CR PROPAGATION AND MAGNETIC FIELDS

P. Tinyakov

Université Libre de Bruxelles (ULB), Brussels

COSPA, ULB, 4 October 2019

1 Propagation of CR in Magnetic Fields

2 Extragalactic fields

3 Galactic field

・ロト・聞 ・ 言 ・ 小田 ・ 人口 >

1 Propagation of CR in Magnetic Fields

2) Extragalactic fields

3 Galactic field

4 Summary

Deflections in magnetic fields

- In the relativistic limit, deflections only depend on rigidity Z/E
- Regular field

$$heta \sim 0.52^{\circ} Z \, \left(rac{E}{10^{20} \mathrm{eV}}
ight)^{-1} \left(rac{R}{1 \mathrm{kpc}}
ight) \left(rac{B_{\perp}}{10^{-6} \mathrm{G}}
ight)$$

Random field

$$\theta \sim 1.8^{\circ} Z \left(\frac{E}{10^{20} \mathrm{eV}}\right)^{-1} \left(\frac{l_c R}{50 \mathrm{Mpc}^2}\right)^{1/2} \left(\frac{B}{10^{-9} \mathrm{G}}\right)$$

Need to understand magnetic fields

Time delays

Deflections imply time delays

$$L_1 = 1 \text{ kpc} \rightarrow \Delta t = 2 \text{ yr}$$

 $L = 50 \text{ Mpc} \rightarrow \Delta t = 10^5 \text{ yr}$

Transient sources are seen as steady

1 Propagation of CR in Magnetic Fields

2 Extragalactic fields

3 Galactic field

4 Summary

<ロ><()</p>

Extragalactic fields

- Outside of galaxies, fields have only been measured in some galaxy clusters. Large values O(µG) were found in cluster cores, coherent over distances of order of core size.
- These fields are irrelevant for deflections (but still produce time delays!) since angular size of cluster cores as seen from Earth is small.
- Fields in filaments and sheets are not known, only theoretical estimates exist. Likely also irrelevant for deflections, *unless we are inside a filament ourselves*.
- Fields in voids are not measured either, but are constrained from observations.

Extragalactic fields

- Outside of galaxies, fields have only been measured in some galaxy clusters. Large values O(µG) were found in cluster cores, coherent over distances of order of core size.
- These fields are irrelevant for deflections (but still produce time delays!) since angular size of cluster cores as seen from Earth is small.
- Fields in filaments and sheets are not known, only theoretical estimates exist. Likely also irrelevant for deflections, *unless we are inside a filament ourselves*.
- Fields in voids are not measured either, but are constrained from observations.

Extragalactic fields

- Outside of galaxies, fields have only been measured in some galaxy clusters. Large values O(µG) were found in cluster cores, coherent over distances of order of core size.
- These fields are irrelevant for deflections (but still produce time delays!) since angular size of cluster cores as seen from Earth is small.
- Fields in filaments and sheets are not known, only theoretical estimates exist. Likely also irrelevant for deflections, *unless we are inside a filament ourselves*.
- Fields in voids are not measured either, but are constrained from observations.

Fields in voids: upper bounds

- Strongest bounds come from Faraday rotation measures *Pshirkov, PT, Urban, PRL 116 (2016) 191302*
- Polarized light passing through magnetized medium containing density of free electrons n_e changes polarization direction by the angle proportional to (wavelength)². The coefficient is called rotation measure (RM); specifically,

$$\mathrm{RM} = \frac{e^3}{2\pi m_e^2} \int n_e(l) B_{||}(l) \, dl$$

Note:

- (i) only parallel component of *B* enters
- (ii) electron density is required to estimate B

Fields in voids: upper bounds

- \odot The NVSS catalog contains \sim 40 000 RMs of extragalactic sources.
- In the presence of extragalactic MFs the rotation measures are expected to systematically grow with redshift. Observations do not demonstrate such growth. ⇒ constraints on MF

Extragalactic fields: lower bound

Interestingly, there exists also a lower bound

Neronov, Vovk, Science 328(2010)73

• This bound comes from non-observation of cascade photons in the spectra of TeV gamma-ray sources. This nonobservation is explained by the deflection of cascading e^+ , e^- in the extragalactic magnetic field, hence lower bound.

$B \ge 3 \times 10^{-16} \mathrm{G}$

Numerical simulations

Some insight may come from simulations:

Dolag, Grasso, Springel, Tkachev 2003; Sigl, Miniati, Enslin 2004

(contradict each other!)

 $E = 4 \times 10^{19} \text{ eV}$

• Fields in voids: $\sim 10^{-12}$ G Fields in filaments: $\sim 10^{-10}$ G

Outline

1 Propagation of CR in Magnetic Fields

2) Extragalactic fields

3 Galactic field

4 Summary

- Galactic field is usually considered as consisting of two components:
 - Regular component. Coherent over scales ≥ 1 kpc. Origin is not really understood; probably dynamo mechanism (?).
 - Turbulent component. Larger strength but smaller coherence length. Originates from supernova explosions and other local processes.

Regular field is likely to dominate UHECR deflections.

- Galactic field is usually considered as consisting of two components:
 - Regular component. Coherent over scales ≥ 1 kpc. Origin is not really understood; probably dynamo mechanism (?).
 - Turbulent component. Larger strength but smaller coherence length. Originates from supernova explosions and other local processes.
- Regular field is likely to dominate UHECR deflections.

Is coherent magnetic field observed in other galaxies?

- Is coherent magnetic field present in the Milky way?
- Faraday rotation measures of \sim 40 000 extragalactic sources (NVSS catalog) in Galactic coordinates:

Taylor, Stil and Sunstrum, 2009, ApJ, 702, 1230

- Is coherent magnetic field present in the Milky way?
- Faraday rotation measures of \sim 40 000 extragalactic sources (NVSS catalog) in Galactic coordinates:

Taylor, Stil and Sunstrum, 2009, ApJ, 702, 1230

Fig. 1.— An all-sky equal-area Aitoff RM plot of the smoothed RM's from our 2257-source compilation of extragalactic source RM's. The smoothing method is described in the text.

Kronberg, Newton-McGee' 2009

 The RM data can be reasonably well fitted by a model containing both disk and halo components

Pshirkov, P.T., Kronberg, Newton-McGee, 2011 ApJ 738 192

 The RM data can be reasonably well fitted by a model containing both disk and halo components

Pshirkov, P.T., Kronberg, Newton-McGee, 2011 ApJ 738 192

Model vs. observations

Basic model parameters:

- Magnitude of disk field around the Earth: 2µG
- Pitch: -5°
- Thickness of the disk: 1 kpc
- Magnitude of the halo: 4µG
- Height of the halo above disk: 1.3 kpc
- Typical uncertainties: $\sim 30\%$

A more elaborate model of Galactic MF

Jansson, Farrar, Astrophys.J. 757 (2012) 14

New ingredients:

- Inclusion of WMAP polarization data. [Note however: this adds one more unknown, the relativistic electron density.]
- More detailed Galactic arm structure (more realistic?)
- Additional X-shaped component as inspired by observations of other galaxies

JF model

Galactic arms structure:

Slices at ± 10 pc parallel to the Galactic plane

Additional X-shaped component:

Cut perpendicular to GP.

- Similar magnitude of field in two models, but different structure (notably, the X-shaped field)
- =>similar magnitude, but different pattern of deflections

Deflections: PT2011

 $E = 4 \times 10^{19}$ eV, protons

Deflections: JF2012

 $E = 4 \times 10^{19}$ eV, protons

MF from pulsar data

MG in the Galactic disk can be inferred from pulsar RMs.

Han et al, MNRAS 486(2019)4275 Han et al, ApJS 234(2018)11

Random component

 MF has been measured in detail in small selected patches on the sky. One may convert these measurements into CR deflections.

PT, Tkachev, Astropart.Phys. 24 (2005) 32-43

• Conclusion: in all cases deflections in the random field is smaller than that in the regular field by the factor $R \sim 0.3 - 0.03$.

Random component

 Altermantively, one may relate variation of the RM in a small patch directly to random CR deflections. NVSS catalog of RMs gives then the sky map of random deflections.

Pshirkov, PT, Urban, MNRAS 436 (2013) 2326

Outline

1 Propagation of CR in Magnetic Fields

2) Extragalactic fields

3 Galactic field

Summary

• ... uncertainties, uncertainties, uncertainties ...

- Deflections in the extragalactic MF are likely to be small. Caveat: we may live inside a filament of the large-scale structure where fields can reach $10^{-8} - 10^{-7}$ G with the correlation length $\mathcal{O}(Mpc)$. Then deflections may be large.
- Deflections of protons in GMF are dominated by the regular field and may be of the order $2 6^{\circ}$ at energy $E = 10^{20}$ eV depending on the direction
- →Charge-particle astronomy may be possible only at highest energies, and only if UHECR are protons

Summary

- ... uncertainties, uncertainties, uncertainties ...
- Deflections in the extragalactic MF are likely to be small. Caveat: we may live inside a filament of the large-scale structure where fields can reach $10^{-8} - 10^{-7}$ G with the correlation length $\mathcal{O}(Mpc)$. Then deflections may be large.
- Deflections of protons in GMF are dominated by the regular field and may be of the order $2 6^{\circ}$ at energy $E = 10^{20}$ eV depending on the direction
- →Charge-particle astronomy may be possible only at highest energies, and only if UHECR are protons