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Embedding nucleons in an environment

Nucleon-nucleon interaction is
multifaceted
Self-bound nuclei for a variety of
(N, Z)

Bound neutrons are “stable”
Two-component Fermi liquids with a
large (∼ 50%) packing fraction
Nuclei possess a rich dynamics

1 “Long-range” correlations
extending over size of the nucleus
(“low” (E, ~p) or Q2)

2 “Short-range” correlations (SRC)
extending over size of the nucleon
(“high” (E, ~p) or Q2)

SHORT-LONG: SCALE SEPARATION
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Central research questions of this presentation

Is there a comprehensive picture
of nuclear SRC? (Quest to learn
about stylized facts of SRC)

1 Variation with mass A
2 Isospin (flavor) composition of

SRC (pp&nn&pn)
3 Neutron-to-proton asymmetry

(N/Z) dependence of SRC

How to forge links between
nuclear models dealing with SRC
and observables? Recent data
from electron-nucleus scattering
(A(e,e′),A(e,e′N),A(e,e′pX))
Are there connections between
nucleon and quark medium
modifications?

What
You
Measure
Is
All
There
Is

After WYSIATI (“What You See Is All

There Is”) D. Kahneman, “Thinking, Fast

and Slow” (2012).
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Universal physics from short-distance correlations

1 Vicszek model for understanding
emergent collective motion from
local interactions: neighboring
particles tend to align their velocities

2 Competition between an aligning
force and a stochastic force

3 Two different energy (“time”) scales
emerge:

Particles in high-density zones tend
to align their velocities (liquid
phase, SRC nucleons)
Particles in low-density zones move
in a disorderly fashion
(gas phase, IPM nucleons)
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OUTLINE

1 Low-order correlation operator approximation (LCA) to
compute effect of SRC (nuclear structure & nuclear reactions)

2 Apply LCA to the computation of nuclear momentum
distributions (NMDs) for 15 A(N, Z) : 4 ≤ A ≤ 208 ; 1 ≤ N

Z ≤ 1.54
CHECK: Compare LCA results to ab-initio ones

3 Aggegrated effect of SRC and its evolution with A and N/Z
CHECK: a2 data from A(e,e′)

4 Isospin composition of SRC (pp&nn&pn)
CHECK: A(e,e′pp),A(e,e′pn),A(e,e′p) data for 12C, 27Al, 56Fe,
208Pb in “SRC” kinematics

5 N/Z asymmetry dependence of SRC
CHECK: A(e,e′pp),A(e,e′pn),A(e,e′p),A(e,e′n) data for 12C,
27Al, 56Fe, 208Pb in “SRC” kinematics

6 Size and generative mechanisms of the EMC effect
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Single-nucleon momentum distributions

Probability to find a nucleon with momentum p

n[1](p) =

∫
d2Ωp

(2π)3

∫
d3~r1 d3~r ′1 d3(A−1){~r2−A}e−i~p·(~r ′1−~r1)×Ψ∗(~r1,~r2−A)Ψ(~r ′1,~r2−A).

Simplest model: Fermi gas (exclusion principle):
n[1](p) ∼ θ (pF − p) pF ≈ 250 MeV/c
Sophisticated models: Ab-initio quantum Monte-Carlo

Variational quantum
Monte-Carlo
calculations from the
Argonne group:
PRC96,024326 (2017);
arXiv:1903.12587
Computationally very
expensive and no
predictions for A > 40
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Single-nucleon momentum distributions in LCA

Single-nucleon momentum
distribution n[1](p)

n[1](p) =
A

(2π)3

∫
d2Ωp

∫
d3~r1 d3~r ′1 d3(A−1){~r2−A}

× e−i~p·(~r ′1 −~r1)
Ψ∗(~r1,~r2−A)Ψ(~r ′1 ,~r2−A)

Universal correlation operators

|Ψ〉 = Ĝ |Φ〉 /
√
〈Φ| Ĝ†Ĝ |Φ〉 ,

G: Central gc(r), spin-isospin fστ (r),
tensor ftτ (r) correlations
Truncation at O

(
G2
)
: SRC part of

n[1](p) = 2-body contributions
Quantify the pp, nn, pn and np
contribution to n[1](p)
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n[1](p) in LCA: from light to heavy nuclei

LCA: JPG42 (2015)055104 & PLB 792 (2019)21 & arXiv:1907.07259

1 Two distinct momentum regimes (“IPM” and “SRC”)
2 Momentum dependence of fat tail of n[1] is “universal”
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Probability distribution P(p) ∼ p2n[1](p)
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Probability distribution P(p) ∼ p2n[1](p)
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Probability distribution P(p) ∼ p2n[1](p)
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Cumulative momentum distributions
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Indirect evidence of SRC: only a fraction of the
nucleons are IPM like

Slide courtesy of Arnau Rios
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Ratios of probability distributions: PA(p)/Pd(p)

PA(p) = PA
pp(p) + PA

pn(p)
︸ ︷︷ ︸
PA

p (p) (proton part)

+ PA
nn(p) + PA

np(p)
︸ ︷︷ ︸
PA

n (p) (neutron part)

.

0 1 2 3 4 5

Nucleon Momentum p
[
fm−1

]
0

1

2

3

4

5

6

P
A

(p
)
/
P
d
(p

)

FERMI
MOTION

TOTAL

0 1 2 3 4 5

Nucleon Momentum p
[
fm−1

]
0

1

2

3

4

5

6

( P
A pn

(p
)

+
P
A np

(p
))

/
P
d
(p

)
pn+np

FERMI
MOTION

N=Z:4He, 12C, 16O, 40Ca
N 6=Z:9Be,27Al, 40Ar, 48Ca, 56Fe, 63Cu, 84Kr, 108Ag, 124Xe, 197Au, 208Pb

(Ghent University) Getting closer to the hard core IIHE Seminar, ULB-VUB 12 / 32



Ratios of probability distributions: PA(p)/Pd(p)

PA(p) = PA
pp(p) + PA

pn(p)
︸ ︷︷ ︸
PA

p (p) (proton part)

+ PA
nn(p) + PA

np(p)
︸ ︷︷ ︸
PA

n (p) (neutron part)

.

0 1 2 3 4 5

Nucleon Momentum p
[
fm−1

]
0.0

0.5

1.0

1.5

2.0

P
A nn

(p
)
/
P
d
(p

)

nn

0 1 2 3 4 5

Nucleon Momentum p
[
fm−1

]
0.0

0.5

1.0

1.5

2.0

P
A pp

(p
)
/
P
d
(p

)
pp

4He
9Be
12C
16O
27Al

40Ar
40Ca
48Ca
56Fe
63Cu

84Kr
108Ag
124Xe
197Au
208Pb

N=Z:4He, 12C, 16O, 40Ca
N 6=Z:9Be,27Al, 40Ar, 48Ca, 56Fe, 63Cu, 84Kr, 108Ag, 124Xe, 197Au, 208Pb

(Ghent University) Getting closer to the hard core IIHE Seminar, ULB-VUB 12 / 32



Measurable signal of the A-to-d scaling of the
momentum distributions?

In selected kinematics the A-to-d
(e,e′) cross sections approximately
scale!

SRC SCALING FACTORS
THEORY:

a2(A) =

∫
p>2 fm−1 dpPA(p)∫
p>2 fm−1 dpPd(p)

EXPERIMENT:

aexp
2 (A) = 2

A
σA(e,e′)
σd(e,e′)

(
1.5 . x . 1.9 ; Q2 ≈ 2 GeV2

)

Aggregated impact of
SRC on a nucleon in
A(N, Z) relative to the
deuteron!
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a2(A/2H) from A(e,e′) at xB & 1.5 and LCA

Aggregated quantitative effect of SRC in A relative to d

a2(A) =

∫
p>2 fm−1 dpPA(p)∫
p>2 fm−1 dpPd(p)

; aexp
2 (A) = 2

A
σA(e,e′)
σd(e,e′)

(
1.5 . x . 1.9 ; Q2 ≈ 2 GeV2

)
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a2(A/2H) from A(e,e′) at xB & 1.5 and LCA
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Nuclear momentum distribution: pair composition

Pair composition: n[1](p) ≡ n[1]
pp(p) + n[1]

pn(p)︸ ︷︷ ︸
n[1]

p (p) (proton part)

+ n[1]
nn(p) + n[1]

np(p)︸ ︷︷ ︸
n[1]

n (p) (neutron part)

-SRC pair fractions

rpp(p) =
n[1]

pp(p)

n[1](p)

-rNN are
momentum
dependent
-DATA: O. Hen et al.,
Science346(2014)
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Pair composition of SRC: LCA versus experiment
(Science,2014)

Reports 

/ http://www.sciencemag.org/content/early/recent / 16 October 2014 / Page 1 / 10.1126/science.1256785 

Many-body systems composed of interacting fermions are common in 

nature, ranging from high-temperature superconductors and Fermi liq-

uids to atomic nuclei, quark matter and 

neutron-stars. Particularly intriguing are 

systems that include a short-range in-

teraction that is strong between unlike 

fermions and weak between fermions of 

the same kind. Recent theoretical ad-

vances show that even though the un-

derlying interaction can be very 

different, these systems share several 

universal features (1–4). In all these 

systems, this interaction creates short-

range correlated (SRC) pairs of unlike 

fermions with a large relative momen-

tum (krel > kF) and a small center of 

mass (CM) momentum (ktot < kF), 

where kF is the Fermi momentum of the 

system. This pushes fermions from low 

momenta (k < kF where k is the fermion 

momentum) to high momenta (k > kF), 

creating a “high momentum tail.”

SRC pairs in atomic nuclei have 

been studied using many different reac-

tions, including pickup, stripping and 

electron and proton scattering. The 

results of these studies highlighted the 

importance of correlations in nuclei, 

which lead to a high momentum tail 

and decreased occupancy of low-lying 

nuclear states (5–13).

Recent experimental studies of bal-

anced (symmetric) interacting Fermi 

systems, with an equal number of fer-

mions of the two kinds, confirmed these 

predictions of a high momentum tail 

populated almost exclusively by pairs 

of unlike fermions (8–11, 14–16). 

These experiments were done using 

very different Fermi systems: protons 

and neutrons in atomic nuclei and two-

spin state ultra-cold atomic gasses. 

These systems span more than 15 or-

ders of magnitude in Fermi energy from 

106 to 10−9 eV and exhibit different 

short-range interactions [predominantly 

a strong tensor interaction in the nucle-

ar systems (8, 9, 17, 18), and a tunable 

Feshbach resonance in the atomic sys-

tem (14, 15)]. For cold atoms Ref. (1–

3) showed that the momentum density 

decreases as C/k4 for large k. The scale 

factor, C, is known as Tan’s contact and 

describes many properties of the system 

(4). Similar pairing of nucleons in nu-

clei with k > kF was also predicted in (19).

Here, we extend these previous studies to imbalanced (asymmetric) 
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The atomic nucleus is composed of two different kinds of fermions, protons and neutrons. If the 

protons and neutrons did not interact, the Pauli exclusion principle would force the majority 

fermions (usually neutrons) to have a higher average momentum. Our high-energy electron 

scattering measurements using 
12

C, 
27

Al, 
56

Fe, and 
208

Pb targets show that, even in heavy neutron-

rich nuclei, short-range interactions between the fermions form correlated high-momentum neutron-

proton pairs. Thus, in neutron-rich nuclei, protons have a greater probability than neutrons to have 

momentum greater than the Fermi momentum. This finding has implications ranging from nuclear 

few body systems to neutron stars and may also be observable experimentally in two-spin state, 

ultra-cold atomic gas systems.
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Fig. 3. The extracted fractions of np (top) and pp 
(bottom) SRC pairs from the sum of pp and np pairs in 
nuclei. The green and yellow bands reflect 68% and 95% 
confidence levels, respectively (9). np-SRC pairs dominate 
over pp-SRC pairs in all measured nuclei. 

Fig. 2. Illustration of the CLAS detector with a reconstructed two-proton knockout event. For clarity, not all CLAS 
detectors and sectors are shown. The inset shows the reaction in which an incident electron scatters from a proton-proton pair 
via the exchange of a virtual photon. The human figure is shown for scale. 

LCA predicts that
≈90% of correlated
pairs is “pn”, and
≈5% is “pp”
(UNIVERSAL: A
independent)
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Pair composition of SRC: LCA versus experiment
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Fourth moment of n[1](p) from LCA

Fourth moment of n[1](p): 〈Tp〉 = 1
2Mp

∫ Λ
0 dp p4

[
n[1]

pp(p) +n[1]
pn(p)

]
∫ Λ

0 dp p2
[
n[1]

pp(p) + n[1]
pn(p)

]
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Nuclear Physics of Neutron Stars: Physics Today
July 2019

Jorge Piekarewicz and Farrukh J. Fattoyev

Despite a length-scale

difference of 18 orders of 

magnitude, the internal 

structure of neutron stars 

and the spatial distribution of

neutrons in atomic nuclei are

profoundly connected.

NEUTRON-RICH MATTER

30 PHYSICS TODAY | JULY 2019

in

and

on

The explosive merging of two neutron stars.

(NASA’s Goddard Space Flight Center/CI Lab.)

&RQWHQW�LV�FRS\ULJKW�SURWHFWHG�DQG�SURYLGHG�IRU�SHUVRQDO�XVH�RQO\���QRW�IRU�UHSURGXFWLRQ�RU�UHWUDQVPLVVLRQ�
)RU�UHSULQWV�SOHDVH�FRQWDFW�WKH�3XEOLVKHU�

Medium modifications as a function of neutron-to-proton ratio
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Nuclear Physics and Neutron Stars

Isospin asymmetry

 13

Nuclear “trencadís”

N=Z, !=0

Symmetric matter

!=1

Neutron matter

!"0

Asymmetric nuclei !#1

Polaron

β = N − Z
N + ZNuclei

Neutron stars

Lead 208
!=(126-82)/208=0.2

Experimentally unknown!

η

η

η

η

η
η

Slide courtesy of Arnau Rios



SRC induce inversion of kinetic energy sharing in
neutron-rich nuclei

Ratio
〈
Tn = p2

n/(2Mn)
〉
/
〈
Tp = p2

p/(2Mp)
〉

from computed n[1](p)

After correcting for
SRC in LCA,
minority
component has
largest kinetic
energy (strongly
depends on N/Z)
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Measurable signals of kinetic energy inversion

Nature 560, 617-621(2018) (CLAS Collaboration, Jefferson Lab):
A(e,e′p) and A(e,e′n) at high and low nucleon momenta
A(e,e′p) and A(e,e′n) can be connected to probabilities to
find nucleons in certain momentum ranges

LETTER
https://doi.org/10.1038/s41586-018-0400-z

Probing high-momentum protons and neutrons in 
neutron-rich nuclei
The CLAS Collaboration*

The atomic nucleus is one of the densest and most complex 
quantum-mechanical systems in nature. Nuclei account for nearly 
all the mass of the visible Universe. The properties of individual 
nucleons (protons and neutrons) in nuclei can be probed by 
scattering a high-energy particle from the nucleus and detecting this 
particle after it scatters, often also detecting an additional knocked-
out proton. Analysis of electron- and proton-scattering experiments 
suggests that some nucleons in nuclei form close-proximity 
neutron–proton pairs1–12 with high nucleon momentum, greater 
than the nuclear Fermi momentum. However, how excess neutrons 
in neutron-rich nuclei form such close-proximity pairs remains 
unclear. Here we measure protons and, for the first time, neutrons 
knocked out of medium-to-heavy nuclei by high-energy electrons 
and show that the fraction of high-momentum protons increases 
markedly with the neutron excess in the nucleus, whereas the 
fraction of high-momentum neutrons decreases slightly. This effect 
is surprising because in the classical nuclear shell model, protons 
and neutrons obey Fermi statistics, have little correlation and mostly 
fill independent energy shells. These high-momentum nucleons 
in neutron-rich nuclei are important for understanding nuclear 
parton distribution functions (the partial momentum distribution 
of the constituents of the nucleon) and changes in the quark 

distributions of nucleons bound in nuclei (the EMC effect)1,13,14. 
They are also relevant for the interpretation of neutrino-oscillation 
measurements15 and understanding of neutron-rich systems such 
as neutron stars3,16.

Since the 1950s, the independent-particle shell model has been an 
indispensable guide for understanding nuclei17. In this model, nucleons 
move independently in well defined quantum orbits (shells) with low 
momentum, k (k < kF, where kF is the Fermi momentum), similarly 
to electrons in atoms. The potential in which the nucleons move is 
the average nuclear field created by their mutual strong interactions. 
Although successful in making many important predictions, such as 
shell closures and the spins and parities of nuclear ground and excited 
states, this textbook picture of the nucleus is incomplete: electron- 
scattering experiments in nuclei ranging from lithium to lead measured 
only about 60%–70% of the expected number of protons in each shell18. 
Newer shell-model-type calculations include the effects of long-range 
correlations, increasing this fraction to about 80%19.

Modern superconducting accelerators—with high energy, high 
intensity and high duty factor—enable experiments that use scattering 
reactions to resolve the structure and dynamics of individual nucleons 
and nucleon pairs in nuclei. The resolving power of a measurement is 
determined by its momentum transfer, and its interpretation relies on 

*A list of authors and their affiliations appears at the end of the paper.

Fig. 1 | CLAS spectrometer. Two segments of the CLAS spectrometer. 
Electrons travelling with energies of up to 6 GeV hit nuclei, knocking 
out individual protons and neutrons. The momenta of the scattered 
electrons and knocked-out protons are reconstructed by analysing 
their trajectories as they bend in a toroidal magnetic field. The neutron 

momenta are deduced from their time of flight until they interact with 
the electromagnetic calorimeter. Inset, the almost-spherical CLAS. The 
electron beam travels along the grey pipe, hitting a target near the centre of 
the spectrometer.
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© 2018 Springer Nature Limited. All rights reserved.
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Weight of neutrons relative to protons in n[1](p)

IPM:
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Weight of neutrons relative to protons in n[1](p)

IPM:
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Relative weight of
the protons and
neutrons is very
different in “IPM”
and “SRC” regions!

1 IPM: 0.93 N
Z + 0.07

2 SRC: 0.29 N
Z + 0.71
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N/Z asymmetry dependence of the SRC?

Superratio of A(e,e′N) for A=Al, Fe, Pb relative to C(e,e′N)
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N/Z asymmetry dependence of the SRC?

Superratio of A(e,e′N) for A=Al, Fe, Pb relative to C(e,e′N)
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Quark-gluon structure of a bound nucleon

EMC effect (1980s, CERN): quarks work differently in nucleus
Is the quark-gluon structure of protons and neutrons equally
modified?
Variations across nuclei? Asymmetric matter?
Generative mechanism for the medium modifications of the
quark structure?
Recent suggestion: EMC effect is connected to “SRC pairs”
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Quark modification & nucleon pairs

Short-distance
neutron-proton pairs
may be responsible
for the bulk of the EMC
effect
Alternate views: PRL
123, 042501 (2019)

DIS A(e,e′) & d(e,e′) at 0.2 . x . 0.7

− dREMC(A, x)

dx
= −

d
(

2FA
2 (x ,Q2)

AFd
2 (x ,Q2)

)

dx
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Quark modification & nucleon pairs

Short-distance
neutron-proton pairs
may be responsible
for the bulk of the EMC
effect
Alternate views: PRL
123, 042501 (2019)

DIS A(e,e′) & d(e,e′) at 0.2 . x . 0.7

− dREMC(A, x)

dx
= −

d
(

2FA
2 (x ,Q2)

AFd
2 (x ,Q2)

)

dx

Size of EMC effect depends on A(N, Z)

Isospin dependence of EMC effect?
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Predict size of EMC effect and learn about
generative mechanisms

Per-proton probability to find a high-momentum proton in
A(N, Z) relative to D: A-to-D medium modifications

ap
2 (A) = lim

high p

A PA
p (p)

Z PD
p (p)

Can be computed in LCA!
Size of EMC effect is connected to “SRC” nucleons

dREMC(A,x)
dx = m1




Zap
2 (A) + Nan

2 (A)

A︸ ︷︷ ︸
ISOSCALAR

−1




+ m2




Zap
2 (A)− Nan

2 (A)

A︸ ︷︷ ︸
ISOVECTOR




Connects measured size of EMC effect to computed SRC
scaling factors!

(Ghent University) Getting closer to the hard core IIHE Seminar, ULB-VUB 27 / 32



Proton and neutron modifications in nuclei

Proton & neutron SRC scaling factors
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Size of the EMC effect
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Meausured size of the EMC effect displays
stronger variations across A(N, Z) than
SRC scaling factors!

LCA (s): isospin
blind generative
mechanisms
LCA (s+v): also
isospin-dependent
generative
mechanisms
flavor dependent
nuclear effects
influence the size of
the EMC effect
u and d quark
distributions are
affected differently
by the medium
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SUMMARY

SRC induced spatio-temporal fluctuations
in nuclei are measurable, are significant
and are quantifiable
LCA: suited for systematic studies of SRC
contributions to n[1](p) and SRC-sensitive
reactions

1 Reasonable predictions for a2 factors
2 A ≤ 40: LCA predictions for fat tails in line

with QMC ones
3 Natural explanation for the “universal”

behavior of the fat tails of NMD

Distinct isospin and N/Z SRC effects: in line
with A(e,e′pN) findings
EMC effect: connections between nucleon
SRC and quark medium modifications
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