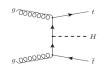


On $t\bar{t}H$ differential measurements at the LHC

Andrea Giammanco, <u>Hesham El Faham</u>, Pietro Vischia Solstice meeting, ULB, 19thDecember 2019

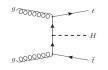

Centre for Cosmology, Particle Physics and Phenomenology (CP3), Université Catholique de Louvain, Belgium

- Why *ttH* production is important?
- How $t\bar{t}H$ differential measurements are important?
- Generic overview of the experimental analysis in CMS.
- Explain our current standing and show some preliminary results.
- Summarize and touch on near-future plans.

Why $t\bar{t}H$ is important?

Recall:

- Higgs boson couples to fermions in a Yukawa-type interaction: $y_f \propto m_f$
- The top quark is the heaviest fermion we know, i.e. not kinematically possible to look for $H \rightarrow t\bar{t}$ so we look for $t\bar{t}H$ production.

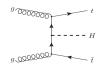

But why knowing $y_{f=t}$ is important?

- y_t should be the strongest compared to other couplings.
- y_t is sensitive to new undiscovered particles, i.e new physics, and therefore,

understand. If y_t agrees with what we predict within uncertainty \rightarrow need more data, precision measurements, precise calculations, etc.

Recall:

- Higgs boson couples to fermions in a Yukawa-type interaction: $y_f \propto m_f$
- The top quark is the heaviest fermion we know, i.e. not kinematically possible to look for $H \rightarrow t\bar{t}$ so we look for $t\bar{t}H$ production.


But why knowing $y_{f=t}$ is important?

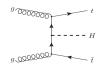
- y_t should be the strongest compared to other couplings.
- y_t is sensitive to new undiscovered particles, i.e new physics, and therefore,
 - if y_t agrees to what we predict then its good \rightarrow we understand.

if y_t agrees with what we predict within uncertainty → need more data, precision measurements, precise calculations, etc.

Recall:

- Higgs boson couples to fermions in a Yukawa-type interaction: $y_f \propto m_f$
- The top quark is the heaviest fermion we know, i.e. not kinematically possible to look for $H \rightarrow t\bar{t}$ so we look for $t\bar{t}H$ production.

But why knowing $y_{f=t}$ is important?

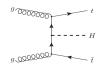

- y_t should be the strongest compared to other couplings.
- y_t is sensitive to new undiscovered particles, i.e new physics, and therefore,
 - if y_t agrees to what we predict then its good \rightarrow we understand.
 - if y_t doesn't agree to what we predict then its good \rightarrow we don't understand.

in uncertainty \rightarrow need more data,

precision measurements, precise calculations, etc.

Recall:

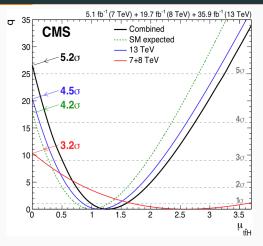
- Higgs boson couples to fermions in a Yukawa-type interaction: $y_f \propto m_f$
- The top quark is the heaviest fermion we know, i.e. not kinematically possible to look for $H \rightarrow t\bar{t}$ so we look for $t\bar{t}H$ production.



But why knowing $y_{f=t}$ is important?

- y_t should be the strongest compared to other couplings.
- y_t is sensitive to new undiscovered particles, i.e new physics, and therefore,
 - if y_t agrees to what we predict then its good \rightarrow we understand.
 - if y_t doesn't agree to what we predict then its good \rightarrow we don't understand.
 - if y_t agrees with what we predict **within uncertainty** \rightarrow need more data, precision measurements, precise calculations, etc.

Recall:


- Higgs boson couples to fermions in a Yukawa-type interaction: $y_f \propto m_f$
- The top quark is the heaviest fermion we know, i.e. not kinematically possible to look for $H \rightarrow t\bar{t}$ so we look for $t\bar{t}H$ production.

But why knowing $y_{f=t}$ is important?

- y_t should be the strongest compared to other couplings.
- y_t is sensitive to new undiscovered particles, i.e new physics, and therefore,
 - if y_t agrees to what we predict then its good \rightarrow we understand.
 - if y_t doesn't agree to what we predict then its good \rightarrow we don't understand.
 - if y_t agrees with what we predict within uncertainty \rightarrow keep hiring PhD students...

The observation of $t\bar{t}H$ at CMS cms-HIG-17-035

- Excess of events is observed with significance of 5.2σ over the expectation from the background-only hypothesis.
- Reported signal strength $\mu_{\bar{t}tH} = 1.26^{+0.31}_{-0.26}$, with SM expectation being $\mu_{\bar{t}tH} = 1$.

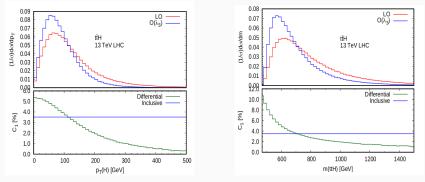
How $t\bar{t}H$ differential measurements are important?

arxiv 1709.08649v2 and 1607.04251v3

$$V(H) = \frac{1}{2}m_H^2 H^2 + \frac{\lambda_3}{3}vH^3 + \frac{1}{4}\lambda_4 H^4 + O(H^5)$$
(1)

At low energies, new physics might alter the trilinear coupling, λ_3 . Single Higgs processes are sensitive to λ_3 via one-loop corrections.

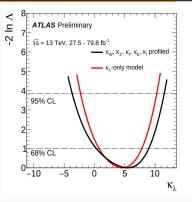
A generic observable, Σ


$$\Sigma_{\lambda_3}^{BSM} \propto Z_H^{BSM} \Sigma_{LO}(1+k_3C_1), \qquad \lambda_3 = k_3 \lambda_3^{SM}, \qquad Z_H^{BSM} = \frac{1}{1-(k_3^2-1)\delta Z_H}.$$
 (2)

$$\Sigma_{\lambda_3}^{SM} \propto \Sigma_{LO}(1 + C_1), \qquad k_3 \to 1$$
 (3)

and C_1 is process- and kinematic-dependent component.

 $^{1}\mbox{Corresponds to wave-function renormalization where new physics is resummed at one loop.$


Differential distributions have non-flat dependence on λ_3 , i.e. relative corrections due to λ_3 is $\propto C_1$,

- C_1 at inclusive level for $t\bar{t}H$ is 3.52%.
- $C_1 \sim 5\%$ for P_T and $\sim 10\%$ for invariant mass distributions on differential level.

Indirect effects from modified Higgs self-coupling are significant in the $t\bar{t}H$ channel.

Experimental limits on λ_3 atlas-conf-2019-049

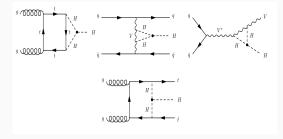


Fig: examples of one loop λ_3 -dependent diagrams in single-Higgs production. Double-Higgs diagrams are not shown.

- LHC global fit of single and double Higgs analyses combined.
- k_λ-only model² uses the assumption that new physics is expected to appear only as a modification of Higgs self-coupling.
- More generic models (profiled parameters) allows to test BSM models that modify other Higgs couplings at the same time.
- For $t\bar{t}H$ production no differential information was used.

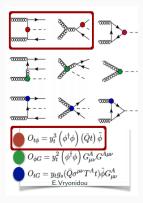
 $^{^{2}}k_{\lambda}$ here is equivalent to the coupling modifier, k_{3} , shown earlier.

arxiv 1612.00283v1

Standard Model Effective Field theory (SMEFT): the SM augmented by higher dimension operators encapsulating new physics effects at scale Λ well above the electroweak scale,

$$\mathcal{L}_{EFT} = \mathcal{L}_{SM} + \sum_{i} \frac{C_{i}^{(6)}}{\Lambda^{2}} \mathcal{O}_{i}^{(6)} + \mathcal{O}^{(8)}(\Lambda^{-4}) + h.c.$$
(4)

At 1-loop level for single Higgs processes, anomalous coupling and SMEFT frameworks are equivalent³ in determining λ_3 via $\mathcal{O}_6 = -\lambda (\phi^{\dagger} \phi)^3$.

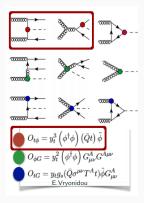

Kinematical distributions provide an important handle on the determination of Higgs properties

³Single Higgs processes are not sensitive to λ_4 at one loop.

See arxiv 1802.07237v1 for EFT analysis recipe and 1607.05330v2 for the discussion on $t\bar{t}H$

Constrain the $t\bar{t}H$ relevant operators by probing Top-Higgs interaction

• Interested in the re-scaling of the Yukawa coupling in the SM



- Define observables at the particle-level in fiducial phase-space.
- For each observable, compute the linear and the quadratic contribution of the dim-6
- operator.
- Compare predictions with the measured observable and the estimated SM contribution to constrain the Wilson coefficients.

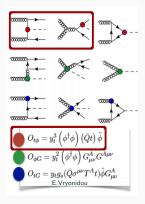
See arxiv 1802.07237v1 for EFT analysis recipe and 1607.05330v2 for the discussion on $t\bar{t}H$

Constrain the $t\bar{t}H$ relevant operators by probing Top-Higgs interaction

• Interested in the re-scaling of the Yukawa coupling in the SM

• Define observables at the particle-level in fiducial phase-space.

For each observable, compute the linear and the quadratic contribution of the dim-6

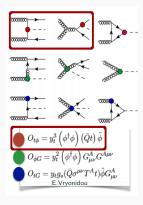

operator.

Compare predictions with the measured observable and the estimated SM contribution to constrain the Wilson coefficients.

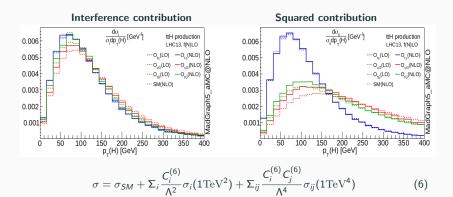
See arxiv 1802.07237v1 for EFT analysis recipe and 1607.05330v2 for the discussion on $t\bar{t}H$

Constrain the $t\bar{t}H$ relevant operators by probing Top-Higgs interaction

• Interested in the re-scaling of the Yukawa coupling in the SM


- Define observables at the particle-level in fiducial phase-space.
- For each observable, compute the linear and the quadratic contribution of the dim-6 operator.

Compare predictions with the measured observable and the estimated SM contribution to constrain the Wilson coefficients.


See arxiv 1802.07237v1 for EFT analysis recipe and 1607.05330v2 for the discussion on $t\bar{t}H$

Constrain the $t\bar{t}H$ relevant operators by probing Top-Higgs interaction

• Interested in the re-scaling of the Yukawa coupling in the SM

- Define observables at the particle-level in fiducial phase-space.
- For each observable, compute the linear and the quadratic contribution of the dim-6 operator.
- Compare predictions with measured observable and the estimated SM contribution to constrain the Wilson coefficients.

- $p_T(H)$ is a discriminating observable in a differential measurement.
- Squared contributions can be used to distinguish between different operators contributions. Squared contributions are subdominant to interference ones.

 $t\bar{t}H$ in multilepton final states at CMS (HIG-18-019)

This analysis focuses on $t\bar{t}H$ final states with electrons, muons, and hadronically decaying tau leptons \rightarrow we will focus here on two leptons same-sign final state (2*lss*).

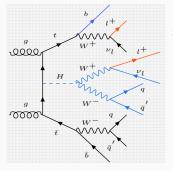
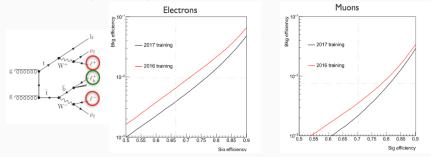


Fig: tTH in 21ss.

Selection:

- At least two b-jets are of $p_T>25~{
 m GeV}$ and $|\eta|<2.4.$
- Reject events with dilepton mass $m_{\rm II} <$ 12 GeV.
- Sub(leading) lepton $p_T > 15 \text{ GeV}$ (> 25 GeV).
- No lepton pair with mass close to Z boson.
- $L_D > {}^4$ 30 GeV.
- Events with a hadronic tau are vetoed.

⁴A variant of missing transverse momentum that is designed for optimal trade-off between discrimination and sensitivity to pileup.


Background estimation

- **Reducible background:** one or more leptons passing the object selection are affected by reconstruction.
 - Fake background: misidentified leptons estimated from data.
 - Charge-flip background: charge of one lepton is mismeasured, estimated from data $(Z \rightarrow e^+e^-)$.
- Irreducible background: backgrounds whose final state has the same particle content as the signal. Dominated by $t\bar{t}V$.

Category	2ℓss										
b-tag	no	req.	Loose				Tight				
Leptons	ee		eµ		μμ		eµ		μμ		
Charge	-	+	-	+	-	+	-	+	-	+	
ttH	3.3 ± 1.5	3.4 ± 1.8	6.5 ± 3.2	6.1 ± 3.0	4.2 ± 2.2	4.4 ± 2.2	4.56 ± 2.2	4.7 ± 2.5	3.1 ± 1.7	2.8 ± 1.4	
$t\bar{t}W + t\bar{t}WW$	$13.6\ \pm\ 2.4$	20.8 ± 3.9	24.1 ± 4.5	40.8 ± 7.9	14.9 ± 2.6	25.9 ± 5.0	16.5 ± 2.8	31.5 ± 5.3	11.7 ± 2.0	18.7 ± 3.4	
tH	0.1 ± 0.0	0.2 ± 0.0	0.3 ± 0.0	0.4 ± 0.0	0.3 ± 0.1	0.5 ± 0.0	0.2 ± 0.0	0.2 ± 0.0	0.1 ± 0.0	0.1 ± 0.0	
WZ + ZZ	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	
$t\bar{t}Z/\gamma^*$	17.9 ± 2.9	17.6 ± 2.7	20.0 ± 3.1	23.1 ± 3.8	7.6 ± 1.2	8.7 ± 1.4	14.8 ± 2.4	17.0 ± 2.7	5.9 ± 1.0	5.7 ± 0.9	
Misidentified	7.9 ± 2.1	10.4 ± 2.5	26.6 ± 4.3	28.3 ± 4.8	20.6 ± 4.4	18.2 ± 3.9	5.6 ± 1.9	6.6 ± 1.9	3.7 ± 1.6	4.2 ± 1.8	
Conversions	1.52 ± 0.5	2.2 ± 1.8	2.5 ± 0.9	3.5 ± 2.1	< 0.05	< 0.05	0.9 ± 0.3	1.1 ± 0.3	< 0.05	< 0.05	
Signal flip	4.5 ± 1.1	4.6 ± 1.1	3.7 ± 0.9	3.8 ± 1.0	< 0.05	< 0.05	3.1 ± 0.8	3.1 ± 0.8	< 0.05	< 0.05	
Other	1.4 ± 0.6	2.5 ± 1.1	4.6 ± 2.0	5.7 ± 2.2	1.7 ± 0.6	3.3 ± 1.3	2.2 ± 0.9	2.4 ± 1.0	1.1 ± 0.5	1.8 ± 0.8	
SM expectation	50.2 ± 4.7	61.7 ± 6.1	88.3 ± 8.0	111.6 ± 10.9	49.2 ± 5.7	61.0 ± 7.0	47.8 ± 4.9	66.5 ± 6.9	25.6 ± 3.2	33.4 ± 4.3	
Observed data	54	67	86	108	41	79	50	70	32	27	

Tab: Selected number of events in the 21ss subcategories.

Lepton MVA: Dedicated BDT⁵ to discriminate prompt leptons coming from W and Z against fakes (non prompt) leptons from light mesons and b decays.

Hadronic top-tagger: BDT discriminator to compute the likelihood of a jet triplet to be compatible with a hadronic top decay.

⁵e.g. for MVA inputs: kinematics (p_T, η)

Summary of the main source of systematics and their impact on the signal rate:

Source	Uncertainty [%]	$\Delta \mu / \mu$ [%] (2017)	$\Delta \mu / \mu$ [%] (Comb.)	Correlations
Theoretical sources	≈ 8	8	9	Correlated
e, μ selection efficiency	3–5	4	3	Correlated
$\tau_{\rm h}$ selection efficiency	5	3	5	Correlated
$\tau_{\rm h}$ energy calibration	1.2	1	2	Correlated
b tagging efficiency	2-15 [48]	10	5	Correlated
Jet energy calibration	2-15 [56]	3	3	Correlated
Fake background yield	$\approx 30-50$	17	9	Un-correlated

- Rate of $t\bar{t}H$ signal, $\mu = \frac{\sigma_{obs}}{\sigma_{SM}}$, \rightarrow binned Maximum Likelihood (ML) fit to the distribution of a discriminate variable.
- $t\bar{t}Z$ and $t\bar{t}W$ backgrounds are kept floating in the fit⁶.

⁶Theory uncertainties on production cross sections don't affect the results.

Signal extraction

Both multivariate discriminant, namely BDTs and Matrix Element Method(MEM) were used for signal extraction:

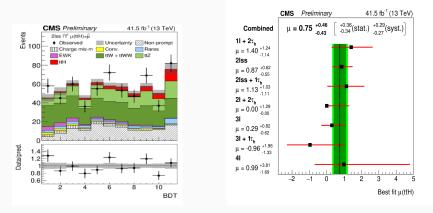
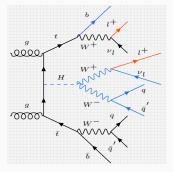
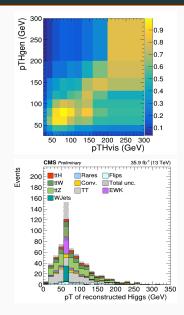


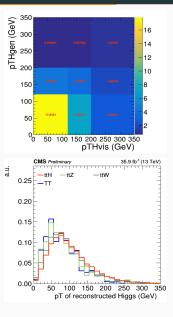
Fig: distributions in the discriminating observable (left) and measured signal rates, normalized to the SM $t\bar{t}H$ production rate (right).

Estimating the pT(H): reconstruction

Reconstruction: the basic principle

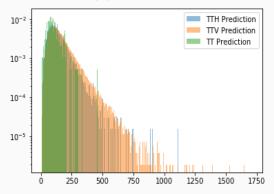



Fig:tTH in 21ss.


- $H \rightarrow W(I\nu)W(q\bar{q}')$
- Wide window for m_W and $m_{H_{vis}}$
- Reconstruct pT(H_{vis}): (qq̄') ← W ← H along with the "best" lepton, i.e. the closest to the two hadronic jets in the φ − η plane.
- Tag hadronic t and t decays via dedicated BDT hadronic top-tagger.
- Missing Transverse Energy (MET) assignment is expected to play a crucial role in this estimate.

Current results based on 2016 MC

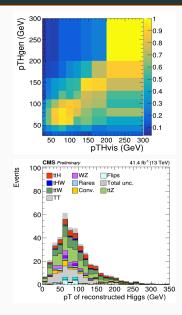
(2017 and 2018 results are in the backup slides)

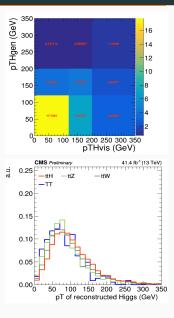

Current results: 2016 MC samples

Current results: using neural networks

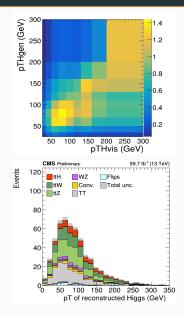
Regressing the $p_T(H)$ and evaluating the prediction in background events:

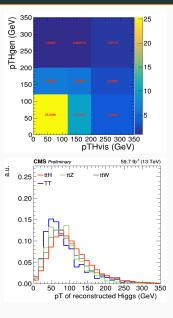
- Promising shape-discrimination (ttH vs ttV vs tt), which resembles the one at generator level (plot shows discrete densities).
- Improving the network structure is work in progress.

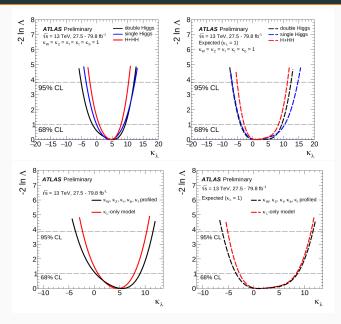

Summary


- Using differential information of $t\bar{t}H$ is crucial for λ_3 and SMEFT studies.
- The Higgs p_T plays a key role in determining the Higgs properties.
- Current $pT(H)_{vis}$ to true pT(H) correlation $\sim 30\%$
- MET assignment in this estimate is crucial and is currently work in progress.
- Near future plan is to perform the sought-after full fiducial differential measurement followed by an EFT interpretation.

Thanks to Ken Mimasu and Vincent Lemaître for their feedback during the preparation of this talk.


backup


Current results: 2017 MC samples



Current results: 2018 MC samples

More on the experimental limits by ATLAS on λ_3 atlas-conf-2019-049

The two observables p_T^{miss} and H_T^{miss} are combined into a single linear discriminant,

$$L_D = 0.6 \times p_T^{miss} + 0.4 \times H_T^{miss} \tag{1}$$

where p_T^{miss} is calculated as a the negative of the vector p_T sum of all particles reconstructed by the Particle Flow (PF) algorithm.

 H_T^{miss} is the magnitude of the vectorial p_T sum of electrons, muons, τ_h , and jets,

$$H_T^{miss} = \|\Sigma_{leptons} \vec{P}_{Tl} + \Sigma_{\tau_h} \vec{P}_{T\tau} + \Sigma_{jets} \vec{P}_{Tj}\|$$
(2)

- Leptons, τ_h and jets predominantly originate from the hard scattering interaction and rarely from pileup interactions $\rightarrow H_T^{miss}$ less sensitive to variations in pileup conditions.
- The variable exploits the fact that p_T^{miss} and H_T^{miss} are less correlated in events in which the reconstructed p_T^{miss} is due to instrumental effects compare to genuine p_T^{miss} from neutrinos.
- The coefficients of the linear combination have been optimized to provide the best rejection against the Z+jets background.