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Outlook

• Why tt̄H production is important?

• How tt̄H differential measurements are important?

• Generic overview of the experimental analysis in CMS.

• Explain our current standing and show some preliminary results.

• Summarize and touch on near-future plans.
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Why tt̄H is important?



In the simplest terms

Recall:

• Higgs boson couples to fermions in a Yukawa-type interaction: yf ∝ mf

• The top quark is the heaviest fermion we know, i.e. not kinematically possible to

look for H → tt̄ so we look for tt̄H production.

But why knowing yf =t is important?

• yt should be the strongest compared to other couplings.

• yt is sensitive to new undiscovered particles, i.e new physics, and therefore,

if yt agrees to what we predict then its good → we understand.

if yt doesn’t agree to what we predict then its good → we don’t

understand.

if yt agrees with what we predict within uncertainty → need more data,

precision measurements, precise calculations, etc.
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In the simplest terms

Recall:

• Higgs boson couples to fermions in a Yukawa-type interaction: yf ∝ mf

• The top quark is the heaviest fermion we know, i.e. not kinematically possible to

look for H → tt̄ so we look for tt̄H production.

But why knowing yf =t is important?

• yt should be the strongest compared to other couplings.

• yt is sensitive to new undiscovered particles, i.e new physics, and therefore,

• if yt agrees to what we predict then its good → we understand.

• if yt doesn’t agree to what we predict then its good → we don’t

understand.

• if yt agrees with what we predict within uncertainty → keep hiring PhD

students...
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The observation of tt̄H at CMS CMS-HIG-17-035

• Excess of events is observed with significance of 5.2σ over the expectation from

the background-only hypothesis.

• Reported signal strength µt̄tH = 1.26+0.31
−0.26, with SM expectation being µt̄tH = 1.
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https://arxiv.org/pdf/1804.02610.pdf


How tt̄H differential

measurements are

important?



tt̄H differential measurements constrain λ3

arxiv 1709.08649v2 and 1607.04251v3

V (H) =
1

2
m2

HH
2 + λ3vH

3 +
1

4
λ4H

4 + O(H5) (1)

At low energies, new physics might alter the trilinear coupling, λ3. Single Higgs

processes are sensitive to λ3 via one-loop corrections.

A generic observable, Σ

ΣBSM
λ3
∝ ZBSM

H ΣLO(1 + k3C1), λ3 = k3λ
SM
3 , ZBSM

H =
1

1− (k2
3 − 1)δZH .

1 (2)

ΣSM
λ3
∝ ΣLO(1 + C1), k3 → 1 (3)

and C1 is process- and kinematic-dependent component.

1Corresponds to wave-function renormalization where new physics is resummed at

one loop.
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https://arxiv.org/pdf/1709.08649.pdf
https://arxiv.org/pdf/1607.04251.pdf


tt̄H differential measurements constrain λ3

arxiv 1709.08649v2

Differential distributions have non-flat dependence on λ3, i.e. relative corrections due

to λ3 is ∝ C1,

• C1 at inclusive level for tt̄H is 3.52%.

• C1 ∼ 5% for PT and ∼ 10% for invariant mass distributions on differential level.

Indirect effects from modified Higgs self-coupling are significant in the tt̄H channel.
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https://arxiv.org/pdf/1709.08649.pdf


Experimental limits on λ3 ATLAS-CONF-2019-049

Fig: examples of one loop λ3-dependent diagrams in single-Higgs production.

Double-Higgs diagrams are not shown.

• LHC global fit of single and double Higgs analyses combined.

• kλ-only model2 uses the assumption that new physics is expected to appear only

as a modification of Higgs self-coupling.

• More generic models (profiled parameters) allows to test BSM models that

modify other Higgs couplings at the same time.

• For tt̄H production no differential information was used.

2kλ here is equivalent to the coupling modifier, k3, shown earlier.
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https://cds.cern.ch/record/2693958/files/ATLAS-CONF-2019-049.pdf


To SMEFT

arxiv 1612.00283v1

Standard Model Effective Field theory (SMEFT): the SM augmented by higher

dimension operators encapsulating new physics effects at scale Λ well above the

electroweak scale,

LEFT = LSM + Σi
C

(6)
i

Λ2
O(6)

i +O(8)(Λ−4) + h.c. (4)

At 1-loop level for single Higgs processes, anomalous coupling and SMEFT

frameworks are equivalent3 in determining λ3 via O6 = −λ(φ†φ)3.

Kinematical distributions provide an important handle on the determination of

Higgs properties

3Single Higgs processes are not sensitive to λ4 at one loop.
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https://arxiv.org/pdf/1612.00283.pdf


tt̄H differential measurements constrain SMEFT

See arxiv 1802.07237v1 for EFT analysis recipe and 1607.05330v2 for the discussion on tt̄H

Constrain the tt̄H relevant operators by probing Top-Higgs interaction

• Interested in the re-scaling of the Yukawa coupling in the SM

E.Vryonidou

Define observables at the particle-level in

fiducial phase-space.

For each observable, compute the linear and

the quadratic contribution of the dim-6

operator.

Compare predictions with the measured

observable and the estimated SM contribution

to constrain the Wilson coefficients.
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tt̄H differential measurements constrain SMEFT

arxiv 1607.05330v2

Interference contribution Squared contribution

σ = σSM + Σi
C

(6)
i

Λ2
σi (1TeV2) + Σij

C
(6)
i C

(6)
j

Λ4
σij (1TeV4) (6)

• pT (H) is a discriminating observable in a differential measurement.

• Squared contributions can be used to distinguish between different operators

contributions. Squared contributions are subdominant to interference ones.
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https://arxiv.org/pdf/1607.05330.pdf


tt̄H in multilepton final

states at CMS (HIG-18-019)

http://cds.cern.ch/record/2649199


Introduction and selection cuts

This analysis focuses on tt̄H final states with electrons, muons, and hadronically

decaying tau leptons → we will focus here on two leptons same-sign final state (2lss).

Fig: tt̄H in 2lss.

Selection:

• At least two b-jets are of pT > 25 GeV and |η| < 2.4.

• Reject events with dilepton mass mll < 12 GeV.

• Sub(leading) lepton pT > 15 GeV (> 25 GeV).

• No lepton pair with mass close to Z boson.

• LD > 4 30 GeV.

• Events with a hadronic tau are vetoed.

4A variant of missing transverse momentum that is designed for optimal trade-off

between discrimination and sensitivity to pileup.
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Background estimation

• Reducible background: one or more leptons passing the object selection are

affected by reconstruction.

• Fake background: misidentified leptons estimated from data.

• Charge-flip background: charge of one lepton is mismeasured, estimated

from data (Z → e+e−).

• Irreducible background: backgrounds whose final state has the same particle

content as the signal. Dominated by tt̄V .

Tab: Selected number of events in the 2lss subcategories.
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Optimization

Lepton MVA: Dedicated BDT5 to discriminate prompt leptons coming from W and Z

against fakes (non prompt) leptons from light mesons and b decays.

Hadronic top-tagger: BDT discriminator to compute the likelihood of a jet triplet to

be compatible with a hadronic top decay.

5e.g. for MVA inputs: kinematics (pT ,η)
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Systematics

Summary of the main source of systematics and their impact on the signal rate:

• Rate of tt̄H signal, µ = σobs
σSM

, → binned Maximum Likelihood (ML) fit to the

distribution of a discriminate variable.

• tt̄Z and tt̄W backgrounds are kept floating in the fit6.

6Theory uncertainties on production cross sections don’t affect the results.
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Signal extraction

Both multivariate discriminant, namely BDTs and Matrix Element Method(MEM)

were used for signal extraction:

Fig: distributions in the discriminating observable (left) and measured signal rates,

normalized to the SM tt̄H production rate (right).
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Estimating the pT (H):

reconstruction



Reconstruction: the basic principle

Fig:tt̄H in 2lss.

• H → W (lν)W (qq̄
′
)

• Wide window for mW and mHvis

• Reconstruct pT (Hvis): (qq̄
′
) ← W ← H along with

the “best” lepton, i.e. the closest to the two hadronic

jets in the φ− η plane.

• Tag hadronic t and t̄ decays via dedicated BDT

hadronic top-tagger.

• Missing Transverse Energy (MET) assignment is

expected to play a crucial role in this estimate.

23



Current results based on

2016 MC

(2017 and 2018 results are in the backup slides)



Current results: 2016 MC samples
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Current results: using neural networks

Regressing the pT (H) and evaluating the prediction in background events:

• Promising shape-discrimination (tt̄H vs tt̄V vs tt̄), which resembles the one at

generator level (plot shows discrete densities).

• Improving the network structure is work in progress.
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Summary



Summary

• Using differential information of tt̄H is crucial for λ3 and SMEFT studies.

• The Higgs pT plays a key role in determining the Higgs properties.

• Current pT (H)vis to true pT (H) correlation ∼ 30%

• MET assignment in this estimate is crucial and is currently work in progress.

• Near future plan is to perform the sought-after full fiducial differential

measurement followed by an EFT interpretation.

Thanks to Ken Mimasu and Vincent Lemâıtre for their feedback during the

preparation of this talk.
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Current results: 2017 MC samples
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Current results: 2018 MC samples
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More on the experimental limits by ATLAS on λ3 ATLAS-CONF-2019-049
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LD HIG-18-019

The two observables pmiss
T and Hmiss

T are combined into a single linear discriminant,

LD = 0.6× pmiss
T + 0.4× Hmiss

T (1)

where pmiss
T is calculated as a the negative of the vector pT sum of all particles

reconstructed by the Particle Flow (PF) algorithm.

Hmiss
T is the magnitude of the vectorial pT sum of electrons, muons, τh, and jets,

Hmiss
T = ‖Σleptons

~PTl + Στh
~PTτ + Σjets

~PTj‖ (2)

• Leptons,τh and jets predominantly originate from the hard scattering interaction

and rarely from pileup interactions → Hmiss
T less sensitive to variations in pileup

conditions.

• The variable exploits the fact that pmiss
T and Hmiss

T are less correlated in events in

which the reconstructed pmiss
T is due to instrumental effects compare to genuine

pmiss
T from neutrinos.

• The coefficients of the linear combination have been optimized to provide the

best rejection against the Z+jets background.
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