

Very high energy gamma-ray observations of supernovae and supernovae remnants with H.E.S.S.

Rachel Simoni, Jacco Vink (University of Amsterdam) On behalf of the H.E.S.S. collaboration

Cosmic Ray Sources? Supernova Remnants (SNRs)

Cassiopeia A

X-ray: Red 0.5-1.5 keV; Green 1.5-2.5; Blue 4.0-6.0 http://chandra.harvard.edu/photo/2013/casa/

Cosmic Ray Sources? Supernova Remnants (SNRs)

Sufficient energy : 5-10% of explosion energy in cosmic rays Acceleration model predicts hard E⁻² spectra (Fermi shock acceleration)

Cassiopeia A

X-ray: Red 0.5-1.5 keV; Green 1.5-2.5; Blue 4.0-6.0 http://chandra.harvard.edu/photo/2013/casa/

Cosmic Ray Sources? Supernova Remnants (SNRs)

Ackermann et al (Science, 2013)

Cassiopeia A

X-ray: Red 0.5-1.5 keV; Green 1.5-2.5; Blue 4.0-6.0 http://chandra.harvard.edu/photo/2013/casa/

H.E.S.S. High Energy Stereoscopic System

Khomas Highland Namibia 1800m

HESSI: 2003 CT1-4 Ø 12 m,107 m² HESSII : 2012->CT5 Ø 28 m,600 m²

Energy range 50 GeV-100 TeV Angular resolution up to 0.05° Field of view 5°/3.2°

source catalogue of 83 sources More information on https://www.mpi-hd.mpg.de/hfm/HESS/ IIHE meeting 22/11/19 5

Gamma-ray radiation processes

SNR LMC N132D

- ~1 arcminute, ~14 pc ellipsoidal shell
- Dist = 50 kpc (LMC)
- Age ~ 2500 years
- Very energetic (E>10⁵¹erg)
- Well observed from radio to X-ray
- G-rays (H.E.S.S. Collaboration et al. 2015, Fermi-LAT Collaboration 2015)
- Not seen in non thermal X-rays

Molecular cloud projected towards the SW region.

N132D H.E.S.S. new analysis

Detection :

• Significance 5.6 sigma for 253 hrs

• Spectrum Fit : index : 2.2 +/- 0.12 norm: (9.1+3.2)e-14 TeV⁻¹.cm⁻².s⁻¹ Chi2/ndof = 0.96

	<e> TeV</e>	dFlux	Siq
0	1.469	4.114e-14	2.26
1	2.15	1.917e-14	2.23
2	3.75	7.170e-15	3.55
3	14.75	2.859e-16	3.37

10

 $L(>1 \text{ TeV}) = (1.3 + 0.2) \times 10^{35} (d/50 \text{ kpc}) \text{ erg.s}^{-1}$

Energy (TeV)

N132D H.E.S.S. new analysis

Significance

	Chi2/ndof	norm	index	
PL	5.1/7	(9.84+-1.55) e-14	2.17 +- 0.05	
ECPL	4.6/6	(1.03 +-0.22)e-13	2.10 +- 0.07	Ecut = 39 ⁺⁶⁷ ₋₂₄ TeV

Cut-off value can be excluded at 5 TeV with 95 % CL

Modelling: pure Leptonic scenario

Electron distribution : ECPL with norm = 1.6 e43 eV⁻¹, index =2.22, Ecut = 12 TeV Inverse Compton with 2 component : CMB + NIR (T = 145K, dens = 0.1 eV.cm-3) Magnetic Field B = 13μ G

→ Total energy in the electron : We (>1GeV) = 4.0e+50 erg

IIHE meeting 22/11/19

Modelling: pure Leptonic scenario

→ W_e is very high : ~10% of the initial explosion Pure Leptonic is unlikely, an hadronic component is needed

Modelling: hadronic scenario

Fermi points from D. Prokhorov Radio = Dickel & Milne 1995 X-ray = Bamba et al. 2018

Proton ditribution : ECPL with Wp = 4e50 erg, index =2.0, Ecut = 120 TeV Electron ditribution : ECPL with We = 4e48 erg, index =2.2, Ecut = 3 TeV proton density: np = 10 cm⁻³ Magnetic Field : B = 90 μ G

Modelling: hadronic scenario

Fermi points from D. Prokhorov ("SNR set") Radio = Dickel & Milne 1995 X-ray = Bamba et al. 2018 **Pion Decay** PRELIMINARY Sync 10^{-10} IC (total) Synchrotron E²dN/dE [eV⁻¹ s⁻¹ cm⁻²] 10-11 **Pion Decay** 10-12 10^{-13} 10^{-14} 1012

10⁰

10-3

This hadronic scenario seems valid. Where do the pp collisions take place? SNR? SNR-MC? still to investigate....

. 10³

10⁶

Photon energy [eV]

10⁹

- We detected N132D with a significant excess of 5.6 sigma, with an exposure of 253 hours.
- The remnant is very luminous in TeV gamma-rays : among the 3 most luminous gamma-ray SNR, ~30 times more luminous than Cas A.
- SED mutliwavelenght modelling is showing that an hadronic component is necessary.
- TeV luminosity and very high energy cut-off may hint at emission from cosmic rays escaping into molecular cloud.

Thank you IIHE !

Imaging Air shower Cherenkov Telescope

1 photon / m² 100 000 m² on ground-level 10-20 ns

Bethe Heitler model for electronic showers

Imaging Air shower Cherenkov Telescope

Now the analysis chains are using 2D ellipse LLH fitting method

Some SNRs in TeV gamma-rays

Cas A (MAGIC 2007, Veritas, Hegra)

RX J1713 (H.E.S.S. 2018)

W28 (H.E.S.S. 2008)

TeV emission from molecular cloud

Acceleration of electrons beyond 10 TeV

- \rightarrow Requires turbulent magnetic field
- \rightarrow Narrow rims \rightarrow high B-fields \rightarrow fast acceleration

• What about protons, and what about the cosmic ray knee?

N132D new Fermi analysis

Diffuse templates

Detection :

- SNR only : 4.7 sigma
- SNR+MC : 6.4 sigma
- Spectra are compatible
 - index__{SNR} = 1.86 +/- 0.25
 - index__{SNR+MC} = 1.91 +/-0.20

- More data compared to 2015 publication (Aug 2008-May 2019)
- Pass8 R3 analysis framework
- LMC Background modelling: set of 4 templates including Molecular clouds (see green contours)
- 2 analysis depending on the modeling of Molecular Clump (MC) near N132D.

N132D: previous results

Detection by H.E.S.S. reported in: "The exceptionally powerful TeV gamma-ray emitters in the Large Magellanic Cloud". Science 347, 406–412 (2015).

- Significance 4.7 sigma for 148hrs
- Spectrum Fit : Index 2.4 ± 0.3
 Norm = 0.13 ± 0.05 [10⁻¹²cm⁻²s⁻¹TeV⁻¹]
 L = 0.9 ± 0.2 [10³⁵ erg s⁻¹]

Some shell SNRs in TeV gamma-rays

24 Shell +SNR/MC object in TeVCat Catalogue

http://tevcat.uchicago.edu/

Upper limit on SNe

R.Simoni, N.Maxted, M.Renaud, J.Vink

A&A 626, A57 (2019) https://doi.org/10.1051/0004-6361/201935242 © ESO 2019

Astronomy Astrophysics

Upper limits on very-high-energy gamma-ray emission from core-collapse supernovae observed with H.E.S.S.

H.E.S.S. Collaboration: H. Abdalla¹, F. Aharonian^{3,4,5}, F. Ait Benkhali³, E. O. Angüner¹⁹, M. Arakawa³⁷, C. Arcaro¹, C. Armand²², H. Ashkar¹⁷, M. Backes^{8,1}, V. Barbosa Martins³³, M. Barnard¹, Y. Becherini¹⁰, D. Berge³³, K. Bernlöhr³, R. Blackwell¹³, M. Böttcher¹, C. Boisson¹⁴, J. Bolmont¹⁵, S. Bonnefoy³³, J. Bregeon¹⁶, M. Breuhaus³, F. Brun¹⁷, P. Brun¹⁷, M. Bryan⁹, M. Büchele³², T. Bulik¹⁸, T. Bylund¹⁰, M. Capasso²⁵, S. Caroff¹⁵, A. Carosi²², S. Casanova^{20,3}, M. Cerruti^{15,42}, N. Chakraborty³, T. Chand¹, S. Chandra¹, R. C. G. Chaves^{16,**}, A. Chen²¹, S. Colafrancesco^{21,†}, M. Curylo³⁴, I. D. Davids⁸, C. Deil³, J. Devin²⁴, P. de Wilt¹³, L. Dirson², A. Djannati-Ataï²⁷, A. Dmytriiev¹⁴, A. Donath³, V. Doroshenko²⁵, L. O'C. Drury⁴, J. Dyks³⁰, K. Egberts³¹, G. Emery¹⁵, J.-P. Ernenwein¹⁹, S. Eschbach³², K. Feijen¹³, S. Fegan²⁶, A. Fiasson²², G. Fontaine²⁶, S. Funk³², M. Füßling³³, S. Gabici²⁷, Y. A. Gallant¹⁶, F. Gaté²², G. Giavitto³³, D. Glawion²³, J. F. Glicenstein¹⁷, D. Gottschall²⁵, M.-H. Grondin²⁴, J. Hahn³, M. Haupt³³, G. Heinzelmann², G. Henri²⁸, G. Hermann³, J. A. Hinton³, W. Hofmann³, C. Hoischen³¹, T. L. Holch⁷, M. Holler¹², D. Horns², D. Huber¹², H. Iwasaki³⁷,

https://www.mpi-hd.mpg.de/hfm/HESS/pages/home/som/2019/07/