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Outlook
• Compactifications 

• Kaluza-Klein (KK) tower of effective fields


• Lorentz structure of fields


• Problems for compactifications


• Magnetic flux 

• Vector field background


• Effect on charged states


• Application for GUTs
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• Massless scalar field 

• Review: Hierarchy problem for scalar fields


• 5d example with finite corrections


• 6d with flux leads to vanishing corrections


• Explicitly for 1-loop


• Symmetry arguments for all-loop 

• Conclusion (Summary and Outlook)
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Compactification
• Start with higher-dimensional quantum field theory


• In order to account for our visible dimensions keep four 
non-compact dimensions 

• The remaining dimensions should be “invisible” at our 
energies and have to be compact (here: circle or torus)
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KK-tower in circle compactification
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Assume a complex scalar field in 5d compactified on a circle:

'(xµ, y + 2⇡L) = '(xµ, y)

Can be decomposed into Fourier modes

with mode functions only depending on non-compact coordinates

What does this imply in lower-dimensional effective theory?

'(xµ, y) =
1p
2⇡L

1X

n=�1
ein

y
L'n(xµ)



• Infinite number of 4d fields


• Most of the fields are massive of the order of the 
compactification scale 

• The collection of fields is called Kaluza-Klein tower
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The 4d action is obtained by integrating over internal space:

S =

Z
d4x dy

�
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Lorentz structure in compactification

• All type of fields have similar Kaluza-Klein expansion 


• The Lorentz character can be affected by 
compactification
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Consider 5d theory on circle:

Scalar: ' ! 'n

Vector: AM ! (Aµ)n , (Ay)n

Metric: gMN ! (gµ⌫)n , (g5µ)n , (g55)n
[Kaluza ‘ 21, Klein ’26]

Fermion :  ! ( L)n , ( R)n



Other internal spaces
• Many properties of the lower dimensional action depend 

on the geometry of the internal space


• Torus: Two circles lead in general to two KK-towers


• Orbifold: “Folding” of a smooth space


• Calabi-Yau compactifications: Used in string theory 
(becomes complicated and mathematical fast)
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Challenges

• In presence of gravity the geometry becomes 
dynamical (the internal space has to satisfy Einstein 
equations, one has to find minima for geometrical 
parameters with large enough masses)           Moduli 
stabilization 

• Fermions not chiral (higher-dimensional give rise to both 
four-dimensional chiralities)         


• Hard to generate hierarchies in interactions (fields are 
spread in internal space, lower-dimensional interactions 
are determined by overlap)
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Magnetic Flux
• Magnetic field in higher dimensions:
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• Internal magnetic field: at least two extra dimensions 

• In compact space the magnetic flux is quantized

FMN = @MAN � @NAM

electric : F0i , magnetic : Fij

ei
R
N F = ei

H
C A = e�i

R
S F

ei
R
S+N F = 1 )

Z

S2

F = 2⇡N with N 2 Z

N

S

C



Magnetic flux on torus
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We want a constant magnetic field in torus directions:

1
2⇡

Z

T 2

F = 1
2⇡

Z

T 2

dy5dy6 F56 = 1
2⇡Area(T 2)f

For a square torus:

2⇡L

2⇡Lf =
N

2⇡L2

Possible choice:

A5 = � 1
2fx6 , A6 = 1

2fx5

Needs patches and transition functions!
[Buchmuller, MD, Tatsuta ’18]



Wilson lines
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There can be fluctuations around the flux background:

Am = hAmi+ am

One important fluctuation is the lowest KK-mode:

a5(xµ) , a6(xµ)

Does not depend on internal direction             tree-level massless

Can be combined into a complex scalar field in 4d:

' = 1p
2
(a6 + ia5)

so-called Wilson line



Effect on charged fields
• Magnetic field has effect on charged fields 

• Modifies KK-tower to Landau levels  

• Splits masses chirality sensitive


• Localizes field profile in internal space
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In the following we study a complex scalar field of charge q:

@mQ ! DMQ = (@m + iqAM )Q



Landau levels
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Effective 4d masses from internal part of kinetic term

Analyse the algebra of covariant derivatives in flux background:

[D5, D6] = iq@5A6 � iq@6A5 = iqF56 = iqf

Identical to harmonic oscillator algebra with:

D5 ⇠ x̂ = x ,

D6 ⇠ p̂ = �i~ @

@x
,

~ ⇠ qf

L6d � �D5QD5Q�D6QD6Q
= Q(D2

5 +D2
6)Q



!15

Proceed as for quantum harmonic oscillator by introducing

ladder operators:

a =
1p
2qf

(D5 + iD6) , a† =
1p
2qf

(D5 � iD6)

They satisfy:

[a, a†] = � i

qf
[D5, D6] = 1

Rewrite the internal part of the kinetic term as:

D2
5 +D2

6 = qf
�
aa† + a†a

�
= 2qf

�
a†a+ 1

2

�

Leads to oscillator mass spectrum in 4d.



• Infinite tower of states parameterized by “Landau 
level” n, and multiplicity j


• Masses depend only on n not on j (going from 1 to |N|) 

• Masses again depend on compactification scale
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A complex scalar of charge q in 6d with flux leads to:

m2
n = 2qf

�
n+ 1

2

�
=

N

⇡L2

�
n+ 1

2

�

Lowest mass state in 4d:

m2
0 =

N

2⇡L2



Fermions with flux
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Fermions more complicated due to non-trivial Lorentz 
structure:

L6d = i �MDM 

Analyze structure of squared internal Dirac operator

M2
n = m2

n + qf �5�6

Depends on internal helicity!

Chiral 4d zero modes 
(Index theorem) 

[Atiyah, Patodi, Singer]

m2

qf

2qf

3qf

'  



Internal field profiles
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see e.g. [Cremades, Ibanez, Marchesano ’04]

Push oscillator analogy even further:
a ⇠0 = 0

“Groundstate annihilated by annihilation operator”

• One finds N linearly independent field profiles 
(degeneracy index j)


• The same for bosons and fermions 

• Higher modes from application of creation operator
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Localized in internal space  
(opens up possibilities for hierarchies in overlap integrals):

Groundstates for N=2

First excited level for N=2

|⇠0,j |2

|⇠1,j |2



Application SO(10) GUT
• Minimal supersymmetric model in 6d 


• Gauge group: SO(10) x U(1)  

• Compactification on orbifold  

• Wilson line breaking to SU(3) x SU(2) x U(1) x U(1) x U(1) 

• Three flux quanta in additional U(1) (SUSY broken at 
compactification scale)


• charged 16-plet leads to chiral fermion zero-modes and 
three generations (separated in bulk)


• Uncharged 10-plet only leaves Higgs doublet as zero-mode
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[Asaka, Buchmuller, Covi ’01][Buchmuller, MD, Ruehle, Schweizer ’15]



Summary
• Flux enhances possibilities for model building 

• Fermion zero-modes (scalars lifted) 

• Bulk localization (split of different components) 

• Multiplicity (number of generations) 

• Flux breaks supersymmetry 

• Can be used to stabilize extra dimensions [Buchmuller, 
MD, Ruehle, Schweizer ’16] 

• Interesting pattern of quantum corrections
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Mass of scalar fields
• The bare mass of a scalar field is subject to quantum 

corrections 


• In a theory where the scalar couples to fermions via 
Yukawa interaction             corrections are induced by
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y ' 
 

'

�m2 / �y2
Z

d4k

k2
/ �y2

Z ⇤

0
dk k / ⇤2

• The induced quantum correction is:



• From experiment the quantum corrections to the Higgs 
mass should be 
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�m2
/ ⇤2 with ⇤ = O(TeV)

• From consistency the quantum corrections to the Higgs 
mass can be  

�m2 / ⇤2 with ⇤ = MP ⇠ 1019GeV

• But measured Higgs mass is about 125 GeV

The so-called Hierarchy Problem 
(exists for scalar fields with small masses in general)



Theories with extra dimensions
• Infinite number of fields  

• In principle all contribute to the mass correction
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Compactification on circle:

L5d � y�  !
X

n

y�0 n n

Each contributes quadratically with cut-off.

• Add supersymmetry (still some hierarchy necessary)  

• Find different way out



Wilson line as Higgs
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We have seen that the Lorentz type of field changes under 
compactifications.

Yukawa interaction from gauge fields
[Hosotani ’83], [Hatanaka, Inami, Lim ’98], [Hall, Nomura ’01], [Arkani-Hamed, Cohen, 

Georgi ’01] [Antoniadis, Benakli, Quiros ’01], …

Schematically (again for circle compactification):

L5d � i �MDM � �q
X

n

a5 n n

Wilson line as Higgs scalar with Yukawa interaction  
(for complex Higgs go to torus)



Without flux
• Calculate effective action in four dimensions [Antoniadis, 

Benakli, Quiros ’01], [Buchmuller, MD, Dudas, Schweizer ’16] 

• Calculate quantum corrections or effective potential
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L4d ⇢� 1
4Fµ⌫F

µ⌫ � @µ'@
µ'

X

m,n

�
� i�n,m�µDµ�n,m � i�̃n,m�µDµ�̃n,m

+
�
1
L (m+ in) +

p
2gq'

�
�̃n,m�n,m + h.c.

�

• Only zero-mode for 6d gauge field 

• Full tower of charged fermions (use orthonormality of 
internal field profiles)



• Quantum corrections via
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' '

�n,m

�̃n,m

�m2 = �4g2q2
X

n,m

Z
d4k

(2⇡)4
k2

�
k2 + 1

L2 (m2 + n2)
�2

= �4g2q2
X

n,m

Z 1

0
dtte�

1
L (n2+m2)t

Z
d4k

(2⇡)4
k2ek

2t

= �g2q2

2⇡2

Z 1

0

dt

t2
⇥3

�
0; it

⇡L2

�2
= � g2q2

2⇡5L2

X

r,s

1

(r2 + s2)2

• All divergence in r=s=0 (can also be obtained via 
Poisson resummation), use this as renormalization 
prescription           Finite mass



• Finite result for the Higgs mass, i.e. no cut-off 
dependence (no SUSY) 

• Mass correction of the order of the compactifications 
scale (for pheno: large extra dimensions needed)
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How is this possible?

• Higgs is “extended object” (Wilson line)


• built in cut-off of the size of object (compactification 
scale)



With flux
• Do the same calculation with flux [Buchmuller, MD, Dudas, 

Schweizer ’16] [Buchmuller, MD, Dudas ’18] 

• Combine internal coordinates to complex coordinate, 
introduce background for gauge field:
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z = 1
2 (y5 + iy6) , @z = @5 � i@6

� = 1p
2
(A6 + iA5)

� = 1p
2
f z̄ + '



• The 6d action (flux and one chiral fermion) can be written as:
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S6 =

Z
d6x

⇣
� 1

4F
µ⌫Fµ⌫ � @µ'@µ'� 1

4 (@z'+ @z̄')
2 � 1

2f
2

� 1
2@z̄A

µ@zAµ � ip
2
@µA

µ(@z'� @z̄')

� i �µDµ � i��µDµ�

� �
�
@z + qf z̄ +

p
2q'

�
 � �

�
@z̄ + qfz +

p
2q'

�
 
⌘

• Use mode decomposition and restrict to zero-modes for 
uncharged fields

• Uncharged complex scalar field coupling to the whole 
tower of charged fermions



• The effective action reads:
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S4 =

Z
d4x

⇣
� @µ'0@µ'0 +

X

n,j

�
� i n,j�

µDµ n,j � i�n,j�
µDµ�n,j

�
p
2qf(n+ 1)�n,j n+1,j �

p
2q'0�n,j n,j + h.c.

�⌘

• Similar action can be derived for charged 6d scalar fields 

• Even a description in terms of superfields with 
spontaneously broken SUSY (D-terms) can be derived 
[Buchmuller, MD, Dudas, Schweizer ’16] 

• Tree-level massless scalar


• Calculate quantum corrections to mass and potential



• Mass-correction from charged boson
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�m2
b = 2q2g2|N |

X

n

Z
d4k

(2⇡)4

⇣ 2

k2 + ↵(n+ 1
2 )

� 2↵(n+ 1)

(k2 + ↵(n+ 3
2 ))(k

2 + ↵(n+ 1
2 ))

⌘

= �4q2g2|N |
X

n

Z
d4k

(2⇡)4

⇣ n

k2 + ↵(n+ 1
2 )

� n+ 1

k2 + ↵(n+ 3
2 )

⌘

= �q2g2

4⇡2
|N |

X

n

Z 1

0
dt

1

t2
�
ne�↵(n+

1
2 )t � (n+ 1)e�↵(n+

3
2 )t

�

= �q2g2

4⇡2
|N |

Z
dt

t2

⇣ e
1
2↵t

(e↵t � 1)2
� e

1
2↵t

(e↵t � 1)2

⌘

= 0

↵ = 2qgf
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• Mass-correction from charged fermion

�̃n,j ⇠  n,j

�m2
f =� 2q2g2|N |

X

n

Z
d4k

(2⇡)4
2k2

(k2 + ↵n)(k2 + ↵(n+ 1))

=4q2g2|N |
X

n

Z
d4k

(2⇡)4

⇣ n

k2 + ↵n
� n+ 1

k2 + ↵(n+ 1)

⌘

=
q2g2

4⇡2
|N |

X

n

Z 1

0
dt

1

t2
�
ne�↵nt � (n+ 1)e�↵(n+1)t

�

=
q2g2

4⇡2
|N |

Z
dt

t2

⇣ e↵t

(e↵t � 1)2
� e↵t

(e↵t � 1)2

⌘

=0
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• Correction to quartic interaction by fermions:

• Correction to quartic interaction by bosons:

ALL VANISH!



All order from symmetries
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[Buchmuller, MD, Dudas ’18]

• The flux background breaks the translational 
symmetry along the torus directions z


• 6d action invariant with respect to modified shift 
(including shift of Wilson line) 

�TX = (✏@z + ✏̄@z̄)X , for X = Aµ, ,�

�T' = (✏@z + ✏̄@z̄)'+ 1p
2
✏̄f

• 6d action invariant with respect to transformation 
(changes boundary conditions for fermions)

'⇤ = '� 1p
2
@z⇤ ,  ⇤ = eq⇤ , �⇤ = e�q⇤� , ⇤ = f(↵z̄ � ↵̄z)



• For infinitesimal transformation
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�⇤' = � 1p
2
@z⇤ = 1p

2
↵̄f , �⇤ = q⇤ , �⇤� = �q⇤�

• Combine the two transformations

� = �T + �⇤,↵=✏

• Acts as shift of Wilson line (symmetry of 6d action)

How does the symmetry act 
in terms of 4d fields?


(relevant for perturbative corrections)



• Action on 4d component fields
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� n,j =
p
2qf(✏

p
n+ 1 n+1,j � ✏̄

p
n n�1,j) ,

��n,j =
p
2qf(�✏

p
n�n�1,j + ✏̄

p
n+ 1�n+1,j) ,

�'l,m = (✏Ml,m � ✏̄M l,m)'l,m , Ml,m = 1
L (m+ il) ,

�Aµ,l,m = (✏Ml,m � ✏̄M l,m)Aµ,l,m ,

�'0 =
p
2✏̄f

• Invariance guarantees no mass-correction and 
potential for massless scalar at perturbative level 

• Transformation mixes the complete tower 

• Descends from higher dimensions



Summary
• Many applications of flux compactifications (SUSY 

breaking, moduli stabilization, hierarchies via localization 
of field profiles, multiplicity of generations, chirality)


• Completely changes charged particle spectrum 

• Still has mild behavior with respect to quantum 
corrections 

• Leads to massless scalar (“broken translational 
invariance”, mixing of whole tower, all-loop order) 


• Explicit form of (effective) action, transformations,…
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Outlook
• Some problems: 

• Scalar field only couples to one zero-mode 

• Eaten up by graviphoton (gravity switched on)


• Scalar field is uncharged 

• Some solutions (?): 

• More than one flux (several gauge fields, more 
dimensions)         accidental shift symmetries, 
protection at 1-loop level 


• Flux in non-Abelian (tachyonic, stabilization)
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