H₀ tension: cracks in standard cosmology?

Deanna C. Hooper

VUB Theory Seminar 30th June 2020

Overview

- Measuring H₀
 - Standard candles
 - Standard rulers
- Origin of discrepancy
 - Systematics?
 - New physics?

- Modifying \Lambda CDM
 - Types of solutions
 - Example case: $N_{\rm eff}$
 - What will a solution look like?
- Outlook (is there any hope?)

A growing tension

• A question that has plagued cosmologist for decades:

How fast is the universe expanding?

- There are two main ways to answer this: local measurements (supernovae), and early-universe measurements (CMB)
- In a consistent cosmological model, we would expect to find the same answer...
- ... but early-time and late-time measurements do not agree

How bad is it?

A growing tension

H₀ from supernovae

H₀ from supernovae

Forward distance ladder: Geometry – Cepheids – Supernovae

1. Measure geometric distances to calibrate Cepheids

Construct Period - Luminosity - Distance relation

2. Observe Cepheids in galaxies that also host supernovae

Use previous relation to get SN luminosity - distance ruler

3. Observe more distant supernova in the Hubble flow

Use calibrated ruler to get distance, construct Hubble diagram

$$\theta_s = \frac{r_s^*}{D_A^*}$$

$$\theta_s = \frac{r_s^*}{D_A^*} \propto \frac{\text{pre-recombination physics}}{\text{post-recombination physics}}$$

$$\theta_s = \frac{r_s^*}{D_A^*} \propto \frac{\text{pre-recombination physics}}{\text{post-recombination physics}}$$

$$r_s^* = \int_{z_*}^{\infty} dz \frac{c_s^*}{H(z)}$$

$$D_A^* = \int_0^{z_*} \frac{dz}{H_0 \sqrt{\Omega_{\rm M}(1+z)^3 + \Omega_{\Lambda}(z)}}$$

using ACDM in late universe, we can calculate H₀

BAO measures two processed versions of the sound horizon:

Line of sight: $H(z)r_s$

Transverse: $r_s/D_A(z)$

BAO measures two processed versions of the sound horizon:

Line of sight: $H(z)r_s$

Transverse: $r_s/D_A(z)$

We always need an anchor:

BAO measures two processed versions of the sound horizon:

We always need an anchor:

• CMB

Transverse: $r_s/D_A(z)$

Line of sight:

 $H(z)r_s$

 $H(z)r_{s}$

 $r_s/D_A(z)$

9/28

BAO measures two processed versions of the sound horizon:

We always need an anchor:

CMB

• Supernovae

Line of sight:

Transverse:

The sound horizon tension

Deanna C. Hooper - Université Libre de Bruxelles

VUB - June 2020

The sound horizon tension

BAO data will be crucial to test different solutions

- Systematics in supernovae
- Systematics in Planck
- New physics

- Systematics in supernovae
- Systematics in Planck
- New physics

• Statistical fluke

- Systematics in supernovae
- Systematics in Planck
- New physics

Problems with supernovae?

Problem with geometry?

Independent Geometric Source	σ	H ₀
NGC 4258 H ₂ 0 Masers: Humphreys et al 2013, Riess et al 2016 Reid et al. (2019) in prep	2.6% 1.5%	72.3 ~72.0
LMC 20 Late Detached Eclipsing Binaries: Pietzrynski et al. 2019 +70 HST LMC Cepheids Riess et al (2019)	1.3%	74.2
Milky Way 10 HST FGS Short P Parallaxes: Benedict et al. 2007 also Hipparcos (Van leeuwen et al 2007)	2.2%	76.2
Milky Way 8 HST WFC3 SS Long P Parallaxes: Riess et al. 2018	3.3%	75.7
Milky Way 50 Gaia+HST, Long P Parallaxes: Riess et al. 2018	3.3%	73.7

Table credit: A. Riess

Problems with supernovae?

Systematics in Cepheids or supernovae?

14/28

- Reanalysis by independent groups find same result
- Changing assumptions on Cepheids barely effect H₀ (Follin and Knox 1707.01175)
- Reduction of supernovae not independently cross-checked
- It is not only supernovae: quasar time delays, megamasers, and surface brightness fluctuations all find similar H₀ values

Figure credit: A. Riess

Problems in the CMB?

Deanna C. Hooper - Université Libre de Bruxelles

VUB - June 2020

Problems in the CMB?

75 70 $^0\!H$ 65 60 SH0ES 55 BAO+SNe Planck TT, TE, EE+lowE (ACDM) 150 145 130 135 140 155 $r_{s}^{
m drag}$ [Mpc]

Knox and Millea 1908.03663

- CMB remarkably consistent across different modes and experiments
- This consistency has been tested down to the Planck level of precision

Problems in the CMB?

Knox and Millea 1908.03663

- CMB remarkably consistent across different modes and experiments
- This consistency has been tested down to the Planck level of precision
 - Small anomaly between low-*l* and high-*l* TT data - is this significant?

Problems with ΛCDM?

"Once you eliminate the impossible, whatever remains, no matter how improbable, must be the truth." - Sherlock Holmes

 $\theta_s = \frac{r_s^*}{D_A^*} \propto \frac{\text{pre-recombination physics}}{\text{post-recombination physics}}$

- Early universe solutions: for a fixed θ_s , decrease r_s^* to decrease D_A^* and increase H₀ (change recombination or pre-recombination physics, without messing up the CMB)
- Late universe solutions: for a fixed r_s^* and D_A^* , change $D_A(z < z^*)$ to allow for higher H₀ (decrease energy density between $0 < z < z^*$)

Classes of solutions

Pre-recombination

- Sound speed reduction
- High-temperature recombination •
- Photon cooling/conversion •
- Increasing H(z) with additional • components:
 - A. Light Relics, $N_{\rm eff}$
 - B. Early Dark Energy
 - C. Designer H(z)

Classes of solutions

Pre-recombination

- Sound speed reduction
- High-temperature recombination
- Photon cooling/conversion
- Increasing H(z) with additional components:
 - A. Light Relics, $N_{\rm eff}$
 - B. Early Dark Energy
 - C. Designer H(z)

Post-recombination

- H(z) wiggles
- Post-recombination decrease in energy density
- Late-time photon interactions
- New physics impacting some Cepheids
- New physics impacting some supernovae

See Hubble Hunter's Guide for more details Knox and Millea 1908.03663

Classes of solutions

Pre-recombination

- Sound speed reduction
- High-temperature recombination
- Photon cooling/conversion
- Increasing H(z) with additional components:

A. Light Relics, N_{eff}

- B. Early Dark Energy
- C. Designer H(z)

Post-recombination

- H(z) wiggles
- Post-recombination decrease in energy density
- Late-time photon interactions
- New physics impacting some Cepheids
- New physics impacting some supernovae

See Hubble Hunter's Guide for more details Knox and Millea 1908.03663

Can $N_{\rm eff}$ solve the tension?

- Extra relativistic species in the early universe are predicted by many extensions to the Standard Model (N-Naturalness, Twin Higgs, etc)
- Increase N_{eff} -> increase ρ_{R} -> decrease r_s^* -> increase H_0

$$\rho_{\rm R} = \rho_{\gamma} \left(1 + \frac{7}{8} \left(\frac{4}{11} \right)^{4/3} N_{\rm eff} \right) \longrightarrow H^2(z) = \frac{8\pi G}{3} \left(\rho_{\rm R} + \rho_{\rm M} \right) \longrightarrow r_s^* = \int_{z_*}^{\infty} dz \frac{c_s^*}{H(z)} dz$$

• To fully solve the tension we need $N_{\rm eff} \sim 3.5 - 4.0$ (Bernal et al. 1607.05617)

Can N_{eff} solve the tension?

High- ℓ CMB temperature does not allow such high values of $N_{\rm eff}$

Aghanim et al. 1807.06209

Deanna C. Hooper - Université Libre de Bruxelles

Can N_{eff} solve the tension?

High- ℓ CMB temperature does not allow such high values of $N_{\rm eff}$

BBN + BAO (galaxies) 90 BBN + BAO (Lyman- α) BBN + BAO (all) 75 Planck 2018 Riess et al. (2018) SH0ES 2019 $^{0}_{H}$ 75 $H_0 \, [{
m km \, s^{-1} \, Mpc^{-1}}]$ 70 60 4 65 $N_{\rm eff}$ 3 60 2 2.0 2.5 3.0 3.5 4.0 0.5 75 0.1 0.3 60 90 $N_{\rm eff}$ Ω_m H_0

Aghanim et al. 1807.06209

Schöneberg, Lesgourgues, **DCH** 1907.11594

BAO+BBN data disfavour $N_{\rm eff}$ as a

solution (still 2.6 σ tension) already

at the background level

Deanna C. Hooper - Université Libre de Bruxelles

A catalogue of solutions

- DM-DR interactions (NADM) Buen-Abad et al. 1708.09406, Archidiacono et al. (DCH) 1907.01496
- Early Dark Energy Agrawal et al. 1904.01016, Poulin et al. 1811.04083
- Extra radiation, $N_{\rm eff}$ Bernal et al. 1607.05617, Agrawal et al. 1904.01016
- Neutrino interactions Kreisch et al. 1902.00534, Blinov 1905.02727
- Decaying DM Pandey et al. 1902.10636, Vattis et al. 1903.06220
- Interacting DM-DE Wang et al. 1603.08299, DiValentino et al. 1908.04281, Lucca and DCH 2002.06127
- ++ countless other models *Bernal et al. 1607.05617, Knox and Millea 1908.03663*

A catalogue of solutions non-exhaustive

- DM-DR interactions (NADM) Buen-Abad et al. 1708.09406, Archidiacono et al. (DCH) 1907.01496
- Early Dark Energy Agrawal et al. 1904.01016, Poulin et al. 1811.04083
- Extra radiation, $N_{\rm eff}$ Bernal et al. 1607.05617, Agrawal et al. 1904.01016
- Neutrino interactions Kreisch et al. 1902.00534, Blinov 1905.02727
- Decaying DM Pandey et al. 1902.10636, Vattis et al. 1903.06220
- Interacting DM-DE Wang et al. 1603.08299, DiValentino et al. 1908.04281, Lucca and DCH 2002.06127
- ++ countless other models *Bernal et al. 1607.05617, Knox and Millea 1908.03663*

A catalogue of solutions problems

- DM-DR interactions (NADM) can only mitigate the problem, possible prior dependence
- Early Dark Energy model building is hard, fine tuning, coincidence problem
- Extra radiation, $N_{\rm eff}$ can only mitigate, disfavoured by BAO+BBN
- Neutrino interactions model building is hard, requires very strong interaction
- Decaying DM BAO + SN point to an early universe solution, can only mitigate problem
- Interacting DM-DE BAO + SN point to an early-universe solution, can only mitigate problem

Current status

- All proposed solutions have drawbacks
- We have yet to identify a complete solution that fits all cosmological data and is physically well-motivated
- Model building is challenging: highly precise CMB measurements are well-fit by ACDM, but BAO+SN push us to an early-universe solution
- But we have some hints as to what a solution will look like

How to build a solution

- Solutions should be thought of in terms of the $r_s^* H_0$ plane
- Most likely solution will imply a reduction of conformal time to recombination, lowering r_s^*
- Promising avenue: increasing H(z) with additional components (perhaps just prior to recombination)
- New models must be compatible with CMB, BAO, and SN data
- Any solution should not make other tensions worse
- Will a solution be related to the $\ell < 800$ vs $\ell > 800$ discrepancy?

The H₀ tension

The H₀ tension

Will more data help?

- Carnegie-Chicago Hubble Program: independent measurement
- 18 supernovae, only 9 in common with SH0ES
- Uses TRGB instead of Cepheids to calibrate

Will more data help?

- Carnegie-Chicago Hubble Program: independent measurement
- 18 supernovae, only 9 in common with SH0ES
- Uses TRGB instead of Cepheids to calibrate

Hubble Constant Over Time

Will more data help?

Ezquiaga et al. 1807.09241

Gravitational waves will provide a completely independent measurement. Future cosmological missions will reach greater precision.

Summary

- Increasingly precise measurements are uncovering cracks in ΛCDM
- Tension between early and late time measurements now at 4.5σ
- No clear evidence for systematics in any measurement
- Multiple probes supporting different H₀ values
- We are yet to identify a well-motivated model compatible with all data
- Model building is challenging, but we have a lot of hints
- The next decade will make or brake our standard cosmological model

Thank you for your attention

Want to know more? Videos of all the talks at last week's five day ESO H₀ conference available here: <u>http://www.eso.org/sci/meetings/2020/H0/program.html</u>

Cepheid P-L relation

Hubble Flow

Systematics in supernovae

Analysis Variants	H ₀
Best Fit (R16, w/ HST, Gaia , R18=73.53)	74.03
Reddening Law: LMC-like (R _V =2.5, not 3.3)	73.89
Reddening Law: Bulge-like (N15)	74.40
No Cepheid Outlier Rejection (normally 2%)	74.32
No Correction for Cepheid Extinction	75.72
No Truncation for Incomplete Period Range	75.08
Metallicity Gradient: None (normally fit)	74.51
Period-Luminosity: Single Slope	74.34
Period-Luminosity: Restrict to P>10 days	74.24
Period-Luminosity: Restrict to P<60 days	74.60
Supernovae z>0.01 (normally z>0.023)	74.16
Supernova Fitter: MLCS (normally SALT)	75.91

Independent Cepheid Tests

Summary of Follin and Knox 1707.01175

What they tried: loosened up assumptions about Cepheid modelling:

- let dust spectral dependence be uncertain
- let it vary from host galaxy to host galaxy
- introduced a large amount of freedom in Cepheid periodmagnitude relation

Conclusion: doing the above had very little impact on H₀ central value, and only slightly increased the uncertainty

H(z)

iDMDE

NADM

Archidiacono et al. (**DCH**) 1907.01496