{N} A_{M} \\
& \text { electric : } \quad F_{0 i}, \quad \text { magnetic : } \quad F_{i j}
\end{aligned}
$$

- Internal magnetic field: at least two extra dimensions
- In compact space the magnetic flux is quantized

$$
\begin{aligned}
& e^{i \int_{N} F}=e^{i \oint_{\mathcal{C}} A}=e^{-i \int_{S} F} \\
& e^{i \int_{S+N} F}=1 \quad \Rightarrow \quad \int_{S^{2}} F=2 \pi N \text { with } N \in \mathbb{Z}
\end{aligned}
$$

Magnetic flux on torus

We want a constant magnetic field in torus directions:

$$
\frac{1}{2 \pi} \int_{T^{2}} F=\frac{1}{2 \pi} \int_{T^{2}} d y_{5} d y_{6} F_{56}=\frac{1}{2 \pi} \operatorname{Area}\left(T^{2}\right) f
$$

For a square torus:

$$
f=\frac{N}{2 \pi L^{2}}
$$

Possible choice:

$$
A_{5}=-\frac{1}{2} f x_{6}, \quad A_{6}=\frac{1}{2} f x_{5}
$$

Needs patches and transition functions!
[Buchmuller, MD, Tatsuta '18]

Wilson lines

There can be fluctuations around the flux background:

$$
A_{m}=\left\langle A_{m}\right\rangle+a_{m}
$$

One important fluctuation is the lowest KK-mode:

$$
a_{5}\left(x_{\mu}\right), \quad a_{6}\left(x_{\mu}\right)
$$

Does not depend on internal direction \rightarrow tree-level massless
Can be combined into a complex scalar field in 4d:

$$
\varphi=\frac{1}{\sqrt{2}}\left(a_{6}+i a_{5}\right)
$$

so-called Wilson line

Effect on charged fields

- Magnetic field has effect on charged fields
- Modifies KK-tower to Landau levels
- Splits masses chirality sensitive
- Localizes field profile in internal space

In the following we study a complex scalar field of charge q :

$$
\partial_{m} \mathcal{Q} \rightarrow D_{M} \mathcal{Q}=\left(\partial_{m}+i q A_{M}\right) \mathcal{Q}
$$

Landau levels

Effective 4d masses from internal part of kinetic term

$$
\begin{aligned}
\mathcal{L}_{6 \mathrm{~d}} & \supset-\bar{D}_{5} \overline{\mathcal{Q}} D_{5} \mathcal{Q}-\bar{D}_{6} \overline{\mathcal{Q}} D_{6} \mathcal{Q} \\
& =\overline{\mathcal{Q}}\left(D_{5}^{2}+D_{6}^{2}\right) \mathcal{Q}
\end{aligned}
$$

Analyse the algebra of covariant derivatives in flux background:

$$
\left[D_{5}, D_{6}\right]=i q \partial_{5} A_{6}-i q \partial_{6} A_{5}=i q F_{56}=i q f
$$

Identical to harmonic oscillator algebra with:

$$
\begin{aligned}
D_{5} & \sim \hat{x}=x \\
D_{6} & \sim \hat{p}=-i \hbar \frac{\partial}{\partial x} \\
\hbar & \sim q f
\end{aligned}
$$

Proceed as for quantum harmonic oscillator by introducing ladder operators:

$$
a=\frac{1}{\sqrt{2 q f}}\left(D_{5}+i D_{6}\right), \quad a^{\dagger}=\frac{1}{\sqrt{2 q f}}\left(D_{5}-i D_{6}\right)
$$

They satisfy:

$$
\left[a, a^{\dagger}\right]=-\frac{i}{q f}\left[D_{5}, D_{6}\right]=1
$$

Rewrite the internal part of the kinetic term as:

$$
D_{5}^{2}+D_{6}^{2}=q f\left(a a^{\dagger}+a^{\dagger} a\right)=2 q f\left(a^{\dagger} a+\frac{1}{2}\right)
$$

Leads to oscillator mass spectrum in 4d.

A complex scalar of charge \mathbf{q} in $\mathbf{6 d}$ with flux leads to:

- Infinite tower of states parameterized by "Landau level" n, and multiplicity \mathbf{j}
- Masses depend only on n not on j (going from 1 to $|\mathrm{N}|$)
- Masses again depend on compactification scale

$$
m_{n}^{2}=2 q f\left(n+\frac{1}{2}\right)=\frac{N}{\pi L^{2}}\left(n+\frac{1}{2}\right)
$$

Lowest mass state in 4d:

$$
m_{0}^{2}=\frac{N}{2 \pi L^{2}}
$$

Fermions with flux

Fermions more complicated due to non-trivial Lorentz structure:

$$
\mathcal{L}_{6 \mathrm{~d}}=i \bar{\Psi} \Gamma^{M} D_{M} \Psi
$$

Analyze structure of squared internal Dirac operator

$$
M_{n}^{2}=m_{n}^{2}+q f \Gamma^{5} \Gamma^{6}
$$

Depends on internal helicity!

Chiral 4d zero modes
(Index theorem)
[Atiyah, Patodi, Singer]

Internal field profiles

 see e.g. [Cremades, Ibanez, Marchesano '04]Push oscillator analogy even further:

$$
a \xi_{0}=0
$$

"Groundstate annihilated by annihilation operator"

- One finds \mathbf{N} linearly independent field profiles (degeneracy index j)
- The same for bosons and fermions
- Higher modes from application of creation operator

Localized in internal space

(opens up possibilities for hierarchies in overlap integrals):

First excited level for $\mathbf{N}=2$

Application SO(10) GUT

[Asaka, Buchmuller, Covi '01][Buchmuller, MD, Ruehle, Schweizer '15]

- Minimal supersymmetric model in 6d
- Gauge group: $\mathbf{S O}(10) \times \mathbf{U (1)}$
- Compactification on orbifold
- Wilson line breaking to $\mathbf{S U (3)} \times \mathbf{S U (2)} \mathbf{x} \mathbf{U}(1) \times \mathbf{U}(1) \times \mathbf{U}(1)$
- Three flux quanta in additional $\mathrm{U}(1)$ (SUSY broken at compactification scale)
- charged 16-plet leads to chiral fermion zero-modes and three generations (separated in bulk)
- Uncharged 10-plet only leaves Higgs doublet as zero-mode

Summary

- Flux enhances possibilities for model building
- Fermion zero-modes (scalars lifted)
- Bulk localization (split of different components)
- Multiplicity (number of generations)
- Flux breaks supersymmetry
- Can be used to stabilize extra dimensions [Buchmuller, MD, Ruehle, Schweizer '16]
- Interesting pattern of quantum corrections

Mass of scalar fields

- The bare mass of a scalar field is subject to quantum corrections
- In a theory where the scalar couples to fermions via Yukawa interaction $y \bar{\psi} \varphi \psi$ corrections are induced by

- The induced quantum correction is:

$$
\delta m^{2} \propto-y^{2} \int \frac{d^{4} k}{k^{2}} \propto-y^{2} \int_{0}^{\Lambda} d k k \propto \Lambda^{2}
$$

- From experiment the quantum corrections to the Higgs mass should be

$$
\delta m^{2} \propto \Lambda^{2} \quad \text { with } \quad \Lambda=\mathcal{O}(\mathrm{TeV})
$$

- From consistency the quantum corrections to the Higgs mass can be

$$
\delta m^{2} \propto \Lambda^{2} \quad \text { with } \quad \Lambda=M_{P} \sim 10^{19} \mathrm{GeV}
$$

- But measured Higgs mass is about 125 GeV

The so-called Hierarchy Problem

(exists for scalar fields with small masses in general)

Theories with extra dimensions

- Infinite number of fields
- In principle all contribute to the mass correction

Compactification on circle:

$$
\mathcal{L}_{5 \mathrm{~d}} \supset y \phi \bar{\Psi} \Psi \rightarrow \sum_{n} y \phi_{0} \bar{\psi}_{n} \psi_{n}
$$

Each contributes quadratically with cut-off.

- Add supersymmetry (still some hierarchy necessary)
- Find different way out

Wilson line as Higgs

We have seen that the Lorentz type of field changes under compactifications.

Yukawa interaction from gauge fields

[Hosotani '83], [Hatanaka, Inami, Lim '98], [Hall, Nomura '01], [Arkani-Hamed, Cohen, Georgi '01] [Antoniadis, Benakli, Quiros '01], ...

Schematically (again for circle compactification):

$$
\mathcal{L}_{5 \mathrm{~d}} \supset i \bar{\Psi} \Gamma^{M} D_{M} \Psi \supset-q \sum_{n} a_{5} \bar{\psi}_{n} \psi_{n}
$$

Wilson line as Higgs scalar with Yukawa interaction (for complex Higgs go to torus)

Without flux

- Calculate effective action in four dimensions [Antoniadis, Benakli, Quiros '01], [Buchmuller, MD, Dudas, Schweizer '16]
- Calculate quantum corrections or effective potential

$$
\begin{aligned}
& \mathcal{L}_{4 \mathrm{~d}} \subset-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}-\partial_{\mu} \bar{\varphi} \partial^{\mu} \varphi \\
& \qquad \sum_{m, n}\left(-i \chi_{n, m} \sigma^{\mu} D_{\mu} \bar{\chi}_{n, m}-i \tilde{\chi}_{n, m} \sigma^{\mu} D_{\mu} \overline{\tilde{\chi}}_{n, m}\right. \\
& \left.\quad+\left(\frac{1}{L}(m+i n)+\sqrt{2} g q \varphi\right) \tilde{\chi}_{n, m} \chi_{n, m}+\text { h.c. }\right)
\end{aligned}
$$

- Only zero-mode for 6d gauge field
- Full tower of charged fermions (use orthonormality of internal field profiles)
- Quantum corrections via

$$
\begin{aligned}
\delta m^{2} & =-4 g^{2} q^{2} \sum_{n, m} \int \frac{d^{4} k}{(2 \pi)^{4}} \frac{k^{2}}{\left(k^{2}+\frac{1}{L^{2}}\left(m^{2}+n^{2}\right)\right)^{2}} \\
& =-4 g^{2} q^{2} \sum_{n, m} \int_{0}^{\infty} d t t e^{-\frac{1}{L}\left(n^{2}+m^{2}\right) t} \int \frac{d^{4} k}{(2 \pi)^{4}} k^{2} e^{k^{2} t} \\
& =-\frac{g^{2} q^{2}}{2 \pi^{2}} \int_{0}^{\infty} \frac{d t}{t^{2}} \Theta_{3}\left(0 ; \frac{i t}{\pi L^{2}}\right)^{2}=-\frac{g^{2} q^{2}}{2 \pi^{5} L^{2}} \sum_{r, s} \frac{1}{\left(r^{2}+s^{2}\right)^{2}}
\end{aligned}
$$

- All divergence in $\mathrm{r}=\mathbf{s = 0}$ (can also be obtained via Poisson resummation), use this as renormalization prescription \rightarrow Finite mass
- Finite result for the Higgs mass, i.e. no cut-off dependence (no SUSY)
- Mass correction of the order of the compactifications scale (for pheno: large extra dimensions needed)

How is this possible?

- Higgs is "extended object" (Wilson line)
- built in cut-off of the size of object (compactification scale)

With flux

- Do the same calculation with flux [Buchmuller, MD, Dudas, Schweizer '16] [Buchmuller, MD, Dudas '18]
- Combine internal coordinates to complex coordinate, introduce background for gauge field:

$$
\begin{gathered}
z=\frac{1}{2}\left(y_{5}+i y_{6}\right), \quad \partial_{z}=\partial_{5}-i \partial_{6} \\
\phi=\frac{1}{\sqrt{2}}\left(A_{6}+i A_{5}\right) \\
\phi=\frac{1}{\sqrt{2}} f \bar{z}+\varphi
\end{gathered}
$$

- The 6d action (flux and one chiral fermion) can be written as:

$$
\begin{aligned}
S_{6}=\int d^{6} x(& -\frac{1}{4} F^{\mu \nu} F_{\mu \nu}-\partial^{\mu} \bar{\varphi} \partial_{\mu} \varphi-\frac{1}{4}\left(\partial_{z} \bar{\varphi}+\partial_{\bar{z}} \varphi\right)^{2}-\frac{1}{2} f^{2} \\
& -\frac{1}{2} \partial_{\bar{z}} A^{\mu} \partial_{z} A_{\mu}-\frac{i}{\sqrt{2}} \partial_{\mu} A^{\mu}\left(\partial_{z} \bar{\varphi}-\partial_{\bar{z}} \varphi\right) \\
& -i \psi \sigma^{\mu} \bar{D}_{\mu} \bar{\psi}-i \chi \sigma^{\mu} D_{\mu} \bar{\chi} \\
& \left.-\chi\left(\partial_{z}+q f \bar{z}+\sqrt{2} q \varphi\right) \psi-\bar{\chi}\left(\partial_{\bar{z}}+q f z+\sqrt{2} q \bar{\varphi}\right) \bar{\psi}\right)
\end{aligned}
$$

- Use mode decomposition and restrict to zero-modes for uncharged fields
- Uncharged complex scalar field coupling to the whole tower of charged fermions
- The effective action reads:

$$
\begin{aligned}
S_{4}=\int d^{4} x & \left(-\partial^{\mu} \bar{\varphi}_{0} \partial_{\mu} \varphi_{0}+\sum_{n, j}\left(-i \psi_{n, j} \sigma^{\mu} \bar{D}_{\mu} \bar{\psi}_{n, j}-i \chi_{n, j} \sigma^{\mu} D_{\mu} \bar{\chi}_{n, j}\right.\right. \\
& \left.\left.-\sqrt{2 q f(n+1)} \chi_{n, j} \psi_{n+1, j}-\sqrt{2} q \varphi_{0} \chi_{n, j} \psi_{n, j}+\text { h.c. }\right)\right)
\end{aligned}
$$

- Similar action can be derived for charged 6d scalar fields
- Even a description in terms of superfields with spontaneously broken SUSY (D-terms) can be derived [Buchmuller, MD, Dudas, Schweizer '16]
- Tree-level massless scalar
- Calculate quantum corrections to mass and potential
- Mass-correction from charged boson

$$
\begin{aligned}
& \delta m_{b}^{2}=2 q^{2} g^{2}|N| \sum_{n} \int \frac{d^{4} k}{(2 \pi)^{4}}\left(\frac{2}{k^{2}+\alpha\left(n+\frac{1}{2}\right)}-\frac{2 \alpha(n+1)}{\left(k^{2}+\alpha\left(n+\frac{3}{2}\right)\right)\left(k^{2}+\alpha\left(n+\frac{1}{2}\right)\right)}\right) \\
& =-4 q^{2} g^{2}|N| \sum_{n} \int \frac{d^{4} k}{(2 \pi)^{4}}\left(\frac{n}{k^{2}+\alpha\left(n+\frac{1}{2}\right)}-\frac{n+1}{k^{2}+\alpha\left(n+\frac{3}{2}\right)}\right) \\
& =-\frac{q^{2} g^{2}}{4 \pi^{2}}|N| \sum_{n} \int_{0}^{\infty} d t \frac{1}{t^{2}}\left(n e^{-\alpha\left(n+\frac{1}{2}\right) t}-(n+1) e^{-\alpha\left(n+\frac{3}{2}\right) t}\right) \\
& =-\frac{q^{2} g^{2}}{4 \pi^{2}}|N| \int \frac{d t}{t^{2}}\left(\frac{e^{\frac{1}{2} \alpha t}}{\left(e^{\alpha t}-1\right)^{2}}-\frac{e^{\frac{1}{2} \alpha t}}{\left(e^{\alpha t}-1\right)^{2}}\right) \\
& =0
\end{aligned}
$$

- Mass-correction from charged fermion

$$
\begin{aligned}
\delta m_{f}^{2} & =-2 q^{2} g^{2}|N| \sum_{n} \int \frac{d^{4} k}{(2 \pi)^{4}} \frac{2 k^{2}}{\left(k^{2}+\alpha n\right)\left(k^{2}+\alpha(n+1)\right)} \\
& =4 q^{2} g^{2}|N| \sum_{n} \int \frac{d^{4} k}{(2 \pi)^{4}}\left(\frac{n}{k^{2}+\alpha n}-\frac{n+1}{k^{2}+\alpha(n+1)}\right) \\
& =\frac{q^{2} g^{2}}{4 \pi^{2}}|N| \sum_{n} \int_{0}^{\infty} d t \frac{1}{t^{2}}\left(n e^{-\alpha n t}-(n+1) e^{-\alpha(n+1) t}\right) \\
& =\frac{q^{2} g^{2}}{4 \pi^{2}}|N| \int \frac{d t}{t^{2}}\left(\frac{e^{\alpha t}}{\left(e^{\alpha t}-1\right)^{2}}-\frac{e^{\alpha t}}{\left(e^{\alpha t}-1\right)^{2}}\right) \\
& =\mathbf{0}
\end{aligned}
$$

- Correction to quartic interaction by fermions:

- Correction to quartic interaction by bosons:

ALL VANISH!

All order from symmetries

[Buchmuller, MD, Dudas '18]

- The flux background breaks the translational symmetry along the torus directions z
- 6d action invariant with respect to modified shift (including shift of Wilson line)

$$
\begin{gathered}
\delta_{T} X=\left(\epsilon \partial_{z}+\bar{\epsilon} \partial_{\bar{z}}\right) X, \quad \text { for } X=A_{\mu}, \psi, \chi \\
\delta_{T} \varphi=\left(\epsilon \partial_{z}+\bar{\epsilon} \partial_{\bar{z}}\right) \varphi+\frac{1}{\sqrt{2}} \bar{\epsilon} f
\end{gathered}
$$

- 6d action invariant with respect to transformation (changes boundary conditions for fermions)

$$
\varphi_{\Lambda}=\varphi-\frac{1}{\sqrt{2}} \partial_{z} \Lambda, \quad \psi_{\Lambda}=e^{q \Lambda} \psi, \quad \chi_{\Lambda}=e^{-q \Lambda} \chi, \quad \Lambda=f(\alpha \bar{z}-\bar{\alpha} z)
$$

- For infinitesimal transformation

$$
\delta_{\Lambda} \varphi=-\frac{1}{\sqrt{2}} \partial_{z} \Lambda=\frac{1}{\sqrt{2}} \bar{\alpha} f, \quad \delta_{\Lambda} \psi=q \Lambda \psi, \quad \delta_{\Lambda} \chi=-q \Lambda \chi
$$

- Combine the two transformations

$$
\delta=\delta_{T}+\delta_{\Lambda, \alpha=\epsilon}
$$

- Acts as shift of Wilson line (symmetry of 6d action)

How does the symmetry act in terms of 4d fields? (relevant for perturbative corrections)

- Action on 4d component fields

$$
\begin{aligned}
\delta \psi_{n, j} & =\sqrt{2 q f}\left(\epsilon \sqrt{n+1} \psi_{n+1, j}-\bar{\epsilon} \sqrt{n} \psi_{n-1, j}\right), \\
\delta \chi_{n, j} & =\sqrt{2 q f}\left(-\epsilon \sqrt{n} \chi_{n-1, j}+\bar{\epsilon} \sqrt{n+1} \chi_{n+1, j}\right) \\
\delta \varphi_{l, m} & =\left(\epsilon M_{l, m}-\bar{\epsilon} \bar{M}_{l, m}\right) \varphi_{l, m}, \quad M_{l, m}=\frac{1}{L}(m+i l), \\
\delta A_{\mu, l, m} & =\left(\epsilon M_{l, m}-\bar{\epsilon} \bar{M}_{l, m}\right) A_{\mu, l, m} \\
\delta \varphi_{0} & =\sqrt{2} \bar{\epsilon} f
\end{aligned}
$$

- Invariance guarantees no mass-correction and potential for massless scalar at perturbative level
- Transformation mixes the complete tower
- Descends from higher dimensions

Summary

- Many applications of flux compactifications (SUSY breaking, moduli stabilization, hierarchies via localization of field profiles, multiplicity of generations, chirality)
- Completely changes charged particle spectrum
- Still has mild behavior with respect to quantum corrections
- Leads to massless scalar ("broken translational invariance", mixing of whole tower, all-loop order)
- Explicit form of (effective) action, transformations,...

Outlook

- Some problems:
- Scalar field only couples to one zero-mode
- Eaten up by graviphoton (gravity switched on)
- Scalar field is uncharged
- Some solutions (?):
- More than one flux (several gauge fields, more dimensions) \rightarrow accidental shift symmetries, protection at 1-loop level
- Flux in non-Abelian (tachyonic, stabilization)

