Recent results from LHC (and SPS) and their implication for cosmic ray physics

Sebastian Baur

10th COSPA meeting, Bussels, 04/10/2019

UHECR composition and interaction models

Hadronic interaction models have large differences and uncertainties! Hadronic interaction models are vital to interpret air shower data!

UHECR composition and interaction models

Combining muon data from 6 experiments:

$$z = \frac{\ln N_{\mu}^{\text{det}} - \ln N_{\mu}^{\text{det}}}{\ln N_{\mu}^{\text{det}}_{\text{Fe}} - \ln N_{\mu}^{\text{det}}_{\text{Fe}}}$$

Relative to energy-dependent mass \rightarrow increasing muon deficit (8 σ significance)

[L. Cazon (WHISP), ICRC 2019]

UHECR composition and interaction models

Based on Kampert & Unger, Astropart. Phys. 35 (2012) 660

[H. Dembinski, ICRC 2019]

Inconsistent interpretation of composition measurements!

Largely due to uncertainties in hadronic interaction models.

→ dedicated tests at accelerators needed

How to connect LHC and air showers

R. Ulrich et al. PRD 83 (2011) 054026:

Ad-hoc modify model features by energy-dependent factor

And propagate to full 10^{19.5} eV proton shower

Investigated features:

- inelastic cross section
- hadron multiplicity
- elasticity: E_{leading} / E_{total}
- charge ratio (π^0 fraction)

How to connect LHC and air showers

R. Ulrich et al. PRD 83 (2011) 054026:

Ad-hoc modify model features by energy-dependent factor

And propagate to full 10^{19.5} eV proton shower

Investigated features:

- inelastic cross section
- hadron multiplicity
- elasticity: E_{leading} / E_{total}
- charge ratio (π^0 fraction)

How to connect LHC and air showers

R. Ulrich et al. PRD 83 (2011) 054026:

Ad-hoc modify model features by energy-dependent factor

And propagate to full 10^{19.5} eV proton shower

Investigated features:

- inelastic cross section
- hadron multiplicity
- elasticity: E_{leading} / E_{total}
- charge ratio (π^0 fraction)

940

920

900

880

[g/cm²

COSPA Brussels – S. Baur: LHC results and cosmic rays

cross section

charge ratio

multiplicity elasticity

What and where to measure

- Most particles are produced at central rapidity
 - \rightarrow focus for LHC experiments
- Most energy is carried by forward particles
 - \rightarrow most relevant for air showers

CASTOR in CMS

- Tungsten-Quartz sampling calorimeter
- Coverage $-6.6 < \eta < -5.2$
- Segmentation in φ and z
- Separated electromagnetic and hadronic sections with depth of 20 X_0 / 10 λ_{int}

LHCf

- Two towers per Arm
- Sampling and positioning calorimeters: Tungsten layers and plastic scintillators
 + 4 position sensitive layers
- Neutral particles only

NA61/SHINE

Fixed target at CERN North Area: very versatile beam conditions

- 2 superconducting magnets and 4 time projection chambers
- \rightarrow large acceptance, momentum resolution and tracking efficiency
- \rightarrow PID and reconstruction with dE/dx and ToF

CMS: Forward energy spectra [JHEP 08 (2017) 046]

- Detailed energy distribution in CASTOR acceptance
- Differential cross-section as function of total energy
- Sensitive to the model elasticity

COSPA Brussels – S. Baur: LHC results and cosmic rays

CMS: Forward energy spectra [JHEP 08 (2017) 046]

- Bulk of events at low energies: contribution from diffraction (1st bin)
- Sensitive to model elasticity
- Most models perform well
- Sibyll 2.3 overestimates this region
 → hint of too large elasticity

LHCf: Forward neutron spectra [JHEP 11 (2018) 073]

- Sensitive to elasticity
- Most models perform well
- QGSJet II-04 has too little forward neutrons

 → hint of too small elasticity

LHCf: Forward neutron spectra [JHEP 11 (2018) 073]

- Significant excess of high energy zero-degree neutrons
- Could be explained by diffractive single pion exchange
- Potential impact on air showers (π–nucleus interactions)

-

 $-6.6 < \eta < -5.2$

 $\langle E_{\it reco}
angle (N_{\it tracks, |\eta| < 2})$

CMS: Forward-central correlation [arXiv:1908.01750]

COSPA Brussels – S. Baur: LHC results and cosmic rays

0.22 nb⁻¹ (13 TeV)

CMS: Forward-central correlation [arXiv:1908.01750]

Ratio of electromagnetic to hadronic energy \rightarrow charge ratio R

CMS: Forward-central correlation [arXiv:1908.01750]

COSPA Brussels – S. Baur: LHC results and cosmic rays

850

LHCf: Forward pion spectra [Preliminary: PoS(ICRC2019)349]

LHC

LHCf: Forward pion spectra [Preliminary: PoS(ICRC2019)349]

Forward (high energy) $\pi^{0:}$

- impact on early e.m. cascade
- take energy away from muon production
- No comparison to models yet
- Very important data, once fully analyzed and published

NA61: Identified spectra in π -C (158 GeV/c)

 ρ^0 have a similar effect as $\pi^0 \rightarrow$ decay to $\gamma\gamma \rightarrow$ feed the electromagnetic cascade

 \bar{p} is proxy for baryon production \rightarrow feed the hadronic cascade

COSPA Brussels – S. Baur: LHC results and cosmic rays

VA61

NA61: energy fractions in π -C (158 GeV)

Energy fraction carried by $\rho^{_0}$ and $\bar{p}~$ is poorly described

Overproduction of \bar{p} and underproduction of ρ^0 both lead to an increased muon number

COSPA Brussels – S. Baur: LHC results and cosmic rays

A61

Summary

- Well founded interpretations of CR data require good hadronic interaction models
- Extensive and growing set of analyses
 - \rightarrow more complete and diverse picture of the forward particle production
- Benchmark tests for event generators:
 - \rightarrow model elasticity \rightarrow constrains allowed shower maximum depth
 - \rightarrow fraction of hadronic energy \rightarrow constrains allowed muon number
- A lot of work for model builders, no solution in sight yet
- Outlook: planned p-O collision for LHC Run3
 - \rightarrow better proxy for p-air
 - \rightarrow potential to measure $\pi\text{-}O$ with LHCf+ATLAS

Backup

Big improvements after LHC Run 1

Energy measurements with CASTOR

- Total energy: Sum all calorimeter towers above noise threshold
- Signal in the first two modules of CASTOR is sensitive to the electromagnetic component
- Back part measures the hadronic contribution

Corresponding particle level energies:

Energy sum of

- all stable particles except μ , v
- *e*, *γ* (incl. π⁰)
- all stable particles except μ , v, e, γ

LHCf: PID

 deeper and longer than EM showers

Preliminary Result on Direct ¹⁰B + ¹¹B Production

[PoS (ICRC2019) 446]

QGP and muon numbers

- QGP-like states enhance baryon production
- QGP-like effects are observed in p-p at the LHC e.g. 'Ridge' (CMS: JHEP 09 (2010) 091), enhanced strangeness (ALICE: Nature Phys. 13 (2017) 535)
- Effects turn on earlier than predicted by EPOS-LHC
- Enhancement of the QGP phase space could lead to an increase of muon production

