

Observation of reactor antineutrinos with the SoLid experiment

Petra Van Mulders

21st of November 2019 annual IIHE meeting

Credit: many slides recycled from Valentin Pestels presentation at "GDR neutrino" 3 weeks ago

Goal of the SoLid experiment

 Measure the neutrino flux at very short baseline (< 10 metres) to understand the reactor antineutrino anomaly (RAA)

→ deficit of the observed number of antineutrinos with respect to the predicted number: new physics (e.g. oscillation to sterile neutrino) or issue with the prediction?

 Resolve the discussion on the spectral features observed by previous reactor experiments (so-called "5 MeV bump")

BR2 reactor @ SCK·CEN

- SoLid experiment design goals
 - ~1000 \overline{v}_e interactions / day
 - Energy resolution < 14 % @ 1 MeV
 - Baseline of 6 9 metres

- Specifications of the research reactor
 - Thermal power: $P_{th} \approx 60 \text{ MW}$
 - Antineutrino flux: $10^{19} \overline{v}_e/s$
 - Fuel: 95.3% ²³⁵U (99.7% of v_e)
 - Compare core: $\emptyset = 50$ cm, h = 90 cm
 - Duty cycle: 50%

SoLid detection technology

 The antineutrinos are detected through inverse beta decay (IBD)

$$\bar{\nu}_e + p \to e^+ + n \quad (Q = -1, 8 \,\mathrm{MeV})$$

$$E_{\bar{\nu}_e} \approx E_{e^+} + 1, 8 \,\mathrm{MeV}$$

$$\bar{p}_{\bar{\nu}_e} \approx \bar{p}_n$$

• The neutron is absorbed by the ⁶Li $n + {}^{6}\text{Li} \rightarrow {}^{3}\text{H} + \alpha \quad (Q = 4, 8 \text{ MeV})$

- ZnS and PVT pulse shape discrimination
 - $\rightarrow\,$ positron and neutron discrimination
- Time and space coincidence
 - → background rejection

SoLid Phase 1 detector

- 1,6 ton; 12800 cubes; 50 planes
- Each plane is composed of:
 - 256 cubes (16x16), optically isolated
 - 64 readout fibres + photon counters (MPPCs)

- 5 modules of 10 planes
- Positioned on rails in cooled container (10 °C)

History of the SoLid Phase 1 detector and publications

Data reconstruction

Calibration system: CROSS

CROSS:

- 3D calibration arm holding a radioactive source for calibration
- Can move over modules and lowered between two modules (i.e. 6 locations where it is lowered)

Very good coverage of the detector volume:

9 measurement points for every gap

Calibration results

Neutron detection efficiency:

- 2 radioactive sources: AmBe & ²⁵²Cf
- Absolute measurement (comparison with MC): $\epsilon_{n\,IBD}^{det} \approx 52\,\%$

Relative measurement:

Light yield measurement:

- Compton edge fit (data/MC)
- Mean light yield of 97 PA/MeV/cube
- Energy resolution of ~12% at 1 MeV

Time correlated backgrounds

- Fast neutrons entering the detector
- $\Delta t_{NS-ES} \sim 65 \ \mu s$
- Rate varies with atmospheric pressure
- Broad range of possible topologies and energies

- Natural radioactivity
- $\Delta t_{NS-ES} = 164 \ \mu S$
- Endpoint energy $Q_{\beta} = 3.3 \text{ MeV}$

BiPo rejection: discrimination between $\boldsymbol{\alpha}$ and neutron

Radioactive contamination of LiF:ZnS screens
 NS signal comes from the α in the screen
 → 3 main topologies

• α -n discrimination using the pulse shapes: BiPonisher = $Q_{long (0-87.5 \, \mu s)} / Q_{short (0-7.5 \, \mu s)}$

BiPonisher > 1.45:

- Reject 75% of α
- Keep 85% of n

Main event selection requirements

- Δx, Δy and Δz requirements optimized using simulation to reject topologies dominated by BiPo
- BiPonisher > 1.45
- Energy between 2 and 8 MeV

Background monitoring using the $\Delta t_{_{\rm NS-ES}}$ distribution

- Different ∆t_{NS-ES} windows for background monitoring:
 - IBD signal: [1,141] μs
 - BiPo: [300,500] μs
 - Accidentals: [-200,-100] μs

- Fast neutron estimation in the signal Δt_{ES-NS} range:
 - Total reactor off BiPo accidental = fast neutron
 - Depends on the atmospheric pressure
 → fit the relation using reactor off data
 - Use this relation to predict the fast neutron rate when the reactor is on

Test of the background model with the open dataset

Excess of ~140 events/day \rightarrow 5.4 σ significance over the whole period using open dataset

IBD signal position and energy distribution

Agreement with the simulation \rightarrow optimize analysis further and open more data

IIHE contributions

- Physics
 - Data reconstruction, muon and neutron identification
 - Lead the initial background studies and oscillation analysis
 - Procedure for fast neutron estimation and relation with environmental parameters
 - Contributions to the optimization of the event selection requirements for the first observation of the reactor $\overline{\nu_e}$ with the SoLid experiment
 - Publication & conference committee (reviewing the publications and public material)
- Construction (→ Annemie and Jan) / commissioning / shifts
- Computing → *IIHE computing team*
 - T2 used as primary data storage, raw data processing, MC production, data analysis, ...
 - Host of the website for internal documentation
- Hosted two collaboration meetings at the IIHE (→ Marleen)

SoLid Collaboration meeting @IIHE in September 2019

Summary and outlook

- Taking data with the SoLid experiment since April 2018
 - Good understanding of the detector response and stability
 - Calibration under control
- Preliminary analysis with only 1 cycle:
 - Enough knowledge about the background to develop predictive models
 - Ability to extract an antineutrino signal
 - Good agreement with the simulation (acceptance, energy, topology)
- Preparing the next steps:
 - Optimize the selection requirements (higher efficiency, better background rejection)
 - Open a larger dataset
 - Perform the first oscillation analysis with the SoLid experiment

IBD signal: directionality

Neutron keep the $\overline{v_{a}}$ momentum

SoLid technology sensitive to $\overline{v_{o}}$ directionality

Data/MC comparison for BiPo

MC/Data comparisons of Δt, Δr and prompt E distributions show BiPo background is well understood.

BiPo contamination

Muon track example

Light yield calibration

Light yield measurement :

- Compton edge fit (data/MC)
- Mean light yield of 97 PA/MeV/Cube
 - Energy resolution > 12% at 1 MeV

