Multivariate analysis results from the Telescope Array

Mikhail Kuznetsov, Grigory Rubtsov and Yana Zhezher

for the Telescope Array collaboration

COSPA-2019 Brussels October 4, 2019

Supported by Russian Science Foundation

- Motivation for multivariate analysis in cosmic-ray experiments
- Features of multivariate analysis in Telescope Array
- TA MVA results & prospects
 - UHECR mass composition with TA surface detector
 - Prospect for UHECR mass composition anisotropy with TA SD
 - Search for UHE photons with TA SD
 - Search for UHE neutrinos with TA SD

Problems of UHECR

UHECR mass composition?

Standard approach:

 To study X_{max} distibution of showers

UHECR sources?

Standard approaches:

- To study correlation of events with sources catalogs
- To study cross-correlations of events
- To fit UHECR spectrum and/or composition with source models

Problems of UHECR

UHECR Mass composition?

Complementary approach:

 To study full imprints of showers in surface detector

UHECR sources?

Complementary approaches:

- To search for UHE gamma signal
- To search for UHE neutrino signal

Multivariate analysis is needed!

Mass composition from FD

- Lower statistics
- Lower flexibility of analysis: only one observable - X_{max}
 - Harder to go beyond (In A) analysis
- Lower dependency of hadronic interaction model

Mass composition from SD

- Higher statistics (especially at highest energies)
 - A way to composition anisotropy study
- Higher flexibility of analysis: many observables
 - Easier to test multi-component models
- Higher dependency on hadronic interaction model
 - Possibly could be reduced with machine learning

Correlation analysis & sources models fits

- Events arrival directions are smeared by magnetic fields
- High uncertainty in primary mass composition estimation (i.e. the strength of smearing is highly uncertain)
- Search for DM decay is difficult due to large background
- Higher statistics

Multimessenger analysis

- Events arrival directions does not depend on magnetic fields
- Secondary γ and ν fluxes for various primaries differ significantly
 - A way to distinguish primaries (but uncertainty due to propagation effects)
- UHE γ flux is the most sensitive tool for DM decay search
- Lower statistics (no γ's or ν's were found up to now :)
 - The sensitivity could be increased with machine learning

Telescope Array experiment

Largest UHECR statistics in the Northern Hemisphere

Sample of TA surface detector event

Photon-induced showers:

- arrive younger
- contain less muons
- multiple SD observables affected: front curvature, Area-over-peak, $\chi^2/d.o.f.$, etc.

List of relevant SD observables for MVA

- 1. Zenith angle, θ ;
- 2. Signal density at 800 m from the shower core, S_{800} ;
- 3. Linsley front curvature parameter, a;
- 4. Area-over-peak (AoP) of the signal at 1200 m;

Pierre Auger Collaboration, Phys.Rev.Lett. 100 (2008) 211101

- 5. AoP LDF slope parameter;
- 6. Number of detectors hit;
- 7. N. of detectors excluded from the fit of the shower front;
- 8. $\chi^2/d.o.f.$;
- 9. $S_b = \sum S_i \times r^b$ parameter for b = 3 and b = 4.5;

Ros, Supanitsky, Medina-Tanco et al. Astropart.Phys. 47 (2013) 10

- 10. The sum of signals of all detectors of the event;
- 11. Asymmetry of signal at upper and lower layers of detectors;
- 12. Total n. of peaks within all FADC traces;
- 13. N. of peaks for the detector with the largest signal;
- 14. N. of peaks present in the upper layer and not in lower;
- 15. N. of peaks present in the lower layer and not in upper;

Multivariate analysis

How to deal with this large amount of observables?

Machine learning for multivariate analysis.

- The Boosted Decision Trees (BDT) technique is used to build event classifier based on multiple observables.
- root::TMVA is used as a stable implementation.

PoS ACAT 040 (2007), arXiv:physics/0703039

- BDT is trained with two Monte-Carlo sets: signal and background*
- BDT classifier is used to convert the set of observables of each event to a number ξ ∈ [−1 : 1]
- \triangleright ξ is available for one-dimensional analysis.

* Depending on a task the signal could be either γ , ν or *Fe* events and the background is *p* events.

Multivariate analysis

How to deal with this large amount of observables? Machine learning for multivariate analysis.

- The Boosted Decision Trees (BDT) technique is used to build event classifier based on multiple observables.
- root::TMVA is used as a stable implementation.

PoS ACAT 040 (2007), arXiv:physics/0703039

- BDT is trained with two Monte-Carlo sets: signal and background*
- BDT classifier is used to convert the set of observables of each event to a number ξ ∈ [−1 : 1]
- ξ is available for one-dimensional analysis.
- * Depending on a task the signal could be either γ , ν or *Fe* events and the background is *p* events.

TA MVA Composition analysis

 Two-component approximation is used, first approximation of atomic mass is

 $(\ln A)^{(1)} = \epsilon_{p} \times \ln (M_{p}) + \epsilon_{Fe} \times \ln (M_{Fe})$

root::TFractionFitter is used for binned template fitting.

Telescope Array, PRD 99, 022002 (2019)

TA MVA Composition analysis: results

 $\langle \ln A \rangle = 2.0 \pm 0.1(stat.) \pm 0.44(syst.)$

Consistent with Auger SD results, qualitatively consistent with TA FD given hadronic model systematics and systematics of FD

TA MVA composition analysis: hadronic model systematic

Comparison between QGSJet II-03 and QGSJet II-04 models:

 $\delta \ln A_{hadr.} = 0.4$

Possibly solvable with more hadronic models input and advanced machine learning techniques

TA MVA composition analysis: prospect for anisotropy

Test of sensitivity with MC sets

Telescope Array, PoS(ICRC2019)494

- Isotropic set with data composition (p + Fe mixture).
- Set with data composition and light "hotspot" at energies log E > 19.2.
- Set with data composition and heavy "hotspot" at energies log E > 19.2.

Anisotropy test: HEALPix maps comparison

How to take into account large-scale gradients of ξ ?

Spatial distribution of average ξ may be pixelized: HEALPix

Gorski et. al., Astrophys.J, 622, 759, 2005

- HEALPix transforms skymap into one-dimensional array of pixels
- It is suitable to perform χ^2 -test between two maps
- We split each skymap into 786 pixels (mean resolution is 7.3°) to have enough statistics in each pixel

Results

▶ Light "hotspot" vs. isotopic composition: $\chi^2/d.o.f. = 1.47, p = 6.9 \times 10^{-5} \Rightarrow 3.8\sigma$ ▶ Heavy "hotspot" vs. isotopic composition: $\chi^2/d.o.f. = 1.63, p = 6.3 \times 10^{-7} \Rightarrow 4.8\sigma$

Anisotropy test: HEALPix maps comparison

How to take into account large-scale gradients of ξ ?

Spatial distribution of average ξ may be pixelized: HEALPix

Gorski et. al., Astrophys.J, 622, 759, 2005

- HEALPix transforms skymap into one-dimensional array of pixels
- It is suitable to perform χ^2 -test between two maps
- We split each skymap into 786 pixels (mean resolution is 7.3°) to have enough statistics in each pixel

Results

► Light "hotspot" vs. isotopic composition: $\chi^2/d.o.f. = 1.47, p = 6.9 \times 10^{-5} \Rightarrow 3.8\sigma$

► Heavy "hotspot" vs. isotopic composition: $\chi^2/d.o.f. = 1.63, p = 6.3 \times 10^{-7} \Rightarrow 4.8\sigma$

TA MVA Search for diffuse UHE photons

- The photon candidates are selected using the cut on ξ: ξ > ξ_{cut}(θ)
- Cut is optimized in each energy range using proton and photon Monte-Carlo
- The null-hypothesis is assumed for the optimization (all events are protons)

TA MVA Search for diffuse UHE photons

Effective exposure is estimated with γ MC assuming E^{-2} primary spectrum

E_{γ}	quality cuts	ξ-cut	A _{eff} km ² sr yr
10 ^{18.0}	6.5%	9.8%	77
10 ^{18.5}	19.9%	10.6%	255
10 ^{19.0}	43.6%	16.2%	852
10 ^{19.5}	52.0%	37.2%	2351
10 ^{20.0}	64.2%	52.3%	4055

Results: diffuse UHE photons flux limits

models from J. Alvarez-Muniz et al. EPJ Web Cong. 53, 01009 (2013)

E_{γ} >, eV	10 ^{18.0}	10 ^{18.5}	10 ^{19.0}	10 ^{19.5}	10 ^{20.0}
γ candidates	1	0	0	0	1
$F_{\gamma} <$	0.067	0.012	0.0036	0.0013	0.0013

TA MVA search for point sources of UHE photons

- Independent search for γ in each skymap direction
- The angular size of the each search region is equal to the γ angular resolution:

$E_{\gamma} \ge$, eV	10 ^{18.0}	10 ^{18.5}	10 ^{19.0}	10 ^{19.5}	10 ^{20.0}
ang.res.	3.00°	2.92°	2.64°	2.21°	2.06°

The skymap is pixelized into 12288 directions with HEALpix (7868 in TA field of view)

Optimisation of MVA-cut for γ flux upper-limit:

- Assume the flux consists of protons only (null hypothesis): *F*_{total} = *F*_p
- Optimize the ξ-cut separately for the best upper-limit in each direction using MC *p* and MC *γ*
- $E^{-2} \gamma$ -spectrum is assumed

Results: point-source photon flux upper-limits

Pierre Auger: $\langle F_{\gamma} \rangle \le 0.035 \text{ km}^{-2} \text{yr}^{-1}$ (1° ang.res., 10^{17.3} $\le E \le 10^{18.5} \text{ eV}$)

A. Aab et al. ApJ 789, 160 (2014)

Results: photon excesses significance

The excesses are insignificant, given approx. 1000 of independent trials

Target search for photons from dwarf galaxies

Probe for the possible decay of heavy dark matter (HDM)

- HDM decay produce significant amount of photons in any model M. Kachelriess et al., PRD 98, 083016 (2018)
- DM is abundant in dwarf galaxies (Galactic Center is outside the TA field of view)
- Target source set: 21 dwarf galaxies satellites of Milky Way V. Bonnivard et al., MNRAS 453 (2015), 849
- Search for γ in stacked skymap directions of dwarf galaxies (pixel size = γ ang.res.)

Results

No evidence for photon signal ($N_{\gamma}^{\text{cand.}} = 0$ at all energies)

These results can be used to constrain HDM models

Target search for photons from dwarf galaxies

Probe for the possible decay of heavy dark matter (HDM)

- HDM decay produce significant amount of photons in any model M. Kachelriess et al., PRD 98, 083016 (2018)
- DM is abundant in dwarf galaxies (Galactic Center is outside the TA field of view)
- Target source set: 21 dwarf galaxies satellites of Milky Way V. Bonnivard et al., MNRAS 453 (2015), 849
- Search for γ in stacked skymap directions of dwarf galaxies (pixel size = γ ang.res.)

Results

No evidence for photon signal ($N_{\gamma}^{\text{cand.}} = 0$ at all energies)

E_{γ} , eV	10 ^{18.0}	10 ^{18.5}	10 ^{19.0}	10 ^{19.5}	10 ^{20.0}
$F_{UL}^{\gamma}, \mathrm{km}^{-2}\mathrm{yr}^{-1}$	0.15	0.057	0.014	0.0076	0.0052

These results can be used to constrain HDM models

Neutrino search strategy

- Only inclined events are studies $45^{\circ} < \theta < 90^{\circ}$
- No energy cut
- The optimization of ξ -cut is similar to the photon search case

Distribution of MVA estimator (ξ) for data and MC

- Geometric exposure for $\theta \in (45^\circ, 90^\circ)$: 8042 km² sr yr
- probability to interact in the atmosphere: 1.4×10^{-5}
- trigger, reconstruction and quality cuts efficiency $\sim 7\%$
- ξ cut efficiency: ~ 24%
- total exposure (all flavors): $A = 1.9 \times 10^{-3} \text{ km}^2 \text{ sr yr}$

Results

- 0 neutrino candidates after cuts
- Single flavor diffuse neutrino flux limit for $E > 10^{18}$ eV: $E^2 f_{\nu} < 1.4 \times 10^{-6} \text{ GeV cm}^{-2} \text{s}^{-1} \text{sr}^{-1}$ (90% C.L.)

Plans

To improve MVA sensitivity with recently developing convolutional Neural Net

Telescope Array, PoS(ICRC2019)30

To increase statistics with recently

deploying TAx4 SD detector

Multivariate analysis + machine learning is a powerful tool for UHECR study

- UHECR mass composition without X_{max}
- UHECR composition anisotropy
- Sensitive UHE photon and neutrino search

Thank you!

Multivariate analysis + machine learning is a powerful tool for UHECR study

- UHECR mass composition without X_{max}
- UHECR composition anisotropy
- Sensitive UHE photon and neutrino search

Thank you!