

of the **TOP QUARK**

• The top quark is extremely heavy!

- The top quark is extremely heavy!
- Single quark almost as heavy as an entire gold nucleus.

 It's actually closer to Rhenium:
 m(t) ~ 172.5 GeV
 m(Re) ~ 173 GeV

m_t ~ 170 GeV

• What do we know about the Top?

- Mass: 172.5 GeV (dozens of measurements)
 Charge: 2/3e (0.64 ± 0.08) [arXiv]
 Spin: 1/2 (indirect)
 Yukawa: 1 (1.07, ratio to SM) [arXiv]
- Not to mention lots of QCD-related production effects (production cross-section, charge asymmetry, spin correlation).
- Why do we care about any of these?

How well do we understand this high

* not including Limits from Theory (e.g. global EW fits)

How well do we understand this high

How well do we understand this high

• Effects of this high mass?

• Short lifetime means quantum numbers (e.g. spin) transferred directly to decay particles.

Many unique features not present in other quark phenomenology:

Parton level $\Delta \phi(l^+, \bar{l})/\pi$ [rad/ π]

Charge Asymmetry (ATLAS-CONF-2019-026)

Many unique features not present in other quark phenomenology:

<u>(TOPQ-2016-10)</u>

Charge Asymmetry

(ATLAS-CONF-2019-026)

• What is spin correlation?

$$C = \frac{N(\uparrow\uparrow\uparrow) + N(\downarrow\downarrow) - N(\uparrow\downarrow) - N(\downarrow\uparrow)}{N(\uparrow\uparrow) + N(\downarrow\downarrow) + N(\downarrow\downarrow) + N(\downarrow\uparrow) + N(\downarrow\uparrow)}$$

Polarisation Spin Correlation $\frac{1}{\sigma} \frac{d^2 \sigma}{d \cos \theta^a_+ d \cos \theta^b_-} = \frac{1}{4} (1 + \frac{B^a_+}{B^a_+} \cos \theta^a_+ + \frac{B^b_-}{B^b_-} \cos \theta^b_- - \frac{C(a, b)}{C(a, b)} \cos \theta^a_+ \cos \theta^b_-)$

Measuring these angles means we can measure B and C

$$B_{+} = 3 \cdot \langle \cos(\theta_{+}) \rangle \qquad C = -9 \cdot \langle \cos(\theta_{+})\cos(\theta_{-}) \rangle$$

How do we measure these angles

 Angle formed between lepton and some spinanalysis basis.

Less simple for hadron colliders...

Helicity: direction of t in tt rest frame.
C ~ 0.31

Less simple for hadron colliders...

 Transverse: orthogonal to plane formed by t and b

• C ~ 0.32

Less simple for hadron colliders...

r-axis: remaining orthogonal direction
C ~ 0.01

 This coordinate system allows us to fully probe the spin density matrix:

 $|M|^2 \propto X + \mathbf{B}^+ \cdot \mathbf{s_1} + \mathbf{B}^- \cdot \mathbf{s_2} + C_{ij} s_{1i} s_{2i},$ **Vormalised Events** ATLAS Simulation Preliminary 0.35 $-t\bar{t}(A = SM)$ $\begin{array}{cccc} C_{kk} & X & X \\ X & C_{nn} & X \\ X & X & C_{rr} \end{array}$ $\cdot \cdot t\bar{t} (A = 0)$ MC@NLO + Herwig 0.3 √s = 7 TeV **All Events** 0.25 0.2 0.15 0.1 0.05 0 -0.8 -0.6 0.2 0.4 0.6 0.8 -0.4 -1 -0.20 $\cos(\theta_{+})\cos(\theta_{-})_{\text{helicity}}$

Correlation		sensitive to
C(n,n)	c^I_{nn}	P-, CP-even
C(r,r)	c^I_{rr}	P-, CP-even
C(k,k)	c^I_{kk}	P-, CP-even
C(r, k) + C(k, r)	c^I_{rk}	P-, CP-even
C(n, r) + C(r, n)	c^I_{rn}	P-odd, CP-even, absorptive
C(n, k) + C(k, n)	c^I_{kn}	P-odd, CP-even, absorptive
C(r,k)-C(k,r)	c_n^I	P-even, CP-odd, absorptive
C(n,r)-C(r,n)	c_k^I	P-odd, CP-odd
C(n,k)-C(k,n)	$-c_r^I$	P-odd, CP-odd
$B_1(n) + B_2(n)$	$b_n^{I+} + b_n^{I-}$	P-, CP-even, absorptive
$B_1(n) - B_2(n)$	$b_n^{I+} - b_n^{I-}$	P-even, CP-odd
$B_1(r) + B_2(r)$	$b_r^{I+} + b_r^{I-}$	P-odd, CP-even
$B_1(r) - B_2(r)$	$b_r^{I+} - b_r^{I-}$	P-odd, CP-odd, absorptive
$B_1(k) + B_2(k)$	$b_k^{I+} + b_k^{I-}$	P-odd,CP-even
$B_1(k) - B_2(k)$	$b_k^{I+} - b_k^{I-}$	P-odd, CP-odd, absorptive
$B_1(k^*) + B_2(k^*)$	$b_k^{I+} + b_k^{I-}$	P-odd,CP-even
$B_1(k^*) - B_2(k^*)$	$b_k^{I+} - b_k^{I-}$	P-odd, CP-odd, absorptive
$B_1(r^*) + B_2(r^*)$	$b_r^{\widetilde{I}+} + b_r^{\widetilde{I}-}$	P-odd, CP-even
$B_1(r^*) - B_2(r^*)$	$b_r^{I+}-b_r^{I-}$	P-odd, CP-odd, absorptive

 Spin correlation, polarisaton, and cross correlation have sensitivity to different symmetries

ROYAL SOCIETY University of Glasgow

THE ROYAL

SOCIETY

University of Glasgow

these would be signs of CP violation.

- At 8 TeV, ATLAS performed a measurement of the full spin density matrix using dilepton events.
- Observables corrected to parton level and compared to theory.
- Leading uncertainties come from the reconstruction of the tops, and MC models.

ATLAS results from Run1

Uncertainties O(30%), dominated by MC modelling

CMS results from Run2

Uncertainties O(10%), dominated by MC modelling

• No obvious signs, but uncertainties are still large.

• Maybe there's a better way?

• Maybe there's an <u>easier</u> way?

Mahlon, Parke, 2010

• Lab frame observables don't have as nice of an interpretation, but they do have great sensitivity!

• First observation!

• Excluded the no-spin hypothesis with a significance of 5.1σ .

- The infamous Run2 result
- Uses 36.1 fb-1 of ATLAS eµ + 1 or more b-tag data.
- Corrected for detector effects using iterative Bayesian unfolding.
- Uncertainties between
 1 and 2% per bin.

- Use a template likelihood fit to extract the "fraction of SMlike spin correlation": $f_{SM} = 1 (SM)$ $f_{SM} = 0 (No corr.)$
- Templates are SM spin correlation and uncorrelated tops.

Region	$f_{SM} \pm (stat., syst., theory)$	Significance (excl. theory)	
Inclusive	$1.249 \pm 0.024 \ \pm 0.061 \ {}^{+0.067}_{-0.090}$	2.2 (3.8)	
$m_{t\bar{t}} < 450 \text{ GeV}$	$1.12 \pm 0.04 \stackrel{+0.12}{_{-0.13}} \stackrel{+0.06}{_{-0.07}}$	0.78 (0.87)	
$450 \le m_{t\bar{t}} < 550 \text{ GeV}$	$1.18 \pm 0.08 \stackrel{+0.13}{_{-0.14}} \stackrel{+0.13}{_{-0.15}}$	0.84 (1.1)	
$550 \le m_{t\bar{t}} < 800 \text{ GeV}$	$1.65 \pm 0.19 \stackrel{+0.31}{_{-0.41}} \stackrel{+0.26}{_{-0.33}}$	1.2 (1.4)	
$m_{t\bar{t}} \ge 800 \text{ GeV}$	$2.2 \pm 0.9 \stackrel{+2.5}{_{-1.7}} \stackrel{+1.2}{_{-1.5}}$	0.49 (0.61)	

- Large tension observed with the SM, at a (conservative) significance of 3.2σ.
- Conservative because of the MC-based uncertainties on the templates.

		$m_{t\bar{t}}$ range [GeV]			
Systematic	Inclusive	$m_{t\bar{t}} < 450$	$450 \le m_{t\bar{t}} < 550$	$550 \le m_{t\bar{t}} < 800$	$m_{t\bar{t}} \geq 800$
Matrix element	± 0.006	± 0.11	± 0.064	± 0.01	± 0.3
Parton shower and hadronisation	± 0.010	± 0.02	± 0.005	± 0.01	± 1.4
Radiation and scale settings	± 0.055	± 0.05	± 0.061	± 0.23	< 0.1
PDF	± 0.002	< 0.01	± 0.003	± 0.01	< 0.1
Background modelling	± 0.009	± 0.01	$+0.014 \\ -0.015$	± 0.01	± 0.1
Lepton ID and reconstruction	± 0.008	± 0.01	$+0.030 \\ -0.036$	$^{+0.03}_{-0.10}$	$^{+0.5}_{-0.2}$
b-tagging	$+0.004 \\ -0.003$	± 0.01	± 0.025	$^{+0.04}_{-0.02}$	$^{+0.1}_{-0.2}$
Jet ID and reconstruction	$+0.014 \\ -0.017$	$^{+0.02}_{-0.05}$	$+0.076 \\ -0.093$	$^{+0.17}_{-0.26}$	$^{+1.7}_{-0.6}$
$E_{\rm T}^{\rm miss}$ reconstruction	< 0.001	$^{+0.01}_{-0.02}$	$+0.042 \\ -0.034$	$^{+0.12}_{-0.14}$	$^{+0.9}_{-0.7}$
Pile-up effects	$+0.013 \\ -0.010$	< 0.01	$+0.015 \\ -0.019$	$^{+0.07}_{-0.04}$	$^{+0.2}_{-0.4}$
Luminosity	± 0.001	< 0.01	$+0.002 \\ -0.000$	< 0.01	< 0.1
MC statistical uncertainty	± 0.005	< 0.01	± 0.007	± 0.03	± 0.05
Total systematics	± 0.061	$+0.12 \\ -0.13$	$^{+0.13}_{-0.14}$	$^{+0.31}_{-0.41}$	$+2.5 \\ -1.7$

• An aside on Monte Carlo:

Monte Carlo Sample

• An aside on Monte Carlo:

➡ PDF choice ➡ Matching scheme Shower algorithm

- **MSTW**
- **AMB**

- Herwig7
- aMC@NLO DIRE
 - Sherpa

hdamp • Starting scale

Jay Howarth

➡ PDF choice Shower algorithm \rightarrow Choice of $\alpha_s \times 3$ $\rightarrow \mu R/\mu F$ values \Rightarrow μ R/ μ F func. Form ➡ Shower scale Shower sc. form

hdamp* (Powheg)

➡ Matching scheme

University of Glasgow

THE ROYAL

SOCIETY

Colour reconnection model? **MPI tune?** Matrix P.S NP. PDF Had Element Lund string model or cluster **pT** ordered model? shower vs angular ordered?

➡ PDF choice

THE ROYAL

SOCIETY

➡ Matching scheme

University of Glasgow

- Shower algorithm
- \rightarrow Choice of $\alpha_s \times 3$
- \rightarrow µR/µF values
- \Rightarrow μ R/ μ F func. Form
- Shower scale
- Shower sc. form
- hdamp* (Powheg)
- 🟓 pT vs angular
- String vs. cluster
- UE tune
- CR model

 Production and decay factorised with narrowwidthapproximation ➡ PDF choice

THE ROYAL

SOCIETY

Matching scheme

University of Glasgow

- Shower algorithm
- \rightarrow Choice of $\alpha_s \times 3$
- \Rightarrow µR/µF values
- \Rightarrow μ R/ μ F func. Form
- Shower scale
- Shower sc. form
- hdamp* (Powheg)
- 🟓 pT vs angular
- String vs. cluster
- ➡ UE tune
- CR model
- Precision in decay

➡ N.W.A.

• NLO only in production, LO in

PDF choice
 Matching scheme
 Shower algorithm

κЗ

Form

brm

/heg)

 Take away message here is that MC are extremely complex and not magic black boxes...

Understanding these limitations is crucial ster
 for precision measurements

with narrowwidthapproximation

Precision in decay
 N.W.A.

Understanding the Run2 result

Parton level $\Delta \phi(\mathbf{I}^+, \mathbf{I})/\pi$ [rad/ π]

Is our NLO MC correct?

Parton level $\Delta \phi(\mathbf{I}^+, \mathbf{I})/\pi$ [rad/ π]

• Higher orders (in production help), but not completely

Parton level $\Delta \phi(\mathbf{I}^+, \mathbf{I})/\pi$ [rad/ π]

Also, how tops are decayed plays a role

Parton level $\Delta \phi(\mathbf{I}^+, \mathbf{I})/\pi$ [rad/ π]

• A new kind of calculation looks better, however...

Parton level $\Delta \phi(\mathbf{I}^+, \mathbf{I})/\pi$ [rad/ π]

• A new kind of calculation looks better, however...

Parton level $\Delta \phi(\mathbf{I}^+, \mathbf{I})/\pi$ [rad/ π]

Improvement disappears at NNLO

More details on this ratio expansion (**link**)

New calculation not well-behaved

Parton level $\Delta \phi(\mathbf{I}^+, \mathbf{I})/\pi$ [rad/ π]

New calculation not well-behaved

Parton level $\Delta \phi(\mathbf{I}^+, \mathbf{I})/\pi$ [rad/ π]

Recent analysis has an interesting way of tackling these modelling issues:

Spi	n (Cor	rela	ati	on

<u>(TOPQ-2016-10)</u>

Charge Asymmetry

(ATLAS-CONF-2019-026)

Charge asymmetry

Higher order effects in tt production mean:
 Top prefers direction of incoming q
 Anti-top prefers direction of qbar

• Majority of the effect comes from interference between born and box diagrams in qqbar annihilation.

• The infamous Tevatron result

University of Glasgow

THE

ROYAL

SOCIETY

*The CDF Collaboration, Conf. Note 10807 (2012).

Fun feature of top physics: NNLO usually very important!

• The latest attempt by ATLAS

Strongly disfavours no charge asymmetry:
 Huge achievement for a pp collider!

niversity

Glasgow

THE ROYAL

SOCIETY

- Even more striking differentially.
- Can see that the asymmetry gets larger at higher m(tt)

- How did this analysis achieve such precision?
- This analysis makes use of a likelihoodbased unfolding.
- Modelling uncertainties can be treated as nuisance parameters and constrained.

Profiling allows the data to constrain the uncertainties

 Often results in significantly reduced systematic uncertainties (note the scales on the ratio plots).

Massive improvement, compared to Run1

 Isn't (just) from increased statistics (signal actually gets smaller), it's from improved analysis techniques.

- So, is the spin correlation result new physics?
- Not possible to say, we simply don't understand the SM well enough (not in theory nor MC)
- We are sensitive enough to see charge asymmetry (with advanced techniques).
- If new physics is subtle (and not some obvious bump) understand results and spectra like these is crucial, otherwise we could write-off new physics as modelling!

Backup

	<i>b</i> -quark	W^+	$ l^+$	\bar{d} -quark or \bar{s} -quark	u-quark or c -quark
α_i (LO)	-0.410	0.410	1.000	1.000	-0.310
$\alpha_i (\mathrm{NLO})$	-0.390	0.390	0.998	0.930	-0.310

