Precise predictions: the importance of electroweak corrections

Davide Pagani

Particle-Physics Seminar

VUB
05-12-2019

OUTLINE

Introduction: precision physics and EW corrections

Automation of EW corrections in Madgraph5_aMC@NLO

Phenomenological results in top-quark physics

Higgs-self couplings from single-Higgs production

! DISCLAIMER!

The topic of this talk is not very relevant for the identification of resonances from new physics.

Precise predictions are fundamental for correctly identifying non-resonant new physics effects, setting exclusion limits and fully characterize and understand both resonant and non-resonant new-physics dynamics.

Predictions at the LHC

Every prediction at the LHC starts form here:

$$
\sigma_{H_{1}, H_{2}}\left(p_{1}, p_{2}\right)=\sum_{i, j} \int d x_{1} d x_{2} \frac{f_{i}^{\left(H_{1}\right)}\left(x_{1}, \mu\right) f_{j}^{\left(H_{2}\right)}\left(x_{2}, \mu\right)}{\text { PDFs }} \frac{\hat{\sigma}_{i j}\left(x_{1} p_{1}, x_{2} p_{2}, \alpha_{S}(\mu), \mu\right)}{\text { Partonic cross sections }}
$$

- PDFs are fitted from experimental measurements, only the dependence on μ can be calculated in perturbation theory via DGLAP.
- Partonic cross sections can be calculated in perturbation theory via Feynman diagrams.

Predictions at the LHC

Every prediction at the LHC starts form here:

- PDFs are fitted from experimental measurements, only the dependence on μ can be calculated in perturbation theory via DGLAP.
- Partonic cross sections can be calculated in perturbation theory via Feynman diagrams.

Precise predictions at the LHC: for what?

- More precise predictions for the total cross sections. (Total normalization)
- More precise differential distributions. (Kinematic-dependent corrections)
- Reduction of μ dependence. (Theoretical accuracy)
Fixed orders, Resummation, RGE, Parton Shower, Matching, Merging

Fixed Order calculations

In the SM, contributions to the partonic cross section can be organized according to the powers of α_{s} and α (number of loop corrections and real emissions).

Born LO

$\mathcal{O}\left(\alpha_{s}\right)$ corrections

NLO EW
$\mathcal{O}(\alpha)$ corrections

NNLO QCD
$\mathcal{O}\left(\alpha_{s}^{2}\right)$ corrections

NNLO EW, NNNLO QCD

At the LHC, QCD is everywhere. Nowadays, a "standard" prediction in the SM is at NLO QCD accuracy.

NNLO QCD is expected to be of the same order of NLO EW $\alpha_{s}^{2} \sim \alpha$.
EW corrections grow for large pt (Sudakov logs), so they are not flat. Moreover they in general involve all the SM masses and couplings.

Importance of NNLO (and NNNLO) QCD corrections

An example: H boson production via gluon fusion.

NLO EW corrections are $\sim 5 \%$, i.e., larger than the residual QCD scale uncertainty.

Importance of NLO and NNLO QCD corrections

be careful : just illustrative example, not very precise

Higgs boson today: precise measurements of couplings

CMS-HIG-17-031

Correct interpretation of the (B)SM signal

A recent story from an other hadron collider: the top-quark forward-backward asymmetry at the Tevatron.

$$
A_{F B}^{p \bar{p}}=\frac{\sigma\left(y_{t}>0\right)-\sigma\left(y_{t}<0\right)}{\sigma\left(y_{t}>0\right)+\sigma\left(y_{t}<0\right)}
$$

D0 and especially CDF measured values for the forward-backward asymmetry that are larger than the SM prediction.

But which SM prediction?

Correct interpretation of the (B)SM signal

A recent story from an other hadron collider: the top-quark forward-backward asymmetry at the Tevatron.

Surprisingly (No Sudakov enhancement), the NLO EW induces corrections of order 20-25\%.

$$
R_{Q E D}\left(Q_{q}\right)=\frac{\alpha \tilde{N}_{1}^{Q E D}}{\alpha_{s} N_{1}}=Q_{q} Q_{t} \frac{36}{5} \frac{\alpha}{\alpha_{s}} \quad \text { DP, Hollik } 11
$$

Sudakov enhancement

Not surprisingly, weak corrections at large scales are not negligible for a general process due to the Sudakov Logarithms $\sim \alpha \ln ^{2}\left(\frac{s}{M_{\mathrm{W}}^{2}}\right)$.

Frederix, Frixione, Hirschi, DP, Shao, Zaro '18

SM at the LHC (is this a desperation plot?)

Standard Model Production Cross Section Measurements

Status: July 2018

New Physics from differential distributions

With higher luminosity (and higher energy), at the LHC the accuracy of all measurements will in general increase, especially in the tail of distributions.

New Physics from differential distributions

With higher luminosity (and higher energy), at the LHC the accuracy of all measurements will in general increase, especially in the tail of distributions.

Precise predictions are necessary for the current and future measurements at the LHC, especially if no clear sign of new physics will appear. In order to match the experimental precision, NLO EW corrections are essential.

Automation of NLO corrections in Madgraph5_aMC@NLO

What do we mean with automation of EW corrections?

The possibility of calculating QCD and EW corrections for SM processes (matched to shower effects) with a process-independent approach.

```
generate process [QCD]
output process_QCD
```

```
generate process [QCD EW]
output process_QCD_EW
```

The automation of NLO QCD has already been achieved, but we need higher precision to match the experimental accuracy at the LHC and future colliders.

- NNLO QCD complete automation is out of our theoretical capabilities at the moment.
- NLO EW and NNLO QCD corrections are of the same order ($\left.\alpha_{s}^{2} \sim \alpha\right)$, but NLO EW corrections can be automated. Moreover effects such as Sudakov logarithms or photon FSR can enhance their size.

Automation of NLO corrections in Madgraph5_aMC@NLO

The complete automation had already been achieved for QCD.

Alwall, Frederix, Frixione, Hirschi, Maltoni, Mattelaer, Shao, Stelzer, Torrielli, Zaro '14

Automation of NLO corrections in Madgraph5_aMC@NLO

The complete automation is now available also for combined QCD and EW.

What is new from QCD to EW?

- Many more loop diagrams, involving the photon and the W, Z and H bosons.
- Z, W bosons and top quark intermediate resonances are often involved in a generic process. Complex mass scheme is necessary.
- New R2 and UV counterterms are necessary.
- A richer structure of interferences of tree and one-loop diagrams due to different possible perturbative orders combinations. Same situation for real radiations
- FKS subtractions of singularities has to be extended in order to account for singularities due to photons and the aforementioned richer structure of interferences.
- Jets definitions have to be modified in order to be IR safe.

All these problems have been solved and implemented in the new version (v3) of Madgraph5_aMC@NLO

We also provided FKS formulas for fragmentation functions, but they have not been implemented yet. At the moment, NLO EW to FS photons not available.

Structure of NLO EW-QCD corrections

$$
\underset{\text { as example }}{t \bar{t} H}
$$

LO

Structure of NLO EW-QCD corrections

$$
\underset{\text { as example }}{t \bar{t} H}
$$

LO

Structure of NLO EW-QCD corrections

$\underset{\text { as example }}{t \bar{t}}$

LO

NLO

Structure of NLO EW-QCD corrections

Structure of NLO EW-QCD corrections

$t \bar{t} H$
as example

Structure of NLO EW-QCD corrections

$t \bar{t} H$ as example

All the LO,i and NLO, i can be calculated in a completely automated way. We denote the complete set of LO,i and NLO, i as "Complete NLO".

NLO,1 = NLO QCD NLO, 2 = NLO EW

In general, NLO, 3 and NLO, 4 sizes are negligible, but there are exceptions.

Results: NLO EW

just type:

```
set complex mass scheme true
import model loop_qcd_qed_sm_Gmu
generate process [QED]
output process_NLO_EW_corrections
```


And then wait for the results

Results: NLO EW

Process	Syntax	Cross section (in pb)		Correction (in \%)
		LO	NLO	
$p p \rightarrow e^{+} \nu_{e}$	$\mathrm{p} p>\mathrm{e}+\mathrm{ve} \mathrm{QCD}=0$ QED=2 [QED]	$5.2498 \pm 0.0005 \cdot 10^{3}$	$5.2113 \pm 0.0006 \cdot 10^{3}$	-0.73 ± 0.01
$p p \rightarrow e^{+} \nu_{e} j$	$p \mathrm{p}>\mathrm{e}+\mathrm{ve} \mathrm{j} Q \mathrm{QCD}=1 \mathrm{QED}=2$ [QED]	$9.1468 \pm 0.0012 \cdot 10^{2}$	$9.0449 \pm 0.0014 \cdot 10^{2}$	-1.11 ± 0.02
$p p \rightarrow e^{+} \nu_{e} j j$	$p \mathrm{p}>\mathrm{e}+\mathrm{ve} j \mathrm{j} Q C D=2$ QED=2 [QED]	$3.1562 \pm 0.0003 \cdot 10^{2}$	$3.0985 \pm 0.0005 \cdot 10^{2}$	-1.83 ± 0.02
$p p \rightarrow e^{+} e^{-}$	$\mathrm{p} p>\mathrm{e}+\mathrm{e}-\mathrm{QCD}=0$ QED=2 [QED]	$7.5367 \pm 0.0008 \cdot 10^{2}$	$7.4997 \pm 0.0010 \cdot 10^{2}$	-0.49 ± 0.02
$p p \rightarrow e^{+} e^{-} j$	$\mathrm{p} \mathrm{p} \mathrm{>} \mathrm{e+} \mathrm{e-} \mathrm{j} \mathrm{QCD=1} \mathrm{QED=2} \mathrm{[QED]}$	$1.5059 \pm 0.0001 \cdot 10^{2}$	$1.4909 \pm 0.0002 \cdot 10^{2}$	-1.00 ± 0.02
$p p \rightarrow e^{+} e^{-} j j$		$5.1424 \pm 0.0004 \cdot 10^{1}$	$5.0410 \pm 0.0007 \cdot 10^{1}$	-1.97 ± 0.02
$p p \rightarrow e^{+} e^{-} \mu^{+} \mu^{-}$	$\mathrm{p} p>\mathrm{e}+\mathrm{e}-\mathrm{mu}+\mathrm{mu}-\mathrm{QCD}=0$ QED=4 [QED]	$1.2750 \pm 0.0000 \cdot 10^{-2}$	$1.2083 \pm 0.0001 \cdot 10^{-2}$	-5.23 ± 0.01
$p p \rightarrow e^{+} \nu_{e} \mu^{-} \bar{\nu}_{\mu}$	$\mathrm{p} p>\mathrm{e}+\mathrm{ve} \mathrm{mu-} \mathrm{vm} \mathrm{\sim} \mathrm{QCD}=0$ QED=4 [QED]	$5.1144 \pm 0.0007 \cdot 10^{-1}$	$5.3019 \pm 0.0009 \cdot 10^{-1}$	$+3.67 \pm 0.02$
$p p \rightarrow H e^{+} \nu_{e}$	$\mathrm{p} \mathrm{p}>\mathrm{h} \mathrm{e}+\mathrm{ve}$ QCD=0 QED=3 [QED]	$6.7643 \pm 0.0001 \cdot 10^{-2}$	$6.4914 \pm 0.0012 \cdot 10^{-2}$	-4.03 ± 0.02
$p p \rightarrow H e^{+} e^{-}$	$\mathrm{p} \mathrm{p}>\mathrm{h} \mathrm{e}+\mathrm{e}-\mathrm{QCD}=0$ QED=3 [QED]	$1.4554 \pm 0.0001 \cdot 10^{-2}$	$1.3700 \pm 0.0002 \cdot 10^{-2}$	-5.87 ± 0.02
$p p \rightarrow H j j$	$\mathrm{p} p>\mathrm{h} j \mathrm{j}$ QCD=0 QED=3 [QED]	$2.8268 \pm 0.0002 \cdot 10^{0}$	$2.7075 \pm 0.0003 \cdot 10^{0}$	-4.22 ± 0.01
$p p \rightarrow W^{+} W^{-} W^{+}$	$\mathrm{p} \mathrm{p}>\mathrm{w}^{+} \mathrm{w}^{-} \mathrm{w}+\mathrm{QCD}=0$ QED=3 [QED]	$8.2874 \pm 0.0004 \cdot 10^{-2}$	$8.8017 \pm 0.0012 \cdot 10^{-2}$	$+6.21 \pm 0.02$
$p p \rightarrow Z Z W^{+}$	$\mathrm{p} \mathrm{p}>\mathrm{z} \mathrm{z} \mathrm{w+} \mathrm{QCD=0} \mathrm{QED=3} \mathrm{[QED]}$	$1.9874 \pm 0.0001 \cdot 10^{-2}$	$2.0189 \pm 0.0003 \cdot 10^{-2}$	$+1.58 \pm 0.02$
$p p \rightarrow Z Z Z$	$\mathrm{p} p>\mathrm{zzz}$ QCD=0 QED=3 [QED]	$1.0761 \pm 0.0001 \cdot 10^{-2}$	$0.9741 \pm 0.0001 \cdot 10^{-2}$	-9.47 ± 0.02
$p p \rightarrow H Z Z$	$\mathrm{p} \mathrm{p}>\mathrm{hzz}$ QCD=0 QED=3 [QED]	$2.1005 \pm 0.0003 \cdot 10^{-3}$	$1.9155 \pm 0.0003 \cdot 10^{-3}$	-8.81 ± 0.02
$p p \rightarrow H Z W^{+}$	$\mathrm{p} \mathrm{p}>\mathrm{h} \mathrm{z} \mathrm{w+} \mathrm{QCD=0} \mathrm{QED=3} \mathrm{[QED]}$	$2.4408 \pm 0.0000 \cdot 10^{-3}$	$2.4809 \pm 0.0005 \cdot 10^{-3}$	$+1.64 \pm 0.02$
$p p \rightarrow H H W^{+}$	$\mathrm{p} p>\mathrm{h} \mathrm{h} \mathrm{w+} \mathrm{QCD}=0$ QED=3 [QED]	$2.7827 \pm 0.0001 \cdot 10^{-4}$	$2.4259 \pm 0.0027 \cdot 10^{-4}$	-12.82 ± 0.10
$p p \rightarrow H H Z$	$\mathrm{p} \mathrm{p}>\mathrm{h} \mathrm{h} \mathrm{z} \mathrm{QCD=0} \mathrm{QED=3} \mathrm{[QED]}$	$2.6914 \pm 0.0003 \cdot 10^{-4}$	$2.3926 \pm 0.0003 \cdot 10^{-4}$	-11.10 ± 0.02
$p p \rightarrow t \bar{t} W^{+}$	$\mathrm{p} \mathrm{p}>\mathrm{t} \mathrm{t}^{\sim} \mathrm{w}+\mathrm{QCD}=2 \mathrm{QED}=1$ [QED]	$2.4119 \pm 0.0003 \cdot 10^{-1}$	$2.3025 \pm 0.0003 \cdot 10^{-1}$	-4.54 ± 0.02
$p p \rightarrow t \bar{t} Z$	$\mathrm{p} \mathrm{p}>\mathrm{t} \mathrm{t}^{\sim} \mathrm{z}$ QCD=2 QED=1 [QED]	$5.0456 \pm 0.0006 \cdot 10^{-1}$	$5.0033 \pm 0.0007 \cdot 10^{-1}$	-0.84 ± 0.02
$p p \rightarrow t \bar{t} H$	$\mathrm{p} \mathrm{p}>\mathrm{t} \mathrm{t}^{\sim} \mathrm{h}$ QCD=2 QED=1 [QED]	$3.4480 \pm 0.0004 \cdot 10^{-1}$	$3.5102 \pm 0.0005 \cdot 10^{-1}$	$+1.81 \pm 0.02$
$p p \rightarrow t \bar{t} j$	$p \mathrm{p}>\mathrm{t} \mathrm{t} j \mathrm{QCD}=3$ QED=0 [QED]	$3.0277 \pm 0.0003 \cdot 10^{2}$	$2.9683 \pm 0.0004 \cdot 10^{2}$	-1.96 ± 0.02
$p p \rightarrow j j j$	$p \mathrm{p}>\mathrm{j} j \mathrm{j}$ QCD=3 QED=0 [QED]	$7.9639 \pm 0.0010 \cdot 10^{6}$	$7.9472 \pm 0.0011 \cdot 10^{6}$	-0.21 ± 0.02
$p p \rightarrow t j$	$\mathrm{p} \mathrm{p} \mathrm{>} \mathrm{t} j$ QCD=0 QED=2 [QED]	$1.0613 \pm 0.0001 \cdot 10^{2}$	$1.0539 \pm 0.0001 \cdot 10^{2}$	-0.70 ± 0.02

$$
\delta_{\mathrm{EW}}=\frac{\Sigma_{\mathrm{NLO}_{2}}}{\Sigma_{\mathrm{LO}_{1}}}=\frac{\mathrm{NLO}}{\mathrm{LO}}-1
$$

Results: NLO EW

28 Frederix, Frixione, Hirschi, DP, Shao, Zaro '18

Results: Complete NLO

just type:

```
set complex mass scheme true
import model loop_qcd_qed_sm_Gmu
generate process QCD=99 QED=99 [QCD QED]
output process_NLO_EW_corrections
```


And then wait for the results

Results: Complete NLO

NEW

	$p p \rightarrow t \bar{t}$	$p p \rightarrow t \bar{t} Z$	$p p \rightarrow t \bar{t} W^{+}$	$p p \rightarrow t \bar{t} H$	$p p \rightarrow t \bar{t} j$
LO_{1}	$4.3803 \pm 0.0005 \cdot 10^{2} \mathrm{pb}$	$5.0463 \pm 0.0003 \cdot 10^{-1} \mathrm{pb}$	$2.4116 \pm 0.0001 \cdot 10^{-1} \mathrm{pb}$	$3.4483 \pm 0.0003 \cdot 10^{-1} \mathrm{pb}$	$3.0278 \pm 0.0003 \cdot 10^{2} \mathrm{pb}$
LO_{2}	$+0.405 \pm 0.001 \%$	$-0.691 \pm 0.001 \%$	$+0.000 \pm 0.000 \%$	$+0.406 \pm 0.001 \%$	$+0.525 \pm 0.001 \%$
LO_{3}	$+0.630 \pm 0.001 \%$	$+2.259 \pm 0.001 \%$	$+0.962 \pm 0.000 \%$	$+0.702 \pm 0.001 \%$	$+1.208 \pm 0.001 \%$
LO_{4}					$+0.006 \pm 0.000 \%$
NLO_{1}	$+46.164 \pm 0.022 \%$	$+44.809 \pm 0.028 \%$	$+49.504 \pm 0.015 \%$	$+28.847 \pm 0.020 \%$	$+26.571 \pm 0.063 \%$
NLO_{2}	$-1.075 \pm 0.003 \%$	$-0.846 \pm 0.004 \%$	$-4.541 \pm 0.003 \%$	$+1.794 \pm 0.005 \%$	$-1.971 \pm 0.022 \%$
NLO_{3}	$+0.552 \pm 0.002 \%$	$+0.845 \pm 0.003 \%$	$+12.242 \pm 0.014 \%$	$+0.483 \pm 0.008 \%$	$+0.292 \pm 0.007 \%$
NLO_{4}	$+0.005 \pm 0.000 \%$	$-0.082 \pm 0.000 \%$	$+0.017 \pm 0.003 \%$	$+0.044 \pm 0.000 \%$	$+0.009 \pm 0.000 \%$
NLO_{5}					$+0.005 \pm 0.000 \%$

$$
\begin{array}{ll}
\frac{\Sigma_{\mathrm{LO}_{i}}}{\sum_{\mathrm{LO}_{1}}}, & i=2,3,4 \\
\frac{\Sigma_{\mathrm{NLO}_{i}}}{\Sigma_{\mathrm{LO}_{1}}}, & i=1, \ldots 5
\end{array}
$$

NLO_{3} in ttW is $\sim 12 \%$:

A thorough phenomenological study is necessary!

Frederix, Frixione, Hirschi, DP, Shao, Zaro '18

$t \bar{t} W^{ \pm}$

R. Frederix, D.P., M. Zaro
JHEP 1802 (2018) 031 (arXiv:1711.02116)

Complete-NLO

$$
\Sigma_{\mathrm{LO}}^{t \bar{t} W^{ \pm}}\left(\alpha_{s}, \alpha\right)=\alpha_{s}^{2} \alpha \Sigma_{3,0}^{t \bar{t} W^{ \pm}}+\alpha_{s} \alpha \Sigma_{3,1}^{t \bar{t} W^{ \pm}}+\alpha^{2} \Sigma_{3,2}^{t \bar{t} W^{ \pm}}
$$

Frederix, DP, Zaro '17
Only initial states without gluons are present.

$$
\Sigma_{\mathrm{LO}_{1}} \rightarrow \mathrm{LO}_{\mathrm{QCD}}
$$

$$
\begin{aligned}
\Sigma_{\mathrm{NLO}}^{t \bar{t} W^{ \pm}}\left(\alpha_{s}, \alpha\right) & =\alpha_{s}^{3} \alpha \Sigma_{4,0}^{t \bar{t} W^{ \pm}}+\alpha_{s}^{2} \alpha^{2} \Sigma_{4,1}^{t \bar{t} W^{ \pm}}+\alpha_{s} \alpha^{3} \Sigma_{4,2}^{t \bar{t} W^{ \pm}}+\alpha^{4} \Sigma_{4,3}^{t \bar{t} W^{ \pm}} \\
& \equiv \Sigma_{\mathrm{NLO}_{1}}+\Sigma_{\mathrm{NLO}_{2}}+\Sigma_{\mathrm{NLO}_{3}}+\Sigma_{\mathrm{NLO}_{4}}
\end{aligned}
$$

$$
\begin{aligned}
& \Sigma_{\mathrm{NLO}_{1}} \rightarrow \mathrm{NLO}_{\mathrm{QCD}} \\
& \Sigma_{\mathrm{NLO}_{2}} \rightarrow \mathrm{NLO}_{\mathrm{EW}}
\end{aligned}
$$

MadGraph5_aMC@NLO

Cross sections: order by order

$$
\delta_{(\mathrm{N}) \mathrm{LO}_{i}}(\mu)=\frac{\Sigma_{(\mathrm{N}) \mathrm{LO}_{i}}(\mu)}{\Sigma_{\mathrm{LO}_{\mathrm{QCD}}}(\mu)}
$$

Numbers in parentheses refer to the case of a jet veto $p_{T}(j)>100 \mathrm{GeV}$ and $|y(j)|<2.5$ applied

13 TeV
Naive estimate
100 TeV

$\delta[\%]$	$\mu=H_{T} / 4$	$\mu=H_{T} / 2$	$\mu=H_{T}$
LO_{2}	-	-	-
LO_{3}	0.8	0.9	1.1
NLO_{1}	$34.8(7.0)$	$50.0(25.7)$	$63.4(42.0)$
NLO_{2}	$-4.4(-4.8)$	$-4.2(-4.6)$	$-4.0(-4.4)$
NLO_{3}	$11.9(8.9)$	$12.2(9.1)$	$12.5(9.3)$
NLO_{4}	$0.02(-0.02)$	$0.04(-0.02)$	$0.05(-0.01)$

$\delta[\%]$	$\mu=H_{T} / 4$	$\mu=H_{T} / 2$	$\mu=H_{T}$
LO_{2}	-	-	-
LO_{3}	0.9	1.1	1.3
NLO_{1}	$159.5(69.8)$	$149.5(71.1)$	$142.7(73.4)$
NLO_{2}	$-5.8(-6.4)$	$-5.6(-6.2)$	$-5.4(-6.1)$
NLO_{3}	$67.5(55.6)$	$68.8(56.6)$	$70.0(57.6)$
NLO_{4}	$0.2(0.1)$	$0.2(0.2)$	$0.3(0.2)$

NLO_{3} is large and it is not suppressed by the jet veto (numbers in parentheses) as much as NLO QCD corrections.
NLO QCD corrections depend on the scale, while NLO EW and NLO_{3} do not.

Distributions

Distributions

Distributions

$t \bar{t} H, t \bar{t} W, t \bar{t} Z:$ Complete-NLO with resummation at NNLL

Complete-NLO (QCD and EW) calculated with a public version of MG5_aMC@NLO. Frederix, Frixione, Hirschi, DP, Shao, Zaro '18

Resummation of soft gluon at NNLL accuracy via SCET:

Broggio, Ferroglia, Ossola, Pecjak '16
Broggio, Ferroglia, Pecjak, Yang '16
Broggio, Ferroglia, Ossola, Pecjak, Sameshima '17 t̄̄Z
Resummation of soft gluon at NNLL accuracy via resum. in Mellin space:
Kulesza, Motyka, Stebel, Theeuwes '17
$t \bar{t} H$
Kulesza, Motyka, Schwartländer, Stebel, Theeuwes '17
$t \bar{t} W$
Kulesza, Motyka, Schwartländer, Stebel, Theeuwes '18 t̄̄V

$t \bar{t} H, t \bar{t} W, t \bar{t} Z:$ Complete-NLO with resummation at NNLL

Complete-NLO (QCD and EW) calculated with a public version of MG5_aMC@NLO. Frederix, Frixione, Hirschi, DP, Shao, Zaro '18

Resummation of soft gluon at NNLL accuracy via SCET:

Broggio, Ferroglia, Ossola, Pecjak '16
Broggio, Ferroglia, Pecjak, Yang '16
Broggio, Ferroglia, Ossola, Pecjak, Sameshima '17 t $\bar{t} Z$

Complete NLO (QCD and EW) + Resummation NNLL

The currently most accurate predictions for $t \bar{t} H, t \bar{t} W, t \bar{t} Z$ Broggio, Ferroglia, Frederix, DP, Pecjak, Tsinikos arXiv:1907.04343

$t \bar{t} H, t \bar{t} Z:$ Complete-NLO with resummation at NNLL

We consider two different functional forms $\left(H_{T} / 2\right.$ and $\left.m(t \bar{t} V) / 2\right)$ for the hard scale and we identify the envelope of the two associated scale uncertainties, together with PDF uncertainties, as the total theory uncertainty band.

As expected, in this approach, theory uncertainties are reduced when resummation is also included. EW effects and especially the Complete NLO are smaller with $t \bar{t} H$ and $t \bar{t} Z$.

Numbers in the back-up slides

$t \bar{t} W$: Complete-NLO with resummation at NNLL

We consider two different functional forms $\left(H_{T} / 2\right.$ and $\left.m(t \bar{t} V) / 2\right)$ for the hard scale and we identify the envelope of the two associated scale uncertainties, together with PDF uncertainties, as the total theory uncertainty band.

Resummation leads to a only small reduction of scale uncertainties, The bulk of QCD corrections originates from hard emissions.

$$
t \bar{t} t \bar{t}
$$

R. Frederix, D.P., M. Zaro
JHEP 1802 (2018) 031 (arXiv:1711.02116)

Complete-NLO

$\Sigma_{\mathrm{LO}}^{t \bar{t} t \bar{t}}\left(\alpha_{s}, \alpha\right)=\alpha_{s}^{4} \Sigma_{4,0}^{t \bar{t} t \bar{t}}+\alpha_{s}^{3} \alpha \Sigma_{4,1}^{t \bar{t} t}+\alpha_{s}^{2} \alpha^{2} \Sigma_{4,2}^{t \bar{t} t \bar{t}}+\alpha_{s}^{3} \alpha \Sigma_{4,3}^{t \bar{t} t \bar{t}}+\alpha^{4} \Sigma_{4,4}^{t \bar{t} t \bar{t}} \quad$ Frederix, DP, Zaro '17

$$
\equiv \Sigma_{\mathrm{LO}_{1}}+\Sigma_{\mathrm{LO}_{2}}+\Sigma_{\mathrm{LO}_{3}}+\Sigma_{\mathrm{LO}_{4}}+\Sigma_{\mathrm{LO}_{5}}
$$

The gg initial state amounts to $\sim 90 \%$ of LO cross section at 13 TeV and almost all the cross section at 100 TeV .
There is no gg contribution at LO 4 and LO 5 .

$$
\begin{aligned}
\Sigma_{\mathrm{NLO}}^{t \bar{t} t \bar{t}}\left(\alpha_{s}, \alpha\right) & =\alpha_{s}^{5} \Sigma_{5,0}^{t \bar{t} t \bar{t}}+\alpha_{s}^{4} \alpha^{1} \Sigma_{5,1}^{t \bar{t} t \bar{t}}+\alpha_{s}^{3} \alpha^{2} \sum_{5,2}^{4 \bar{t} t \bar{t}}+\alpha_{s}^{2} \alpha^{3} \Sigma_{5,3}^{t \bar{t} t}+\alpha_{s}^{1} \alpha^{4} \Sigma_{5,4}^{t \bar{t} t \bar{t}}+\alpha^{5} \Sigma_{5,5}^{t \bar{t} t \bar{t}} \\
& \equiv \Sigma_{\mathrm{NLO}_{1}}+\Sigma_{\mathrm{NLO}_{2}}+\Sigma_{\mathrm{NLO}_{3}}+\Sigma_{\mathrm{NLO}_{4}}+\Sigma_{\mathrm{NLO}_{5}}+\Sigma_{\mathrm{NLO}_{6}}
\end{aligned}
$$

There is no gg contribution at NLO_{5} and NLO_{6}.

Cross sections

13 TeV

Naive estimate

100 TeV

$\delta[\%]$	$\mu=H_{T} / 8$	$\mu=H_{T} / 4$	$\mu=H_{T} / 2$
LO_{2}	-26.0	-28.3	-30.5
LO_{3}	32.6	39.0	45.9
LO_{4}	0.2	0.3	0.4
LO_{5}	0.02	0.03	0.05
NLO_{1}	14.0	62.7	103.5
NLO_{2}	8.6	-3.3	-15.1
NLO_{3}	-10.3	1.8	16.1
NLO_{4}	2.3	2.8	3.6
NLO_{5}	0.12	0.16	0.19
NLO_{6}	<0.01	<0.01	<0.01
$\mathrm{NLO}_{2}+\mathrm{NLO}_{3}$	-1.7	-1.6	0.9

	$\delta[\%]$	$\mu=H_{T} / 8$	$\mu=H_{T} / 4$	$\mu=H_{T} / 2$
10	LO_{2}	-18.7	-20.7	-22.8
1	LO_{3}	26.3	31.8	37.8
0.1	LO_{4}	0.05	0.07	0.09
0.01	LO_{5}	0.03	0.05	0.08
10	NLO_{1}	33.9	68.2	98.0
1	NLO_{2}	-0.3	-5.7	-11.6
0.1	NLO_{3}	-3.9	1.7	8.9
0.01	NLO_{4}	0.7	0.9	1.2
0.001	NLO_{5}	0.12	0.14	0.16
0.0001	NLO_{6}	<0.01	<0.01	<0.01
	$\mathrm{NLO}_{2}+\mathrm{NLO}_{3}$	-4.2	-4.0	2.7

LO_{2} and LO_{3} are large and have also large cancellations.
Frederix, DP, Zaro '17
NLO_{2} and NLO_{3} are mainly given by 'QCD corrections' on top of them, so they are large and strongly depend on the scale choice, at variance with standard EW corrections. Accidentally, relatively to $\mathrm{LO}_{1}, \mathrm{NLO}_{2}+\mathrm{NLO}_{3}$ scale dependence almost disappears. What happens if BSM enters into the game? Anomalous yt ?

Distributions

13 TeV
Frederix, DP, Zaro '17

Large cancellations among (N)LO 2 and $(\mathrm{N}) \mathrm{LO}_{3}$ are present also at the differential level. At the threshold also NLO_{4} is large.

Combination with NNLO QCD

$$
t \bar{t}
$$

M. Czakon, D. Heymes, A. Mitov, D.P., I.Tsinikos, M. Zaro JHEP 1710 (2017) 186 (arXiv:1705.04105)

NNLO QCD combined with complete-NLO

The calculation of NNLO QCD corrections is based on
Czakon, Fiedler, Mitov '15
The calculation of the complete NLO corrections is performed with the EW branch of MadGraph5_aMC@NLO.
 All these orders are taken into
account, without any approximation. All these orders are taken into
account, without any approximation.

NNLO QCD combined with complete-NLO

The calculation of NNLO QCD corrections is based on
Czakon, Fiedler, Mitov '15
The calculation of the complete NLO corrections is performed with the EW branch of MadGraph5_aMC@NLO.

Czakon, Heymes, Mitov, DP, Tsinikos, Zaro '17

reduction of scale unc. due to $E W$ corrections, QCD and QCDxEW do not overlap (with LUXQED)

Reference Predictions

Czakon, Heymes, Mitov, DP, Tsinikos, Zaro '17

already used by CMS and ATLAS,

scale unc. ~PDF unc
$E W$ corrections \sim theory error

scale unc. $<$ PDF unc

Higgs self couplings from single Higgs production

Higgs boson couplings today

CMS-HIG-17-031

Higgs boson couplings today

The Higgs Potential

$$
\begin{array}{c:cc}
V^{\mathrm{SM}}(\Phi)=-\mu^{2}\left(\Phi^{\dagger} \Phi\right)+\lambda\left(\Phi^{\dagger} \Phi\right)^{2} & v=\left(\sqrt{2} G_{\mu}\right)^{-1 / 2} & \mu^{2}=\frac{m_{H}^{2}}{2} \\
V(H)=\frac{m_{H}^{2}}{2} H^{2}+\lambda_{3} v H^{3}+\lambda_{4} H^{4} & \lambda=\frac{m_{H}^{2}}{2 v^{2}} \quad \lambda_{3}^{\mathrm{SM}}=\lambda \quad & \lambda_{4}^{\mathrm{SM}}=\lambda / 4
\end{array}
$$

The Higgs self couplings are completely determined in the SM by the vev and the Higgs mass. On the other hand, Higgs self interactions have not been measured yet.

The measurement of the Higgs self couplings is an important SM test, essential for the study of the Higgs potential.

Possible deviations need to be parametrised via additional parameters, without altering the value of the Higgs mass and the vev.

Interpretations of the additional parameters strongly depend on the theory assumptions!

How do we measure the Higgs self coupling?

Standard Answer: you need to produce at least two Higgs!

Frederix et al. '14

Pheno studies on LHC constraints for κ_{λ} :
Baur et al. '03. Baglio et al.; Papaefstathiou et al. '12. Barger et al.; Yao '13. de Lima et al.; Englert et al.; Liu and Zhang; Wardrope et al. '14. Azatov et al.; Behr et al.; Cao et al.; Dolan et al.; Lu et al. '15.

Latest results in the HH measurement

- The non-resonant HH production processes (ggF) provide a unique chance to probe $\kappa_{\lambda}=\lambda_{H H H} / \lambda_{H H H}^{S M}$ with direct measurements

- Constrain the κ_{λ} by estimating the upper limits of the HH production (assuming SM H decay) with CLs approach

95% CL	Obs.	Exp.
ATLAS [arXiv:1906.02025]	$[-5.0,12.0]$	$[-5.8,12.0]$
CMS [CMS-PAS-HIG-17-030]	$[-11.8,18.8]$	$[-7.1,13.6]$

slide from Kunlin Ran talk (ATLAS)

An additional and complementary strategy for the determination

 (at the LHC) of the Higgs self coupling would be desirable!We can exploit at the LHC the "High Precision for Hard Processes"

Degrassi, Giardino, Maltoni, DP '16

An additional and complementary strategy for the determination

 (at the LHC) of the Higgs self coupling would be desirable!We can exploit at the LHC the "High Precision for Hard Processes"

Degrassi, Giardino, Maltoni, DP '16
and probe the quantum effects (NLO EW) induced by the Higgs self coupling on single Higgs production and decay modes.

An additional and complementary strategy for the determination (at the LHC) of the Higgs self coupling would be desirable!

We can exploit at the LHC the "High Precision for Hard Processes"

Degrassi, Giardino, Maltoni, DP '16
and probe the quantum effects (NLO EW) induced by the Higgs self coupling on single Higgs production and decay modes.

All the single Higgs production and decay processes are affected by an anomalous trilinear (not quartic) Higgs self coupling, parametrized by κ_{λ}.

[^0]
Calculation framework

We assume that the dominant New Physics effects involve the Higgs potential. At NLO EW only the trilinear Higgs self coupling appears; the quartic-coupling dependence enters only at higher orders.

SM

$\begin{aligned} V(H) & =\frac{m_{H}^{2}}{2} H^{2}+\lambda_{3} v H^{3}+\lambda_{4} H^{4} \\ m_{H}^{2} & =2 \lambda v^{2}, \lambda_{3}^{S M}=\lambda, \lambda_{4}^{S M}=\lambda / 4\end{aligned}$

NP parameterised via

$$
\lambda_{3} v H^{3} \equiv \kappa_{\lambda} \lambda_{3}^{S M} v H^{3}
$$

Degrassi, Giardino, Maltoni, DP '16

The possible range of κ_{λ}, even before the comparison with data, depends on the underlying theory assumptions and it applies also to double-Higgs analyses.

Calculation framework

We assume that the dominant New Physics effects involve the Higgs potential. At NLO EW only the trilinear Higgs self coupling appears; the quartic-coupling dependence enters only at higher orders.

SM

$$
\begin{aligned}
V(H) & =\frac{m_{H}^{2}}{2} H^{2}+\lambda_{3} v H^{3}+\lambda_{4} H^{4} \\
m_{H}^{2} & =2 \lambda v^{2}, \lambda_{3}^{S M}=\lambda, \lambda_{4}^{S M}=\lambda / 4
\end{aligned}
$$

NP parameterised via

$$
\lambda_{3} v H^{3} \equiv \kappa_{\lambda} \lambda_{3}^{S M} v H^{3}
$$

Degrassi, Giardino, Maltoni, DP '16

The possible range of κ_{λ}, even before the comparison with data, depends on the underlying theory assumptions and it applies also to double-Higgs analyses.

Equivalent study for only ZH production at e+e- collider in McCullough ' 14
Similar studies in EFT approach for only gluon-fusion with decays into photons in Gorbahn, Haisch '16, and for VBF+VH in Bizon, Gorbahn, Haisch, Zanderighi '16

Numerical results

universal
$\delta \Sigma_{\lambda_{3}} \equiv \frac{\Sigma_{\mathrm{NLO}}-\Sigma_{\mathrm{NLO}}^{\mathrm{SM}}}{\Sigma_{\mathrm{LO}}}=\left(\kappa_{\lambda}-1 \sqrt{C_{1}}+\left(\kappa _ { \lambda } ^ { 2 } - 1 \longdiv { C _ { 2 } } + \mathcal { O } (\kappa _ { \lambda } ^ { 3 } \alpha ^ { 2 }) \quad C _ { 2 } = \frac { \delta Z _ { H } } { (1 - \kappa _ { \lambda } ^ { 2 } \delta Z _ { H }) }\right.\right.$
Process and kinetic dependent

$$
C_{2}=-9.514 \cdot 10^{-4} \text { for } \kappa_{\lambda}= \pm 20 \quad C_{2}=-1.536 \cdot 10^{-3} \text { for } \kappa_{\lambda}=1
$$

Numerical results

universal
$\delta \Sigma_{\lambda_{3}} \equiv \frac{\Sigma_{\mathrm{NLO}}-\Sigma_{\mathrm{NLO}}^{\mathrm{SM}}}{\Sigma_{\mathrm{LO}}}=\left(\kappa_{\lambda}-1 \sqrt{C_{1}}+\left(\kappa_{\lambda}^{2}-1 \sqrt{C_{2}}+\mathcal{O}\left(\kappa_{\lambda}^{3} \alpha^{2}\right) \quad C_{2}=\frac{\delta Z_{H}}{\left(1-\kappa_{\lambda}^{2} \delta Z_{H}\right)}\right.\right.$
Process and kinetic dependent

$$
C_{2}=-9.514 \cdot 10^{-4} \text { for } \kappa_{\lambda}= \pm 20 \quad C_{2}=-1.536 \cdot 10^{-3} \text { for } \kappa_{\lambda}=1
$$

Production: $\delta \sigma_{\lambda_{3}}$

$C_{1}^{\sigma}[\%]$	$g g \mathrm{~F}$	VBF	$W H$	$Z H$	$t \bar{t} H$
8 TeV	0.66	0.65	1.05	1.22	3.78
13 TeV	0.66	0.64	1.03	1.19	3.51

Numerical results

universal
$\delta \Sigma_{\lambda_{3}} \equiv \frac{\Sigma_{\mathrm{NLO}}-\Sigma_{\mathrm{NLO}}^{\mathrm{SM}}}{\Sigma_{\mathrm{LO}}}=\left(\kappa_{\lambda}-1 \sqrt{C_{1}}+\left(\kappa_{\lambda}^{2}-1 \sqrt{C_{2}}+\mathcal{O}\left(\kappa_{\lambda}^{3} \alpha^{2}\right)\right.\right.$
Degrassi, Giardino, Maltoni, DP '16

Process and kinetic dependent

$$
C_{2}=-9.514 \cdot 10^{-4} \text { for } \kappa_{\lambda}= \pm 20 \quad C_{2}=-1.536 \cdot 10^{-3} \text { for } \kappa_{\lambda}=1
$$

Decay: $\delta \Gamma_{\lambda_{3}}$ and $\delta \mathrm{BR}_{\lambda_{3}}$

$C_{1}^{\Gamma}[\%]$	$\gamma \gamma$	$Z Z$	$W W$	$f \bar{f}$	$g g$
on-shell H	0.49	0.83	0.73	0	0.66

$$
\delta \mathrm{BR}_{\lambda_{3}}(i)=\frac{\left(\kappa_{\lambda}-1\right)\left(C_{1}^{\Gamma}(i)-C_{1}^{\Gamma_{\text {tot }}}\right)}{1+\left(\kappa_{\lambda}-1\right) C_{1}^{\Gamma_{\text {tot }}}}
$$

Fitting from LHC current analysis

$$
i \rightarrow H \rightarrow f \quad \quad \quad \mu_{i}^{f} \equiv \mu_{i} \times \mu^{f}
$$

$$
\begin{aligned}
\mu_{i} & =1+\delta \sigma_{\lambda_{3}}(i) \\
\mu^{f} & =1+\delta \mathrm{BR}_{\lambda_{3}}(f)
\end{aligned}
$$

$$
\kappa_{\lambda}=-7
$$

Results for present data (8 TeV)

Minimization of

$$
\chi^{2}\left(\kappa_{\lambda}\right) \equiv \sum_{\bar{\mu}_{i}^{f} \in\left\{\hat{\mu}_{i}^{f}\right\}} \frac{\left(\mu_{i}^{f}\left(\kappa_{\lambda}\right)-\bar{\mu}_{i}^{f}\right)^{2}}{\left(\Delta_{i}^{f}\left(\kappa_{\lambda}\right)\right)^{2}}
$$

$$
\kappa_{\lambda}^{\text {best }}=-0.24, \quad \kappa_{\lambda}^{1 \sigma}=[-5.6,11.2], \quad \kappa_{\lambda}^{2 \sigma}=[-9.4,17.0]
$$

Degrassi, Giardino, Maltoni, DP '16

This alternative strategy is already now competitive and complementary to double-Higgs production measurements!

κ_{λ}-Only results slide from Kunlin Ran talk (ATLAS)

- A likelihood fit is performed to constrain κ_{λ} in the combination of single-Higgs and double-Higgs
- All other Higgs boson couplings are fixed to the $\operatorname{SM}\left(\kappa_{t}=\kappa_{b}=\kappa_{l}=\kappa_{W}=\kappa_{Z}=1\right)$

- $\kappa_{\lambda}=4.6_{-3.8}^{+3.2}=4.6_{-3.5}^{+2.9}$ (stat. $)_{-1.2}^{+1.2}$ (exp. $)_{-0.5}^{+0.7}$ (sig.th.) $)_{-1.0}^{+0.6}$ (bkg.th.) (obs.)
- $\kappa_{\lambda}=1.0_{-3.8}^{+7.3}=1.0_{-3.0}^{+6.2}$ (stat. $)_{-1.7}^{+3.0}(\text { exp. })_{-1.2}^{+1.8}(\text { sig.th. })_{-1.1}^{+1.7}$ (bkg.th.) (exp.)

95\% CL	Obs.	Exp.
H [ATL-PHYS-PUB-2019-009]	$[-3.2,11.9]$	$[-6.2,14.4]$
HH [arXiv:1906.02025]	$[-5.0,12.0]$	$[-5.8,12.0]$
H+HH [ATLAS-CONF-2019-049]	$[-2.3,10.3]$	$[-5.1,11.2]$

- The combination can better constrain κ_{λ}

Combined fit with others EFT parameters

How are limits on κ_{λ} affected by lifting the condition that Higgs interactions with the other particle are SM-like? Di Vita, Grojean, Panico, Riembau, Vantalon '17

Assumptions:

- Consider all the possible EFT dimension-6 operators that enter only in single Higgs production and decay (10 independent parameters).
tree-level: $\delta c_{z}, c_{z z}, c_{z \square}, \hat{c}_{z \gamma}, \hat{c}_{\gamma \gamma}, \hat{c}_{g g}, \delta y_{t}, \delta y_{b}, \delta y_{\tau} \quad$ loop: κ_{λ}
- Consider only inclusive single-Higgs observable (9 independent constraints)

10 parameters vs 9 constraints $\longrightarrow 1$ flat direction so no constraints for the weakest: κ_{λ}

We moved from 1 to 10: no Physics in the middle?
Effect of top chromo-dipole operators (11)?
9 constraints can become 10 (Higgs plus jet, Double Higgs..), or many (look at distributions)

Combined fit with other EFT parameters

Di Vita, Grojean, Panico, Riembau, Vantalon '17 (updated results from HL-HE-LHC report)

Even with 10 independent parameters, using differential distributions, singleHiggs measurements at the HL-LHC can be sensitive to loop-induced anomalous trilinear contributions. Results further improve at HE-LHC (27 TeV).

Single-Higgs differential measurements can improve the constraints from differential measurements in Double Higgs.

C1: kinematic dependence

Maltoni, DP, Shivaji, Zhao '17

Contributions to ttH and HV processes can be seen as induced by a Yukawa potential, giving a Sommerfeld enhancement at the threshold.

The relevance of differential information

Maltoni, DP, Shivaji, Zhao '17
The interplay between additional possible couplings, experimental uncertainties and differential information leads to different results.

In general, differential information improves constraints, especially when additional couplings are considered.

Experimental results (ATLAS) for present data (13 TeV)

$\kappa_{\lambda}, \kappa_{V}$	STXS	1	$1.04_{-0.04}^{+0.05}$	$4.8_{-6.7}^{+7.4}$	$[-6.7,18.4]$
$\kappa_{\lambda}, \kappa_{F}$	STXS	$0.99_{-0.08}^{+0.08}$	1	$4.1_{-4.1}^{+4.3}$	$[-3.2,11.9]$

The presence of other anomalous couplings affects the bounds on the value of the Higgs self coupling.

Limits in a generic Kappa-framework are already available!

Generic model

slide from Kunlin Ran talk (ATLAS)

- To give the most generic measurement, a likelihood fit is performed to constrain simultaneously $\kappa_{\lambda}, \kappa_{W}, \kappa_{Z}, \kappa_{t}, \kappa_{b}$ and κ_{l}

[ATLAS-CONF-2019-049]								
Model	$\kappa_{W}^{+1 \sigma}$	$\kappa_{-1 \sigma}^{+1 \sigma}$	$\kappa_{t}^{+1 \sigma}$	$\kappa_{-1 \sigma}^{+1 \sigma}$	$\kappa_{-1 \sigma}^{+1 \sigma}$	$\kappa_{-1 \sigma}^{+1 \sigma}$	$\kappa_{-1 \sigma}[95 \%$ CL]	
κ_{λ}-only	1	1	1	1	1	$4.6_{-3.8}^{+3.2}$	$[-2.3,10.3]$	obs.
						$1.0_{-3.8}^{+7.3}$	$[-5.1,11.2]$	exp.
Generic	$1.03_{-0.08}^{+0.08}$	$1.10_{-0.09}^{+0.09}$	$1.00_{-0.11}^{+0.12}$	$1.03_{-0.18}^{+0.20}$	$1.06_{-0.16}^{+0.16}$	$5.5_{-5.2}^{+3.5}$	$[-3.7,11.5]$	obs.
	$1.00_{-0.08}^{+0.08}$	$1.00_{-0.08}^{+0.08}$	$1.00_{-0.12}^{+0.12}$	$1.00_{-0.19}^{+0.21}$	$1.00_{-0.15}^{+0.16}$	$1.0_{-4.5}^{+7.6}$	$[-6.2,11.6]$	exp.

- Only the single-Higgs and double-Higgs combination could give enough sensitivity to exploit the generic model

Quartic coupling at lepton colliders

from triple in single Higgs to quartic in double Higgs

Maltoni, DP, Zhao '18

EFT is mandatory, UV divergences have to be renormalised.

$$
\kappa_{3} \equiv \frac{\lambda_{3}}{\lambda_{3}^{\text {SM }}}=1+\frac{c_{6} v^{2}}{\lambda \Lambda^{2}} \equiv 1+\bar{c}_{6}, \quad \kappa_{4} \equiv \frac{\lambda_{4}}{\lambda_{4}^{S M}}=1+\frac{6 c_{6} v^{2}}{\lambda \Lambda^{2}}+\frac{4 c_{8} v^{4}}{\lambda \Lambda^{4}} \equiv 1+6 \bar{c}_{6}+\bar{c}_{8}
$$

$\sigma_{\mathrm{NLO}}^{\mathrm{pheno}}(H H)=\sigma_{\mathrm{LO}}(H H)+\Delta \sigma_{\bar{c}_{6}}(H H)+\Delta \sigma_{\bar{c}_{8}}(H H)$,
$\Delta \sigma_{\bar{c}_{6}}(H H)=\bar{c}_{6}^{3}\left[\sigma_{30}+\sigma_{40} \bar{c}_{6}\right]$,
$\Delta \sigma_{\bar{c}_{8}}(H H)=\bar{c}_{8}\left[\sigma_{01}+\sigma_{11} \bar{c}_{6}+\sigma_{21} \bar{c}_{6}^{2}\right]$.

Triple corrections to the triple Sensitivity quartic

Results

Maltoni, DP, Zhao '18

Quartic coupling at hadron colliders: full result

$$
\begin{aligned}
\sigma_{\mathrm{NLO}}^{\text {pheno }} & =\sigma_{\mathrm{LO}}+\Delta \sigma_{\bar{c}_{6}}+\Delta \sigma_{\bar{c}_{8}} \\
\Delta \sigma_{\bar{c}_{6}} & =\bar{c}_{6}^{2}\left[\sigma_{30} \bar{c}_{6}+\sigma_{40} \bar{c}_{6}^{2}\right]+\tilde{\sigma}_{20} \bar{c}_{6}^{2} \\
\Delta \sigma_{\bar{c}_{8}} & =\bar{c}_{8}\left[\sigma_{01}+\sigma_{11} \bar{c}_{6}+\sigma_{21} \bar{c}_{6}^{2}\right]
\end{aligned}
$$

All 2-loop contributions from c8 and at $c 6^{\wedge} 3$ and $c 6^{\wedge} 4$ order are taken into account and renormalised.
The $\mathrm{m}(\mathrm{HH})$ distribution is exploited in the analysis.
Only $b \bar{b} \gamma \gamma$ signature is considered.
Similar study in: Bizon, Haisch, Rottoli '18

Duhr, Borowka, Maltoni, DP, Shivaji, Zhao '18

Conclusion

For a correct interpretation of current and future measurements and the possible identification of BSM effects, precise predictions and therefore radiative corrections are paramount.

NLO EW corrections cannot be neglected and they can be much larger than order $\sim 1 \%$ effects, especially in the tail of the distributions. (Sudakov logs)
Formally subleading orders may be in reality large. (Top Physics)

EW corrections, involving additional interactions, can be exploited as proxy for New Physics effects via loop corrections. (Higgs self couplings)

For the first time, the calculation of NLO EW and Complete NLO corrections can be performed in a fully automated way, via the Madgraph5 _aMC@NLO framework. https://launchpad.net/mg5amenlo

EXTRA SLIDES

$t \bar{t} W^{+}$: Complete-NLO with resummation at NNLL

Combined scales

Order		$\sigma[\mathrm{fb}]$		$A_{C}[\%]$		
$\mathrm{LO}_{\mathrm{QCD}}$	$233.297(8)$	$\begin{aligned} & +64.88(+27.8 \%) \\ & -47.26(-20.3 \%) \end{aligned}$	$\begin{aligned} & +6.16(+2.6 \%) \\ & -6.16(-2.6 \%) \end{aligned}$		0	
$\mathrm{NLO}_{\mathrm{QCD}}$	365.66(3)	$+57.95(+15.85 \%)$ $-49.27(-13.5 \%)$	$\begin{aligned} & +8.35(+2.3 \%) \\ & -8.35(-2.3 \%) \end{aligned}$	2.68 (1)	$+0.66(+24.6 \%)$ $-0.47(-17.4 \%$	$\begin{aligned} & +0.08(+2.9 \%) \\ & -0.08(-2.9 \%) \end{aligned}$
NLO	387.24 (4)	$\begin{aligned} & +62.05(+16.0 \%) \\ & -52.39(-13.5 \%) \end{aligned}$	$\begin{aligned} & +8.25(+2.1 \%) \\ & -8.25(-2.1 \%) \end{aligned}$	2.85 (1)	$+0.60(+21.1 \%)$ $-0.42(-14.7 \%)$	$\begin{aligned} & +0.09(+3.2 \%) \\ & -0.09(-3.2 \%) \end{aligned}$
$n N L O{ }_{\text {QCD }}$	$371.72(3)$	$\begin{aligned} & +51.11(+13.8 \%) \\ & -35.88(-9.7 \%) \end{aligned}$	$\begin{aligned} & +8.50(+2.3 \%) \\ & -8.50(-2.3 \%) \end{aligned}$	$3.30(2)$	$\begin{aligned} & +0.19(+5.8 \%) \\ & -0.08(-2.5 \%) \end{aligned}$	$\begin{aligned} & +0.09(+2.6 \%) \\ & -0.09(-2.6 \%) \end{aligned}$
nNLO	393.29(4)	$\begin{aligned} & +55.21(+14.0 \%) \\ & -39.00(-9.9 \%) \end{aligned}$	$\begin{aligned} & +8.40(+2.1 \%) \\ & -8.40(-2.1 \%) \end{aligned}$	$3.43(2)$	$\begin{aligned} & +0.21(+6.2 \%) \\ & -0.11(-3.3 \%) \end{aligned}$	$\begin{aligned} & +0.10(+2.9 \%) \\ & -0.10(-2.9 \%) \end{aligned}$
$\mathrm{NLO}_{\mathrm{QCD}}+\mathrm{NNLL}$	$362.59(8)$	$\begin{aligned} & +47.94(+13.2 \%) \\ & -29.95(-8.3 \%) \end{aligned}$	$\begin{aligned} & +8.26(+2.3 \%) \\ & -8.26(-2.3 \%) \end{aligned}$		-	
$\mathrm{NLO}+\mathrm{NNLL}$	$384.17(9)$	$\begin{aligned} & +51.52(+13.4 \%) \\ & -32.36(-8.4 \%) \end{aligned}$	$\begin{aligned} & +8.16(+2.1 \%) \\ & -8.16(-2.1 \%) \end{aligned}$		-	

$t \bar{t} H$: Complete-NLO with resummation at NNLL

Combined scales

Order		$\sigma[\mathrm{fb}]$		$A_{C}[\%]$	
$\mathrm{LO}_{\mathrm{QCD}}$	$336.25(3)$	$+109.98(+32.7 \%)$ $-77.07(-22.9 \%)$	$\begin{aligned} & +7.42(+2.2 \%) \\ & -7.42(-2.2 \%) \end{aligned}$		0
$\mathrm{NLO}_{\mathrm{QCD}}$	467.96(5)	$\begin{aligned} & +45.57(+9.7 \%) \\ & -53.98(-11.5 \%) \end{aligned}$	$\begin{aligned} & +11.31(+2.4 \%) \\ & -11.31(-2.4 \%) \end{aligned}$	$0.88(1)$	$\begin{aligned} & +0.25(+28.9 \%)+0.04(+4.2 \%) \\ & -0.17(-19.2 \%)-0.04(-4.2 \%) \end{aligned}$
NLO	479.99(5)	$\begin{aligned} & +47.46(+9.9 \%) \\ & -55.42(-11.5 \%) \end{aligned}$	$\begin{aligned} & +11.45(+2.4 \%) \\ & -11.45(-2.4 \%) \end{aligned}$	$1.05(1)$	$\begin{aligned} & +0.27(+25.5 \%)+0.04(+4.0 \%) \\ & -0.18(-16.8 \%)-0.04(-4.0 \%) \end{aligned}$
$n N L O Q_{\text {QCD }}$	$490.27(6)$	$+18.56(+3.8 \%)$ $-9.50(-1.9 \%)$	$\begin{aligned} & +11.93(+2.4 \%) \\ & -11.93(-2.4 \%) \end{aligned}$	$0.87(4)$	$+0.23(+26.4 \%)+0.04(+5.1 \%)$ $-0.01(-1.5 \%)-0.04(-5.1 \%)$
nNLO	502.31(6)	$\begin{aligned} & +20.32(+4.0 \%) \\ & -10.95(-2.2 \%) \end{aligned}$	$\begin{aligned} & +12.06(+2.4 \%) \\ & -12.06(-2.4 \%) \end{aligned}$	$1.03(4)$	$\begin{aligned} & +0.20(+19.5 \%)+0.05(+4.7 \%) \\ & -0.03(-2.6 \%)-0.05(-4.7 \%) \end{aligned}$
$\mathrm{NLO}_{\mathrm{QCD}}+\mathrm{NNLL}$	$484.33(7)$	$\begin{aligned} & +39.60(+8.2 \%) \\ & -29.43(-6.1 \%) \end{aligned}$	$\begin{aligned} & +11.78(+2.4 \%) \\ & -11.78(-2.4 \%) \end{aligned}$		-
$\mathrm{NLO}+\mathrm{NNLL}$	$496.36(7)$	$\begin{aligned} & +38.64(+7.8 \%) \\ & -29.35(-5.9 \%) \end{aligned}$	$\begin{aligned} & +11.92(+2.4 \%) \\ & -11.92(-2.4 \%) \end{aligned}$		-

$t \bar{t} Z$: Complete-NLO with resummation at NNLL

Combined scales

Order	$\sigma[\mathrm{fb}]$			$A_{C}[\%]$		
$\mathrm{LO}_{\text {QCD }}$	484.26(4)	$\begin{aligned} & +171.26(+35.4 \% \\ & -117.32(-24.2 \% \end{aligned}$	$\begin{aligned} & +11.05(+2.3 \%) \\ &)-11.05(-2.3 \%) \end{aligned}$		0	
$\mathrm{NLO}_{\mathrm{QCD}}$	751.2(1)	$\begin{aligned} & +111.1(+14.8 \%) \\ & -108.5(-14.4 \%) \end{aligned}$	$\begin{aligned} & +17.7(+2.4 \%) \\ & -17.7(-2.4 \%) \end{aligned}$	0.79(2)	$\begin{aligned} & +0.23(+29.0 \%) \\ & { }_{-0.15(-19.1 \%)} \end{aligned}$	$\begin{aligned} & +0.05(+6.3 \%) \\ & { }_{-0.05(-6.3 \%)} \end{aligned}$
NLO	759.5(1)	$\begin{aligned} & +110.1(+14.5 \%) \\ & -107.8(-14.2 \%) \end{aligned}$	$\begin{aligned} & +17.9(+2.4 \%) \\ & -17.9(-2.4 \%) \end{aligned}$	0.87(2)	$\begin{aligned} & +0.22(+25.0 \%) \\ & -0.14(-16.2 \%) \end{aligned}$	$\begin{aligned} & +0.05(+5.3 \%) \\ & { }_{-0.05(-5.3 \%)} \end{aligned}$
$n \mathrm{NLO}_{\mathrm{QCD}}$	817.1(1)	$\begin{aligned} & +42.3(+5.2 \%) \\ & -29.9(-3.7 \%) \end{aligned}$	$\begin{aligned} & +19.3(+2.4 \%) \\ & -19.3(-2.4 \%) \end{aligned}$	0.96(4)	$\begin{aligned} & +0.02(+1.7 \%) \\ & { }_{-0.07(-7.5 \%)} \end{aligned}$	$\begin{aligned} & +0.06(+5.8 \%) \\ & -0.06(-5.8 \%) \end{aligned}$
nNLO	825.4(1)	$\begin{aligned} & +41.3(+5.0 \%) \\ & { }_{-29.3(-3.5 \%)} \end{aligned}$	$\begin{aligned} & +19.5(+2.4 \%) \\ & -19.5(-2.4 \%) \end{aligned}$	1.03(4)	$\begin{aligned} & +0.01(+1.4 \%) \\ & { }_{-0.07(-6.3 \%)} \end{aligned}$	$\begin{aligned} & +0.05(+5.2 \%) \\ & -0.05(-5.2 \%) \end{aligned}$
$\mathrm{NLO}_{\mathrm{QCD}}+\mathrm{NNLL}$	802.6(2)	$\begin{aligned} & +89.4(+11.1 \%) \\ & -78.1(-9.7 \%) \end{aligned}$	$\begin{aligned} & +19.0(+2.4 \%) \\ & -19.0(-2.4 \%) \end{aligned}$		-	
NLO+NNLL	810.9(2)	$\begin{aligned} & +89.2(+11.0 \%) \\ & -77.8(-9.6 \%) \\ & \hline \end{aligned}$	$\begin{aligned} & +19.1(+2.4 \%) \\ & -19.1(-2.4 \%) \end{aligned}$		-	

EWPO (past and future)

Precision Electroweak measurements on the Z resonance hep-ex/0509008

EWPO were crucial in order to constrain the H boson and top-quark mass.
Today EWPO can be used to check the internal consistency of the SM.
In models where they can be calculated, as in the MSSM, EWPO can be used to constrain the parameter space.

Czakon, Heymes, Mitov, DP, Tsinikos, Zaro '17

ADDITIVE
 MULTIPLICATIVE

NNLO vs MEPS@NLO, including Complete NLO

Predictions are compatible, with a smaller scale unc. for the NNLO case. MEPS@NLO further supports the multiplicative approach.

NNLO vs MEPS@NLO, including Complete NLO

The pt distribution for the softest top and the region with small values for the hardest top are pathological at fixed order: MEPS@NLO cures this problem.

Combined fit with other EFT parameters

Incl. single Higgs data

Moreover, trilinear loop-induced contributions affect the precision in the determination of the other parameters entering at the tree level.

Di Vita, Grojean, Panico, Riembau, Vantalon '17

The Master Formula

The term Σ_{NLO} is the prediction for a generic observable Σ including the effects induced by an anomalous $\lambda_{3} \equiv \kappa_{\lambda} \lambda_{3}^{S M}$. LO is meant dressed by QCD corrections.

$$
\begin{aligned}
& \Sigma_{\mathrm{NLO}}=Z_{H} \Sigma_{\mathrm{LO}}\left(1+\kappa_{\lambda} C_{1}\right) \\
& \Sigma_{\mathrm{NLO}}^{\mathrm{SM}}=\Sigma_{\mathrm{LO}}\left(1+C_{1}+\delta Z_{H}\right)
\end{aligned}
$$

$$
\begin{array}{ll}
\delta \Sigma_{\lambda_{3}} \equiv \frac{\Sigma_{\mathrm{NLO}}-\Sigma_{\mathrm{NLO}}^{\mathrm{SM}}}{\Sigma_{\mathrm{LO}}} & =\left(\kappa_{\lambda}-1\right) \sqrt{C_{1}}+\left(\kappa_{\lambda}^{2}-1\right) \sqrt{C_{2}}+\mathcal{O}\left(\kappa_{\lambda}^{3} \alpha^{2}\right) \\
C_{2}=\frac{\delta Z_{H}}{\left(1-\kappa_{\lambda}^{2} \delta Z_{H}\right)} & \text { Process and kinetic dependent }
\end{array} \quad \begin{aligned}
& \mathcal{O}\left(\kappa_{\lambda}^{3} \alpha_{86}^{2}\right) \simeq \kappa_{\lambda}^{3} C_{1} \delta Z_{H} \lesssim 10 \%
\end{aligned}\left|\kappa_{\lambda}\right| \lesssim 20 .
$$

The Master Formula

The term Σ_{NLO} is the prediction for a generic observable Σ including the effects induced by an anomalous $\lambda_{3} \equiv \kappa_{\lambda} \lambda_{3}^{S M}$. LO is meant dressed by QCD corrections.

$$
\Sigma_{\mathrm{NLO}}=Z_{H} \Sigma_{\mathrm{LO}}\left(1+\kappa \sqrt{C_{1}}\right)
$$

$$
\begin{aligned}
& C_{1}^{\Gamma}=\frac{\int d \Phi 2 \Re\left(\mathcal{M}^{0 *} \mathcal{M}_{\lambda_{3}^{\mathrm{SM}}}^{1}\right)}{\int d \Phi\left|\mathcal{M}^{0}\right|^{2}} \\
& C_{1}^{\sigma}=\frac{\sum_{i, j} \int d x_{1} d x_{2} f_{i}\left(x_{1}\right) f_{j}\left(x_{2}\right) 2 \Re\left(\mathcal{M}_{i j}^{0, \mathcal{M}_{2}^{1}}{ }_{2}^{1}{ }^{3}{ }^{2}{ }_{2}\right) d \Phi}{\sum_{i, j} \int d x_{1} d x_{2} f_{i}\left(x_{1}\right) f_{j}\left(x_{2}\right) \mid \mathcal{M}_{i j}^{0}{ }^{2} d \Phi}
\end{aligned}
$$

The Master Formula

The term Σ_{NLO} is the prediction for a generic observable Σ including the effects induced by an anomalous $\lambda_{3} \equiv \kappa_{\lambda} \lambda_{3}^{S M}$. LO is meant dressed by QCD corrections.

$$
\Sigma_{\mathrm{NLO}}=Z_{H} \Sigma_{\mathrm{LO}}\left(1+\kappa_{\lambda} C_{1}\right)
$$

$$
Z_{H}=\frac{1}{1-\kappa_{\lambda}^{2} \delta Z_{H}}
$$

$\delta Z_{H}=-\frac{9}{16} \frac{2\left(\lambda_{3}^{\mathrm{SM}}\right)^{2}}{m_{H}^{2} \pi^{2}}\left(\frac{2 \pi}{3 \sqrt{3}}-1\right)$

The wave-function normalization receives corrections that depend quadratically on λ_{3}.
For large κ_{λ}, the result cannot be linearized and must be resummed.

For a sensible resummation

NLO EW and anomalous couplings

If we modify a SM coupling via $c_{i}^{\mathrm{SM}} \rightarrow c_{i} \equiv \kappa_{i} c_{i}^{\mathrm{SM}}$, do higher-order computations remain in general finite (UV cancellation)? NO

Exceptions

The renormalization of c_{i} does not involve EW corrections

Standard "kappa framework" (No EW corrections possible)

Double Higgs dependence on κ_{λ} (No EW corrections possible)
c_{i} is involved in the renormalization of other couplings, but it is not renormalized

> Sensitivity of ttbar production on κ_{t} (NLO EW effect)

Kühn et al. '13; Beneke et al. '15
Sensitivity of single Higgs production on κ_{λ} (NLO EW effect)

NLO EW and anomalous couplings

If we modify a SM coupling via $c_{i}^{\mathrm{SM}} \rightarrow c_{i} \equiv \kappa_{i} c_{i}^{\mathrm{SM}}$, do higher-order computations remain in general finite (UV cancellation)? NO^{-}

Exceptions

The renormalization of c_{i} does not involve EW corrections
c_{i} is involved in the renormalization of other couplings, but it is not renormalized

In all cases, $\Lambda_{\mathrm{N} P}$ has to be assumed to be not too large in order to have higher-order corrections under control.

In our case, linear EFT (c6) and anomalous coupling (κ_{λ}) are equivalent at NLO EW.

Calculation of C_{1} coefficients

1 Loop Case : FeynArts, FormCalc, Feyncalc

ttH

decay and HV, VBF

Cannot be expressed via

$$
\kappa_{t} \quad \kappa_{Z}, \kappa_{W}
$$

Standard "kappa framework" does not capture the full effect

2 Loop Case : FeynArts and expansions

Large top-mass expansion with terms up to $\mathcal{O}\left(m_{H}^{6} / m_{t}^{6}\right)$

Taylor expansion in $q^{2} /\left(4 m_{W}^{2}\right), q^{2} /\left(4 m_{H}^{2}\right)$ up to $\mathcal{O}\left(q^{6} / m^{6}\right)$

Calculation performed in unitary gauge in order to identify genuine λ_{3}-dependence and keep only kinematic m_{H}-dependence

EWPO: dependence on the Higgs self coupling

The trilinear coupling enters the two-loop relations among $\quad m_{W}$ and $\sin ^{2} \theta_{\mathrm{eff}}^{\mathrm{lep}}$ and the EW input parameters. At two-loop, there is not dependence on the quadrilinear coupling.

Degrassi, Fedele, Giardino '17

$$
\begin{array}{ll}
m_{W}^{2}=\frac{\hat{\rho} m_{Z}^{2}}{2}\left\{1+\left[1-\frac{4 \hat{A}^{2}}{m_{Z}^{2} \hat{\rho}}\left(1+\Delta \hat{r}_{W}\right)\right]^{1 / 2}\right\} & \sin ^{2} \theta_{\mathrm{eff}}^{\mathrm{lep}}=\hat{k}_{\ell}\left(m_{Z}^{2}\right) \hat{s}^{2}, \quad \hat{k}_{\ell}\left(m_{Z}^{2}\right)=1+\delta \hat{k}_{\ell}\left(m_{Z}^{2}\right) \\
\hat{A}=\left(\pi \hat{\alpha}\left(m_{Z}\right) /\left(\sqrt{2} G_{\mu}\right)\right)^{1 / 2} & \hat{s}^{2}=\frac{1}{2}\left\{1-\left[1-\frac{4 \hat{A}^{2}}{m_{Z}^{2} \hat{\rho}}\left(1+\Delta \hat{r}_{W}\right)\right]^{1 / 2}\right\} \\
\cdots \\
\hat{\rho} \equiv \frac{m_{W}^{2}}{m_{Z}^{2} \hat{c}^{2}}=\frac{1}{1-Y_{\overline{M S}}} \quad \begin{array}{l}
\text { affected } \\
\text { by к } \lambda
\end{array} & \frac{G_{\mu}}{\sqrt{2}}=\frac{\pi \hat{\alpha}\left(m_{Z}\right)}{2 m_{W}^{2} \hat{s}^{2}}\left(1+\Delta \hat{r}_{W}\right)
\end{array}
$$

EWPO: dependence on the Higgs self coupling

Denoting as O either m_{W} or $\sin ^{2} \theta_{\text {eff }}^{\text {lep }}$ one can write

$$
O=O^{\mathrm{SM}}\left[1+\left(\kappa_{\lambda}-1\right) C_{1}+\left(\kappa_{\lambda}^{2}-1\right) C_{2}\right]
$$

	C_{1}	C_{2}
m_{W}	6.27×10^{-6}	-1.72×10^{-6}
$\sin ^{2} \theta_{\text {eff }}^{\text {lep }}$	-1.56×10^{-5}	4.55×10^{-6}

Degrassi, Fedele, Giardino '17

$$
\begin{aligned}
& m_{W}=80.370 \pm 0.019 \mathrm{GeV} \\
& \sin ^{2} \theta_{\mathrm{eff}}^{\mathrm{lep}}=0.23185 \pm 0.00035
\end{aligned}
$$

ggF+VBF (8 TeV)

$\kappa_{\lambda}^{\text {best }}=-0.24, \quad \kappa_{\lambda}^{1 \sigma}=[-5.6,11.2], \quad \kappa_{\lambda}^{2 \sigma}=[-9.4,17.0]$
ggF+VBF (8 TeV) + EWPO
$\kappa_{\lambda}^{\text {best }}=0.5, \quad \kappa_{\lambda}^{1 \sigma}=[-4.7,8.9], \quad \kappa_{\lambda}^{2 \sigma}=[-8.2,13.7]$

EWPO: dependence on the Higgs self coupling

Equivalent results can be also found looking at S and T oblique parameters.

$$
\begin{aligned}
& S=-0.000138\left(\kappa_{\lambda}^{2}-1\right)+0.000456\left(\kappa_{\lambda}-1\right) \\
& T=0.000206\left(\kappa_{\lambda}^{2}-1\right)-0.000736\left(\kappa_{\lambda}-1\right)
\end{aligned}
$$

$$
-14.0 \leq \kappa_{\lambda} \leq 17.4
$$

Kribs, Maier, Rzehak, Spannowsky, Waite '17

How large can be the self couplings?

Di Luzio, Gröber, Spannowsky '17

- EFT is not the right framework for extracting bounds on Higgs self couplings from the stability of the vacuum.
- General bounds can be extracted from perturbativiy arguments.

The $J=0$ partial wave is found to be

$$
a_{h h \rightarrow h h}^{0}=-\frac{1}{2} \frac{\sqrt{s\left(s-4 m_{h}^{2}\right)}}{16 \pi s}\left[\lambda_{h h h}^{2}\left(\frac{1}{s-m_{h}^{2}}-2 \frac{\log \frac{s-3 m_{h}^{2}}{m_{h}^{2}}}{s-4 m_{h}^{2}}\right)+\lambda_{h h h h}\right]
$$

$$
\left|\operatorname{Re} a_{h h \rightarrow h h}^{0}\right|<1 / 2 \longmapsto \quad\left|\lambda_{h h h} / \lambda_{h h h}^{\mathrm{SM}}\right| \lesssim 6.5 \quad \text { and } \quad\left|\lambda_{h h h h} / \lambda_{h h h h}^{\mathrm{SM}}\right| \lesssim 65
$$

Similar bounds on the trilinear by requiring for any external momenta:

Combined fit with others EFT parameters

How are limits on κ_{λ} affected by lifting the condition that Higgs interactions with the other particle are SM-like? Di Vita, Grojean, Panico, Riembau, Vantalon '17

Assumptions:

- Consider all the possible EFT dimension-6 operators that enter only in single Higgs production and decay (10 independent parameters).
tree-level: $\delta c_{z}, c_{z z}, c_{z \square}, \hat{c}_{z \gamma}, \hat{c}_{\gamma \gamma}, \hat{c}_{g g}, \delta y_{t}, \delta y_{b}, \delta y_{\tau} \quad$ loop: κ_{λ}
- Consider only inclusive single-Higgs observable (9 independent constraints)

10 parameters vs 9 constraints $\longrightarrow 1$ flat direction so no constraints for the weakest: κ_{λ}

We moved from 1 to 10: no Physics in the middle?
Effect of top chromo-dipole operators (11)?
9 constraints can become 10 (Higgs plus jet, Double Higgs..), or many (look at distributions)

Combined fit with others EFT parameters

$$
\begin{align*}
\mathcal{L} \supset & \frac{h}{v}\left[\delta c_{w} \frac{g^{2} v^{2}}{2} W_{\mu}^{+} W^{-\mu}+\delta c_{z} \frac{\left(g^{2}+g^{\prime 2}\right) v^{2}}{4} Z_{\mu} Z^{\mu}\right. \\
& +c_{w w} \frac{g^{2}}{2} W_{\mu \nu}^{+} W_{-\mu \nu}+c_{w \square} g^{2}\left(W_{\mu}^{+} \partial_{\nu} W_{+\mu \nu}+\text { h.c. }\right)+\hat{c}_{\gamma \gamma} \frac{e^{2}}{4 \pi^{2}} A_{\mu \nu} A^{\mu \nu} \\
& \left.+c_{z \square} g^{2} Z_{\mu} \partial_{\nu} Z^{\mu \nu}+c_{\gamma \square} g g^{\prime} Z_{\mu} \partial_{\nu} A^{\mu \nu}+c_{z z} \frac{g^{2}+g^{\prime 2}}{4} Z_{\mu \nu} Z^{\mu \nu}+\hat{c}_{z \gamma} \frac{e \sqrt{g^{2}+g^{\prime 2}}}{2 \pi^{2}} Z_{\mu \nu} A^{\mu \nu}\right] \\
& +\frac{g_{s}^{2}}{48 \pi^{2}}\left(\hat{c}_{g g} \frac{h}{v}+\hat{c}_{g g}^{(2)} \frac{h^{2}}{2 v^{2}}\right) G_{\mu \nu} G^{\mu \nu}-\sum_{f}\left[m_{f}\left(\delta y_{f} \frac{h}{v}+\delta y_{f}^{(2)} \frac{h^{2}}{2 v^{2}}\right) \bar{f}_{R} f_{L}+\text { h.c. }\right] \\
& -\left(\kappa_{\lambda}-1\right) \lambda_{3}^{S M} v h^{3}, \tag{2.5}
\end{align*}
$$

Di Vita, Grojean, Panico, Riembau, Vantalon '17

$$
\begin{aligned}
& \delta c_{w}=\delta c_{z}, \\
& c_{w w}=c_{z z}+2 \frac{\pi^{2} g^{\prime 2}}{g^{2}+g^{\prime 2}} \hat{c}_{z \gamma}+\frac{9 \pi^{2} g^{\prime 4}}{2\left(g^{2}+g^{\prime 2}\right)^{2}} \hat{c}_{\gamma \gamma}, \\
& c_{w \square}=\frac{1}{g^{2}-g^{\prime 2}}\left[g^{2} c_{z \square}+g^{\prime 2} c_{z z}-e^{2} \frac{\pi^{2} g^{\prime 2}}{g^{2}+g^{\prime 2}} \hat{c}_{\gamma \gamma}-\left(g^{2}-g^{\prime 2}\right) \frac{\pi^{2} g^{\prime 2}}{g^{2}+g^{\prime 2}} \hat{c}_{z \gamma}\right], \\
& c_{\gamma \square}=\frac{1}{g^{2}-g^{\prime 2}}\left[2 g^{2} c_{z \square}+\left(g^{2}+g^{\prime 2}\right) c_{z z}-\pi^{2} e^{2} \hat{c}_{\gamma \gamma}-\pi^{2}\left(g^{2}-g^{\prime 2}\right) \hat{c}_{z \gamma}\right], \\
& \hat{g}_{g(2)}^{(2)}=\hat{c}_{g g}, \\
& \delta y_{f}^{(2)}=3 \delta y_{f}-\delta c_{z} .
\end{aligned}
$$

Combined fit with others EFT parameters

Combination with Double Higgs at HL-LHC.

HL- HE-LHC Report WG2

Quartic coupling at hadron colliders: first estimate

from talk of Luca Rottoli

$\kappa_{3}=1$
$\kappa_{4} \in[-20,29]$
Profiling over $\kappa_{3} \quad \kappa_{4} \in[-17,25]$

The $\mathrm{m}(\mathrm{HH})$ distribution is e in the analysis.

Bizon, Haisch, Rottoli '18

$$
\kappa_{3} \sim 1 \rightarrow\left|\kappa_{4}\right| \lesssim 31
$$

for sensible results (perturbativity)

[^0]: All the different signal strengths μ_{i}^{f} have a different dependence on a single parameter κ_{λ}, which can thus be constrained via a global fit.

