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Outlook

e Compactifications
o Kaluza-Klein (KK) tower of effective fields
e Lorentz structure of fields
* Problems for compactifications
* Magnetic flux
* Vector field background
e Effect on charged states

e Application for GUTs



* Massless scalar field
e Review: Hierarchy problem for scalar fields
e 5d example with finite corrections
 6d with flux leads to vanishing corrections
 Explicitly for 1-loop
e Symmetry arguments for all-loop

e Conclusion (Summary and Outlook)



Compactification

Start with higher-dimensional quantum field theory

In order to account for our visible dimensions keep four
non-compact dimensions

The remaining dimensions should be “invisible” at our
energies and have to be compact (here: circle or torus)
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KK-tower In circle compactification

Assume a complex scalar field in 5d compactified on a circle:

Sp(x,un Y+ 27TL) — gp(xu, y)

Can be decomposed into Fourier modes

o2y, y) = \/— Z ()

with mode functions only depending on non-compact coordinates

What does this imply in lower-dimensional effective theory?



The 4d action is obtained by integrating over internal space:

S = /d4m dy (é’uaé’“gp — %@%g@)
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e [nfinite number of 4d fields

e Most of the fields are massive of the order of the
compactification scale

e The collection of fields is called Kaluza-Klein tower



Lorentz structure in compactification

e All type of fields have similar Kaluza-Klein expansion

e The Lorentz character can be affected by
compactification

Consider 5d theory on circle:

Scalar: ¢ — v,
Vector: Ay — (Au)n, (Ay)n

Metric:  gun = (Guw)n » (G5u)n 5 (955)n
[Kaluza ‘ 21, Klein ’26]

Fermion: V¥ — (¥1)n, (YR)n



Other internal spaces

Many properties of the lower dimensional action depend
on the geometry of the internal space

Torus: Two circles lead in general to two KK-towers
Orbifold: “Folding” of a smooth space

Calabi-Yau compactifications: Used in string theory
(becomes complicated and mathematical fast)
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Challenges

* |n presence of gravity the geometry becomes
dynamical (the internal space has to satisfy Einstein
equations, one has to find minima for geometrical
parameters with large enough masses) —» Moduli
stabilization

* Fermions not chiral (higher-dimensional give rise to both
four-dimensional chiralities)

* Hard to generate hierarchies in interactions (fields are
spread in internal space, lower-dimensional interactions
are determined by overlap)



Magnetic Flux

e Magnetic field in higher dimensions:

Fyn =0pAN — ONAn

electric: Fy;, magnetic: Fj;
* Internal magnetic field: at least two extra dimensions

* |n compact space the magnetic flux is quantized

i INF — pife A =i fs F

= F =27mN with N € Z
SQ
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Magnetic flux on torus

We want a constant magnetic field in torus directions:

% F = % dy5dy6 F56 = %AI@&(TQ)]B
T2 T2

For a square torus:

B N
- 2 L2

2L

f

Possible choice:

2L
Ay = —%f%y Ag = %f%

Needs patches and transition functions!
[Buchmuller, MD, Tatsuta 18]
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Wilson lines

There can be fluctuations around the flux background:

Ay = (Ap) + am
One important fluctuation is the lowest KK-mode:
as(Ty), as(Ty)
Does not depend on internal direction —# tree-level massless
Can be combined into a complex scalar field in 4d:
o = 7 (ag + ias)
so-called Wilson line
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Effect on charged fields

e Magnetic field has effect on charged fields
* Modifies KK-tower to Landau levels
 Splits masses chirality sensitive

e Localizes field profile in internal space

In the following we study a complex scalar field of charge q:

Om @ — DyQ = (O + 1qANM) O
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Landau levels

Effective 4d masses from internal part of kinetic term

Leqa DO —D5QD5Q — DgQDgQ
= Q(D; + Dg)Q

Analyse the algebra of covariant derivatives in flux background:
D5, Dg| = 1q05Ag — iq0s A5 = 1qF56 = iqf
|dentical to harmonic oscillator algebra with:
Ds ~1=ux,
Do ~p = —ih-"

ox’
h~qf
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Proceed as for quantum harmonic oscillator by introducing
ladder operators:

1 1
a — (D5 + ZD6) ] CLT — (D5 — ZD6)
V2qf V2qf
They satisty:
a,a"] = ——[Ds, Dg] = 1

qf

Rewrite the internal part of the kinetic term as:
D; + Dg = qf(chr + aTa) = 2qf(aTa + =)

L eads to oscillator mass spectrum in 4d.
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A complex scalar of charge g in 6d with flux leads to:

* Infinite tower of states parameterized by “Landau
level” n, and multiplicity ]

e Masses depend only on n not on j (going from 1 to |N|)

* Masses again depend on compactification scale

N

Ny

—2qf(n—|— )

Lowest mass state in 4d:
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Fermions with flux

Fermions more complicated due to non-trivial Lorentz
structure:

Leqg =iV M Dy
Analyze structure of squared internal Dirac operator

M, =my, +qf T°T°

Depends on internal helicity! m2
3aft  — /
Chiral 4d zero modes 2014 _
(Index theorem)
[Atiyah, Patodi, Singer] af + _ /
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Internal field profiles

see e.d. [Cremades, Ibanez, Marchesano ’'04]

Push oscillator analogy even further:
a&o =0

“Groundstate annihilated by annihilation operator”

e One finds N linearly independent field profiles
(degeneracy index j)

e The same for bosons and fermions

* Higher modes from application of creation operator
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Localized in internal space
(opens up possibilities for hierarchies in overlap integrals):
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Application SO(10) GUT

[Asaka, Buchmuller, Covi ’01][Buchmuller, MD, Ruehle, Schweizer ’15]

Minimal supersymmetric model in 6d

Gauge group: SO(10) x U(1)

Compactification on orbifold

Wilson line breaking to SU(3) x SU(2) x U(1) x U(1) x U(1)

Three flux quanta in additional U(1) (SUSY broken at
compactification scale)

charged 16-plet leads to chiral fermion zero-modes and
three generations (separated in bulk)

Uncharged 10-plet only leaves Higgs doublet as zero-mode
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Summary

Flux enhances possibilities for model building
* Fermion zero-modes (scalars lifted)
 Bulk localization (split of different components)
 Multiplicity (humber of generations)

Flux breaks supersymmetry

Can be used to stabilize extra dimensions [Buchmuller,
MD, Ruehle, Schweizer ’16]

Interesting pattern of quantum corrections
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Mass of scalar fields

* The bare mass of a scalar field is subject to quantum
corrections

* In atheory where the scalar couples to fermions via
Yukawa interaction y1 1) corrections are induced by

* The induced quantum correction is:

d*k
k2

dm? o —y°

A
X y/ dk k oc A?
0
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From experiment the quantum corrections to the Higgs
mass should be

om? oc A with A = O(TeV)

From consistency the quantum corrections to the Higgs
mass can be

om? x A? with A= Mp ~ 10'9GeV

But measured Higgs mass is about 125 GeV

The so-called Hierarchy Problem
(exists for scalar fields with small masses in general)
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Theories with extra dimensions

e [Infinite number of fields

e |n principle all contribute to the mass correction

Compactification on circle:

Lsa D ypWV — > yoot), tn

Each contributes quadratically with cut-off.

* Add supersymmetry (still some hierarchy necessary)

* Find different way out
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Wilson line as Higgs

We have seen that the Lorentz type of field changes under
compactifications.

Yukawa interaction from gauge fields

[Hosotani ’83], [Hatanaka, Inami, Lim ’98], [Hall, Nomura ’01], [Arkani-Hamed, Cohen,
Georgi ’01] [Antoniadis, Benakli, Quiros ’01], ...

Schematically (again for circle compactification):

£5d D) ZEFMDM\IJ D) —qz%@nwn

Wilson line as Higgs scalar with Yukawa interaction
(for complex Higgs go to torus)
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Without flux

Calculate effective action in four dimensions [Antoniadis,
Benakli, Quiros ’01], [Buchmuller, MD, Dudas, Schweizer ’16]

Calculate quantum corrections or effective potential
Lig C — 2 F, F" — 0,00 p

> (= iXnm0" DX — iXnm 0" DX

m,n

+ (£ (m +in) + V2999) Xn.mXn.m + h.c.)

Only zero-mode for 6d gauge field

Full tower of charged fermions (use orthonormality of
internal field profiles)
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e Quantum corrections via

Xn,m

k’2
om® = —4g°¢’ Z /

L(mz 4 n2))2

— —4¢%¢? R L LN
= —39 q Z € (27)4 €

__gq/ dt@(. )2__92(]2 1
272, Vi7iz) = 275 [2 (r? 4 s2)?

r,S

 All divergence in r=s=0 (can also be obtained via
Poisson resummation), use this as renormalization
prescription = Finite mass
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Finite result for the Higgs mass, i.e. no cut-off
dependence (no SUSY)

Mass correction of the order of the compactifications
scale (for pheno: large extra dimensions needed)

How is this possible?

Higgs is “extended object” (Wilson line)

built in cut-off of the size of object (compactification
scale)
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With flux

Do the same calculation with flux [Buchmuller, MD, Dudas,
Schweizer ’16] [Buchmuller, MD, Dudas ’18]

Combine internal coordinates to complex coordinate,
introduce background for gauge field:

29



* The 6d action (flux and one chiral fermion) can be written as:

26 = /de( — g " Fu — 0"g0up — (0.3 + 0:9)" — 5 f*
~ 50:AM0: Ay — 50, 4"(0:% — D)
— Z@DU”EM@ —wxo" D, X
—x(0: + afz+ V2qp0) — X(9: + qfz + ﬂq@)@)

e Use mode decomposition and restrict to zero-modes for
uncharged fields

 Uncharged complex scalar field coupling to the whole
tower of charged fermions
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The effective action reads:

Sy = /d%( — 0"PyOutpo + Z ( - iwn,jguﬁu@n,j - iX”JUMD“Y”J

n,j

— V2qf(n + 1)Xn,j%nt1,5 — V2900 Xn,j¥n,j + h.c.))

Similar action can be derived for charged 6d scalar fields

Even a description in terms of superfields with

spontaneously broken SUSY (D-terms) can be derived
[Buchmuller, MD, Dudas, Schweizer ’16]

Tree-level massless scalar

Calculate gquantum corrections to mass and potential
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e Mass-correction from charged boson

~

Rt Q'71‘+1,j1 Q'n-{—l,j
Qll,j7 an . e
¥ “"‘; ¢----0
p-=--== TR S 0 e
d*k 9 2a(n + 1)
5m2 — 9 2 2 N / ( . )
e ‘zn: 2m)A\k2+an+1) (K+an+2)Ek+an+1))
—= —4 22 N / ( o )
— _q292 |N‘ Z /OO dt — (ne—a(n+§)t (n 4+ 1)6 a(n—|—2)t)
47‘(‘2 ~ 0 t2
1 1
¢y N dt( a0t ot )
A2 2 (eat 1)2 (eat . 1)2 o = 20 f
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e Mass-correction from charged fermion

Xn,j
Xn,j ~ Un,j

P === ===

P | 2n)t (12 1 an) (k2 + an + 1))

d*k n n + 1
S |
9’| ‘Z 2m)*\k?+an K24+ a(n+1)

‘N’ Z/ dt— —om,t (n‘l‘ 1) —Oé(n—l—l)t)
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Correction to quartic interaction by fermions:

(N (N (A
/

P i 22 P - 2% P S
N X“-J // \\ X‘H,j X‘H—l,j // \\ X'”-,_j X”+1_} /,

A 7 ~ N,
P Xn,j '

Correction to quartic interaction by bosons:

~ Qn.j- Qn.j ’/(’0 Qu._j-, Qruj ,’99
Q Q ..... SOl d
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All order from symmetries

[Buchmuller, MD, Dudas ’18]

* The flux background breaks the translational
symmetry along the torus directions z

 6d action invariant with respect to modified shift
(including shift of Wilson line)

orX = (€0, +€05) X, for X =A4,,9,%
o = (€0, 4 €0z)p + %Ef

 6d action invariant with respect to transformation
(changes boundary conditions for fermions)

PA — @ — %azAa wA:szAw? XAZG—QAX7 A:f(()éz—(jéZ)
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* For infinitesimal transformation
onp =—50:A=—Jaf, o =qhp, dax=—qAx
e Combine the two transformations
0 = 07 + OA, =

* Acts as shift of Wilson line (symmetry of 6d action)

How does the symmetry act
in terms of 4d fields?
(relevant for perturbative corrections)
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e Action on 4d component fields

0n i = \/2qf(eVn + 1thpi1j — &/ntpn_1),
Oxng = V2af(—ev/nxn-1; + EVn+1xnt1,5)
0p1m = (€M — eEM ) Olm s, Mim = %(m +il) ,
0A, 1.m = (eM m — gﬁl,m)Au,l,m ,
bpo = V2ef

* |nvariance guarantees no mass-correction and
potential for massless scalar at perturbative level

* Transformation mixes the complete tower

* Descends from higher dimensions
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Summary

Many applications of flux compactifications (SUSY
breaking, moduli stabilization, hierarchies via localization
of field profiles, multiplicity of generations, chirality)

Completely changes charged particle spectrum

Still has mild behavior with respect to quantum
corrections

Leads to massless scalar (“broken translational
invariance”, mixing of whole tower, all-loop order)

Explicit form of (effective) action, transformations,...
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Outlook

e Some problems:
e Scalar field only couples to one zero-mode
e Eaten up by graviphoton (gravity switched on)
e Scalar field is uncharged

e Some solutions (?):

 More than one flux (several gauge fields, more
dimensions) == accidental shift symmetries,
protection at 1-loop level

 Flux in non-Abelian (tachyonic, stabilization)

39



