

Jose Miguel No IFT-UAM/CSIC, Madrid

Instituto de Física Teórica _{UAM-CSIC}

14/11/19

The EW Phase Transition

→ Yield Precise Understanding of EWSB in Early Universe

The EW Phase Transition

- ➔ Yield Precise Understanding of EWSB in Early Universe
- → (Possible) Answer to Open Mysteries at Interface of Particle Physics & Cosmology

Origin of Matter-Antimatter Asymmetry EW-scale Baryogenesis

The EW Phase Transition

- → Yield Precise Understanding of EWSB in Early Universe
- → (Possible) Answer to Open Mysteries at Interface of Particle Physics & Cosmology
- → (Possible) Cosmological Relics from the EW Epoch

Gravitational Wave Signal

Courtesy of D. Weir (Helsinki) Hindmarsh, Huber, Rummukainen, Weir, PRD **92** (2015) 123009

Sourced by Collisions of Higgs bubbles from a first order EW phase transition & subsequent plasma motions

- **O** Phases separated by potential barrier
- O Broken phase bubbles nucleate, expand, merge

- **O** Phases separated by potential barrier
- O Broken phase **bubbles nucleate**, expand, merge

O Broken phase **bubbles** nucleate, **expand**, merge

(if in plasma \rightarrow create fluid waves)

- **O** Phases separated by potential barrier
- Broken phase bubbles nucleate, expand, merge/collide <u>Anisotropic Stress</u>
 ↓
 ↓
 Sources Gravitational Wave Production

Physics Beyond the SM can induce a 1st Order EW Phase Transition

Two "Types" of Cosmological 1st Order PTs

O "Vacuum" Transitions

Fluid/plasma effects negligible (either plasma is very diluted or coupling between transition field and plasma small/non-existent)

Bubble walls accelerate until collision

Energy of PT stored in bubble walls

O Thermal Transitions

Energy of PT transferred to plasma

Plasma exerts friction on bubble wall

Terminal bubble wall velocity (steady state)

O Decay rate
$$\Gamma(T) \approx T^4 \exp\left(-\frac{S_3(T)}{T}\right)$$

O O(3) symmetric action

$$S_3(T) = 4\pi \int dr r^2 \left[\frac{1}{2} \left(\frac{d\phi}{dr} \right)^2 + V(\phi, T) \right]$$

O Bubble profile (bounce)

$$\frac{d^2\phi}{dr^2} + \frac{2}{r}\frac{d\phi}{dr} - \frac{\partial V(\phi, T)}{\partial \phi} = 0$$

$$\phi(r \to \infty) = 0 \text{ and } \dot{\phi}(r=0) = 0$$

O Decay rate
$$\Gamma(T) \approx T^4 \exp\left(-\frac{S_3(T)}{T}\right)$$

O O(3) symmetric action

$$S_3(T) = 4\pi \int dr r^2 \left[\frac{1}{2} \left(\frac{d\phi}{dr} \right)^2 + V(\phi, T) \right]$$

• Bubble profile (bounce)

$$\frac{d^2\phi}{dr^2} + \frac{2}{r}\frac{d\phi}{dr} - \frac{\partial V(\phi, T)}{\partial \phi} = 0$$

$$\phi(r \to \infty) = 0 \text{ and } \dot{\phi}(r=0) = 0$$

Nucleation temperature:

One Higgs bubble per Horizon volume (on average)

$$N(T_n) = \int_{t_c}^{t_n} dt \frac{\Gamma(t)}{H(t)^3} = \int_{T_n}^{T_c} \frac{dT}{T} \frac{\Gamma(T)}{H(T)^4} = 1$$

Linde, Phys. Lett. B100 (1981) 37; Nucl. Phys. B216 (1983) 421

Two KEY Phase Transition Quantities:

O (Available) Transition Energy (normalized)

$$\alpha = \frac{\epsilon}{a_+ T^4}$$

Two KEY Phase Transition Quantities:

O (Available) Transition Energy (normalized)

$$\alpha_e \equiv \frac{4}{3} \frac{\Delta e(T_{\rm n})}{w_+(T_{\rm n})}$$

Two KEY Phase Transition Quantities:

O (Available) Transition Energy (normalized)

$$\alpha_e \equiv \frac{4}{3} \frac{\Delta e(T_{\rm n})}{w_+(T_{\rm n})}$$

• Duration of the Transition (-1)

$$\frac{\beta}{H} \equiv -\frac{dS_3}{dt}\Big|_{t=t_n} \approx T \frac{d(S_3/T)}{dT}\Big|_{T=T_n}$$

(Related to the change of the Decay Rate)

GW frequency ~ size of bubbles @ collision

For $T_* \sim 100 \text{ GeV}$ and $\frac{\beta}{H_*} \sim 100, \text{GW}$ frequency

(redshifted to today!) $\sim mHz$

Two KEY Phase Transition Quantities:

• (Available) Transition Energy (normalized)

$$\alpha_e \equiv \frac{4}{3} \frac{\Delta e(T_{\rm n})}{w_+(T_{\rm n})}$$

O Duration of the Transition (-1)

$$\frac{\beta}{H} \equiv -\frac{dS_3}{dt}\Big|_{t=t_n} \approx T \frac{d(S_3/T)}{dT}\Big|_{T=T_n}$$

(Related to the change of the Decay Rate)

it the time of Ave buł

erage number of bubbles per horizon a bble coalescence/percolation (Transition Completes,
$$T_*$$
)
 H_*

1st Order (EW) Phase Transition

Figueroa et al., PoS GRASS2018 (2018) 036

1st Order (EW) Phase Transition

LISA can probe the EW epoch of the early Universe

The LISA Mission

(Laser Interferometer Space Antenna)

A brief status report

Thanks to G. Nardini

2017: LISA proposal to ESA

LISA Collaboration, 1702.00786

Launch date 2030-2034 LISA Mission selected by ESA (Summer 2017) + (On Jan 22 2018, LISA passed ESA's Mission Definition Review)

From the proposal: Audley et al, arXiv:1702.00786

SI7.2 : Measure, or set upper limits on, the spectral shape of the cosmological stochastic GW background

OR7.2: Probe a broken power-law stochastic background from the early Universe as predicted, for example, by first order phase transitions [21] (other spectral shapes are expected, for example, for cosmic strings [22] and inflation [23]). Therefore, we need the ability to measure $\Omega = 1.3 \times 10^{-11} (f/10^{-4} \text{ Hz})^{-1}$ in the frequency ranges 0.1 mHz < f < 2 mHz and 2 mHz < f <20 mHz, and $\Omega = 4.5 \times 10^{-12} (f/10^{-2} \text{ Hz})^3$ in the frequency ranges 2 mHz < f < 20 mHz and 0.02 < f <0.2 Hz.

GW – Collider complementarity

Timeline: LISA GW Observatory in the Context of High-Energy Colliders

After LHC, LISA is next step in exploration of EW scale physics

GW from the EW Phase Transition with LISA

Assess the capability of LISA to probe GW signal from EW epoch ⇒ BSM physics

GW from the EW Phase Transition with LISA

Assess the capability of LISA to probe GW signal from EW epoch \Rightarrow BSM physics Need to predict GW signal as robustly as possible

Thermal EW Phase Transition

Energy liberated from phase change transferred (mostly) to plasma

□ Kinetic energy \Rightarrow Thermal plasma bulk motion

 \Box Thermal energy \Rightarrow Thermal plasma gets heated up

Depending on Higgs bubble wall velocity, energy transfer to plasma creates different types of **expanding fluid shells**

Laine, Phys. Rev. D**49** (1994) 3847 Espinosa, Konstandin, No, Servant, JCAP **1006** (2010) 028

Thermal EW Phase Transition

Energy liberated from phase change transferred (mostly) to plasma

□ Kinetic energy ⇔ Thermal plasma bulk motion

 \Box Thermal energy \Rightarrow Thermal plasma gets heated up

Depending on Higgs bubble wall velocity, energy transfer to plasma creates different types of **expanding fluid shells**

Laine, Phys. Rev. D**49** (1994) 3847 Espinosa, Konstandin, No, Servant, JCAP **1006** (2010) 028

Courtesy of D. Cutting (Sussex)

Courtesy of D. Cutting (Sussex)

Courtesy of D. Cutting (Sussex)

Fluid shell Profiles

$$\partial^{\mu}T^{\rm plasma}_{\mu
u} = 0$$
 (with appropriate boundary conditions on bubble wall)

Local Thermal Equilibrium

$$T^{plasma}_{\mu\nu} = w \ u_{\mu}u_{\nu} - g_{\mu\nu} \ p$$

$$w = e + p$$

$$u_{\mu} = \frac{(1, \mathbf{v})}{\sqrt{1 - \mathbf{v}^2}} = (\gamma, \gamma \mathbf{v})$$

Self-similarity
$$v(r,t) = v(\xi = r/t)$$

Estimate of Energy available for GW production (fluid bulk motion for one bubble)

$$\int \overline{U}_{\mathbf{f}}^2 = \frac{3}{e \, v_{\mathbf{w}}^3} \int w(\xi) \, v^2 \gamma^2 \xi^2 d\xi = \frac{\kappa \alpha}{1+\alpha}$$

(enthalpy weighted) plasma RMS four velocity

Hindmarsh, Huber, Rummukainen, Weir, PRD 96 (2017) 103520

Estimate of Energy available for GW production (fluid bulk motion for one bubble)

$$\int \overline{U}_{\rm f}^2 = \frac{3}{e \, v_{\rm w}^3} \int w(\xi) \, v^2 \gamma^2 \xi^2 d\xi = \frac{\kappa \alpha}{1+\alpha}$$

(enthalpy weighted) plasma RMS four velocity

Hindmarsh, Huber, Rummukainen, Weir, PRD 96 (2017) 103520

Efficiency coefficient (PT Energy Budget)

Kamionkowski, Kosowsky, Turner, PRD **49** (1994) 2837 Espinosa, Konstandin, No, Servant, JCAP **1006** (2010) 028

□ Gravitational waves (GWs) produced by several sources in a PT:

$$h^2 \Omega_{\rm gw} = h^2 \Omega_{\phi} + h^2 \Omega_{\rm sw} + h^2 \Omega_{\rm turb}$$

□ Gravitational waves (GWs) produced by several sources in a PT:

$$h^2 \Omega_{\rm gw} = h^2 \Omega_{\phi} + h^2 \Omega_{\rm sw} + h^2 \Omega_{\rm turb}$$

LISA Cosmology Working Group effort to provide state-of-art:

2015 CosWG Review

Caprini et al, JCAP 1604 (2016) 001

+ very recent update

Caprini et al, arXiv:1910.13125

Science with the space-based interferometer eLISA. II: Gravitational waves from cosmological phase transitions

Chiara Caprini^a, Mark Hindmarsh^{b,c}, Stephan Huber^b, Thomas Konstandin^d, Jonathan Kozaczuk^e, Germano Nardini^f, Jose Miguel No^b, Antoine Petiteau^g, Pedro Schwaller^d, Géraldine Servant^{d,h}, David J. Weirⁱ

Detecting gravitational waves from cosmological phase transitions with LISA: an update

Chiara Caprini^a, Mikael Chala^{b,c,†}, Glauber C. Dorsch^d, Mark Hindmarsh^{e,f}, Stephan J. Huber^f, Thomas Konstandin^{g,‡}, Jonathan Kozaczuk^{h,i,j,§}, Germano Nardini^k, Jose Miguel No^{l,m}, Kari Rummukainen^e, Pedro Schwallerⁿ, Geraldine Servant^{g,o}, Anders Tranberg^k, David J. Weir^{e,p,¶} For the LISA Cosmology Working Group

□ Gravitational waves (GWs) produced by several sources in a PT:

$$h^2 \Omega_{\rm gw} = h^2 \Omega_{\phi} + h^2 \Omega_{\rm sw} + h^2 \Omega_{\rm turb}$$

 \square $h^2\Omega_{\phi}$ sourced by collisions of bubble walls

Kosowsky, Turner, Watkins, PRL **69** (1992) 2026; PRD **45** (1992) 4514 Huber, Konstandin, JCAP **0809** (2008) 022 Weir, PRD **93** (2016) 124037 Cutting, Hindmarsh, Weir, PRD **97** (2018) 123513

In general, negligible expect for very strong supercooling $\Rightarrow \alpha >> 1$

□ Gravitational waves (GWs) produced by several sources in a PT:

$$h^2 \Omega_{\rm gw} = h^2 \Omega_{\phi} + h^2 \Omega_{\rm sw} + h^2 \Omega_{\rm turb}$$

 \square $h^2\Omega_{\phi}$ sourced by collisions of bubble walls

Kosowsky, Turner, Watkins, PRL **69** (1992) 2026; PRD **45** (1992) 4514 Huber, Konstandin, JCAP **0809** (2008) 022 Weir, PRD **93** (2016) 124037 Cutting, Hindmarsh, Weir, PRD **97** (2018) 123513

In general, negligible expect for very strong supercooling $\Rightarrow \alpha >> 1$

Such amount of supercooling incompatible with PT completion... Ellis, Lewicki, No, JCAP **1904** (2019) 003

... except for conformal scalar potentials!

Iason Baldes talk coming up!

□ Gravitational waves (GWs) produced by several sources in a PT:

$$h^2 \Omega_{\rm gw} = h^2 \Omega_{\phi} + h^2 \Omega_{\rm sw} + h^2 \Omega_{\rm turb}$$

 \Box $h^2 \Omega_{\rm SW}$ sourced by plasma sounds waves (longitudinal modes)

Hindmarsh, Huber, Rummukainen, Weir, PRL 112 (2014) 041301; PRD 92 (2015) 123009; PRD 96 (2017) 103520
Hindmarsh, PRL 120 (2018) 071301
Konstandin, JCAP 1803 (2018) 047
Hindmarsh, Hijazi, arXiv:1909.10040

Typically dominant signal

GW power spectrum (numerical simulations)

□ Gravitational waves (GWs) produced by several sources in a PT:

$$h^2 \Omega_{\rm gw} = h^2 \Omega_{\phi} + h^2 \Omega_{\rm sw} + h^2 \Omega_{\rm turb}$$

 \square $h^2 \Omega_{\rm SW}$ sourced by plasma sounds waves (longitudinal modes)

Hindmarsh, Huber, Rummukainen, Weir, PRL 112 (2014) 041301; PRD 92 (2015) 123009; PRD 96 (2017) 103520
Hindmarsh, PRL 120 (2018) 071301
Konstandin, JCAP 1803 (2018) 047
Hindmarsh, Hijazi, arXiv:1909.10040

 10^{-8}

_____Ω_{sw}

Typically dominant signal

□ Gravitational waves (GWs) produced by several sources in a PT:

$$h^2 \Omega_{\rm gw} = h^2 \Omega_{\phi} + h^2 \Omega_{\rm sw} + h^2 \Omega_{\rm turb}$$

 \Box $h^2 \Omega_{\rm SW}$ sourced by plasma sounds waves (longitudinal modes)

Hindmarsh, Huber, Rummukainen, Weir, PRL 112 (2014) 041301; PRD 92 (2015) 123009; PRD 96 (2017) 103520
Hindmarsh, PRL 120 (2018) 071301
Konstandin, JCAP 1803 (2018) 047
Hindmarsh, Hijazi, arXiv:1909.10040

Typically dominant signal

GW power spectrum (numerical simulations)

□ Gravitational waves (GWs) produced by several sources in a PT:

$$h^2 \Omega_{\rm gw} = h^2 \Omega_{\phi} + h^2 \Omega_{\rm sw} + h^2 \Omega_{\rm turb}$$

 \Box $h^2 \Omega_{\rm SW}$ sourced by plasma sounds waves (longitudinal modes)

Hindmarsh, Huber, Rummukainen, Weir, PRL **112** (2014) 041301; PRD **92** (2015) 123009; PRD **96** (2017) 103520 Hindmarsh, PRL **120** (2018) 071301 Konstandin, JCAP **1803** (2018) 047 Hindmarsh, Hijazi, arXiv:1909.10040

Typically dominant signal

After $\tau_{\rm sh} \sim L_{\rm f}/\overline{U}_{\rm f}$, fluid becomes nonlinear (shock formation) the characteristic fluid length scale Sound wave GW source shuts-off

$$\frac{d\Omega_{\rm gw,0}}{d\ln(f)} = 0.687 F_{\rm gw,0} K^2 (H_* R_*/c_s) \tilde{\Omega}_{\rm gw} C \left(\frac{f}{f_{\rm p,0}}\right) \left(\times H_* \tau_{\rm sh}\right)$$

 $H_*\tau_{\rm sh} = H_*R_*/K^{1/2} < 1$

Gravitational waves (GWs) produced by several sources in a PT:

$$h^2 \Omega_{\rm gw} = h^2 \Omega_{\phi} + h^2 \Omega_{\rm sw} + h^2 \Omega_{\rm turb}$$

 \square $h^2 \Omega_{sw}$ sourced by plasma sounds waves (longitudinal modes)

Hindmarsh, Huber, Rummukainen, Weir, PRL 112 (2014) 041301; PRD 92 (2015) 123009; PRD 96 (2017) 103520 Hindmarsh, PRL 120 (2018) 071301 Konstandin, JCAP 1803 (2018) 047 Hindmarsh, Hijazi, arXiv:1909.10040

Typically dominant signal

After $\tau_{\rm sh} \sim L_{\rm f}/U_{\rm f}$, fluid becomes nonlinear (shock formation) Sound wave GW source shuts-off

characteristic fluid length scale

Cutting, Hindmarsh, Weir, arXiv:1906.00480

□ Gravitational waves (GWs) produced by several sources in a PT:

$$h^2 \Omega_{\rm gw} = h^2 \Omega_{\phi} + h^2 \Omega_{\rm sw} + h^2 \Omega_{\rm turb}$$

 \Box $h^2 \Omega_{\rm SW}$ sourced by plasma sounds waves (longitudinal modes)

Hindmarsh, Huber, Rummukainen, Weir, PRL **112** (2014) 041301; PRD **92** (2015) 123009; PRD **96** (2017) 103520 Hindmarsh, PRL **120** (2018) 071301 Konstandin, JCAP **1803** (2018) 047 Hindmarsh, Hijazi, arXiv:1909.10040

Typically dominant signal

After $\tau_{\rm sh} \sim L_{\rm f}/\overline{U}_{\rm f}$, fluid becomes nonlinear (shock formation) \Box Sound wave GW source shuts-off

Caprini, Durrer, Servant, JCAP **0912** (2009) 024 Roper Pol, Mandal, Brandenburg, Kahniashvili, Kosowsky, arXiv:1903.08585

- → Turbulent flow expected to develop when sound waves shut-off
- \rightarrow Vorticity can also coexist with sound waves for deflagrations and α > 0.1

Cutting, Hindmarsh, Weir, arXiv:1906.00480

□ Gravitational waves (GWs) produced by several sources in a PT:

$$h^2 \Omega_{\rm gw} = h^2 \Omega_{\phi} + h^2 \Omega_{\rm sw} + h^2 \Omega_{\rm turb}$$

 \Box $h^2 \Omega_{\rm SW}$ sourced by plasma sounds waves (longitudinal modes)

Hindmarsh, Huber, Rummukainen, Weir, PRL **112** (2014) 041301; PRD **92** (2015) 123009; PRD **96** (2017) 103520 Hindmarsh, PRL **120** (2018) 071301 Konstandin, JCAP **1803** (2018) 047 Hindmarsh, Hijazi, arXiv:1909.10040

Typically dominant signal

After $\tau_{\rm sh} \sim L_{\rm f}/\overline{U}_{\rm f}$, fluid becomes nonlinear (shock formation) $$\Box_{\rm f}$$ Sound wave GW source shuts-off

\square $h^2 \Omega_{\mathrm{turb}}$ sourced by plasma turbulence (vortical modes)

Gogoberidze, Kahniashvili, Kosowsky, PRD **76** (2007) 083002 Caprini, Durrer, Servant, JCAP **0912** (2009) 024 Roper Pol, Mandal, Brandenburg, Kahniashvili, Kosowsky, arXiv:1903.08585

→ Turbul Mutimerican to develop when sound waves shut-off
 → Vorticity can also coexist with sound to be fortiging and α > 0.1
 Cutting, Hindmarsh, Weir, arXiv:1906.00480

Duration of sound wave GW source

Initially assumed linear fluid regime lasts approx. a Hubble time

$$\tau_{\rm sh} \gtrsim H_*^1$$

LISA signal to noise

$$SNR = \sqrt{\mathcal{T} \int_{f_{\min}}^{f_{\max}} df \left[\frac{h^2 \Omega_{GW}(f)}{h^2 \Omega_{Sens}(f)}\right]^2}$$

$$h^2 \Omega_{\text{Sens}}(f) = \frac{2\pi^2}{3H_0^2} f^3 S_h(f)$$

PTPlot Tool - D. Weir

LISA signal to noise

$$\mathrm{SNR} = \sqrt{\mathcal{T} \int_{f_{\min}}^{f_{\max}} \mathrm{d}f \left[\frac{h^2 \Omega_{\mathrm{GW}}(f)}{h^2 \Omega_{\mathrm{Sens}}(f)}\right]^2}$$

$$h^2 \Omega_{\text{Sens}}(f) = \frac{2\pi^2}{3H_0^2} f^3 S_h(f)$$

PTPlot Tool - D. Weir

Understanding of vorticity generation is ongoing...

Cutting, Hindmarsh, Weir, arXiv:1906.00480

Detonations ($\alpha > 0.1$)

Deflagrations ($\alpha > 0.1$)

Understanding of vorticity generation is ongoing...

Cutting, Hindmarsh, Weir, arXiv:1906.00480

Deflagrations with large α (> 0.1) generate significant vorticity coexisting with sound waves!

GW generation vs EW Baryogenesis in 1st Order EW Phase Transition

GW generation vs EW Baryogenesis in 1st Order EW Phase Transition

GWs: Sizable plasma bulk motion ⇒ Sizable v EWBG: Velocities ~ 0.05 - 0.1 preferred (efficient transport)

Incompatible?

GW generation vs EW Baryogenesis in 1st Order EW Phase Transition

GW generation vs EW Baryogenesis in 1st Order EW Phase Transition

For detonations:EWBG would notwork(inefficient transport)

GW generation vs EW Baryogenesis in 1st Order EW Phase Transition

GW generation vs EW Baryogenesis in 1st Order EW Phase Transition

"Supersonic EWBG"

BSM: New Physics sizeably coupled to Higgs can drastically change the EWPT nature

▶ New Physics should induce deviations in Higgs couplings

▶ New Physics needed close to EW scale

Some further aspects of the EW Phase Transition

Effective Potential (finite T)

$$V_{\text{eff}}(h,T) = V_0(h) + V_0^{\text{loop}}(h) + V_T(h,T)$$
$$V_1^{T}(h,T) = \frac{T^4}{2\pi^2} \left[\sum_i \pm n_i J_{\pm} \left(\frac{m_i^2(-h_{-})}{T^2} \right) \right]$$

High-T expansion:

$$T^{4}J_{+}\left(\frac{m^{2}}{T^{2}}\right) = -\frac{\pi^{4}T^{4}}{45} + \frac{\pi^{2}m^{2}T^{2}}{12} - \underbrace{\left(\frac{T\pi(m^{2})^{3/2}}{6} - \frac{(m^{4})}{32}\log\frac{m^{2}}{a_{b}T^{2}}\right)}_{G} - \underbrace{\left(\frac{m^{2}}{32}\right)}_{T^{4}J_{-}}\left(\frac{m^{2}}{T^{2}}\right) = \frac{7\pi^{4}T^{4}}{360} - \frac{\pi^{2}m^{2}T^{2}}{24} - \frac{(m^{4})}{32}\log\frac{m^{2}}{a_{f}T^{2}},$$

 $V_{eff}(h,T) \approx (a T^2 - \mu^2) h^2 - E(T) h^3 + \lambda_{eff}(T) h^4$