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Higgs Boson: 
Discovery to Precision…
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2012: Discovery of the Higgs boson

Now

2020: Precision Measurements



Many results…
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http://cms.web.cern.ch/org/
physics-papers-timeline



…but no new physics so far
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What is the nature of dark matter 
& dark energy?

Why are neutrinos massive?

Why is there more matter than anti-
matter?

6 8 10

0 50 100 150 200
0

50

100

150

200

Higgs pole mass Mh in GeV

To
p
po
le
m
as
sM

t
in
G
eV
LI=104GeV

5
6
7 8

910
12 14

16
19

Instability

N
on-perturbativity

Stability

Met
a-st

abil
ity

107 108
109

1010

1011

1012
1013

1014

1016

120 122 124 126 128 130 132
168

170

172

174

176

178

180

Higgs pole mass Mh in GeV

To
p
po
le
m
as
sM

t
in
G
eV

1017

1018

1019

1,2,3 s

Instability

Stability

Meta-stability

Figure 3: Left: SM phase diagram in terms of Higgs and top pole masses. The plane is
divided into regions of absolute stability, meta-stability, instability of the SM vacuum, and non-
perturbativity of the Higgs quartic coupling. The top Yukawa coupling becomes non-perturbative
for Mt > 230 GeV. The dotted contour-lines show the instability scale ⇤I in GeV assuming
↵3(MZ) = 0.1184. Right: Zoom in the region of the preferred experimental range of Mh and Mt

(the grey areas denote the allowed region at 1, 2, and 3�). The three boundary lines correspond
to 1-� variations of ↵3(MZ) = 0.1184±0.0007, and the grading of the colours indicates the size
of the theoretical error.

The quantity �e↵ can be extracted from the e↵ective potential at two loops [112] and is explicitly
given in appendix C.

4.3 The SM phase diagram in terms of Higgs and top masses

The two most important parameters that determine the various EW phases of the SM are the
Higgs and top-quark masses. In fig. 3 we update the phase diagram given in ref. [4] with our
improved calculation of the evolution of the Higgs quartic coupling. The regions of stability,
metastability, and instability of the EW vacuum are shown both for a broad range of Mh and
Mt, and after zooming into the region corresponding to the measured values. The uncertainty
from ↵3 and from theoretical errors are indicated by the dashed lines and the colour shading
along the borders. Also shown are contour lines of the instability scale ⇤I .

As previously noticed in ref. [4], the measured values of Mh and Mt appear to be rather
special, in the sense that they place the SM vacuum in a near-critical condition, at the border
between stability and metastability. In the neighbourhood of the measured values of Mh and
Mt, the stability condition is well approximated by

Mh > 129.6GeV + 2.0(Mt � 173.34GeV)� 0.5GeV
↵3(MZ)� 0.1184

0.0007
± 0.3GeV . (64)

The quoted uncertainty comes only from higher order perturbative corrections. Other non-
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Is the electroweak vacuum stable?

What are the origins of the LHCb 
flavour anomaly?

How can the Higgs boson be 
light when the mass 
receives large quantum 
corrections?What are the details of cosmic 

inflation?
5
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• Precision measurements and searches for new physics need

• better tools to identify known particles and processes

• higher accuracy and speed

• Finding unknown signatures needs

• new ways of analysing data

• Future data taking with higher collision rates needs:

• faster reconstruction and triggering

• faster simulation and event generation

(a) promising answer: Deep Learning

What next?
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Menu

Learning generative models

Data-driven anomaly detection
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e.g. 1902.09914

• Attempt to learn some target: classification or regression tasks

• Need to have a dataset with known targets (typically from simulation)

• Examples:

• Flavour tagging

• Heavy resonance tagging

• Signal vs background discrimination

Supervised Learning

Frites

Waffles

Classification network
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• Learn the probability distribution

• No target needed, train directly on data

• Useful for:

• Generative models

• Anomaly detection

• …?

Unsupervised learning

Generative network

e.g. 2005.05334



Fast generative models
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Generators

wired.com

We have:
many images
(or collision events, 
or detector readouts, …)

We want: more images.

(Specifically: New examples that 
are similar to the examples, but 
not exact copies)

How to encode in 
neural net?

http://wired.com
http://wired.com


GAN

• Generative Adversarial Network

• Generator generates new fake images from noise 

• Second network (discriminator) learns to distinguish fake from real images

• Training via mutual feedback

12



VAE

• Variational Autoencoder

• Encode examples into latent space of network

• Sample from latent space to produce new examples

13
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https://thispersondoesnotexist.com/

https://thispersondoesnotexist.com/
https://thispersondoesnotexist.com/
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https://twiki.cern.ch/twiki/bin/view/ 
AtlasPublic/ComputingandSoftwarePublicResults
http://w3.hepix.org/benchmarking

Simulation and Generation steps 
over 40% of ATLAS compute effort
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Particle Showers 
Main motivation:  
Fast simulation of interaction between particles and detector material 
Initial proposal: CaloGAN (1705.02355)

Generative models are also applied to: 
phase space integration and sampling, event generation, ….



Additional Challenges
• How to evaluate convergence of models?

• Correctly model differential distributions

• Condition on a large number of quantities  
(energy, particle type, impact position, angle, …)

• Other considerations: 
  Coverage (do I produce example for all phase 
space?) 
  Saliency (is this a good example 
    of the desired type of event) 
  Mode collapse 
  Overfitting



Concrete Problem
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Describe photon showers in high 
granularity calorimeter prototype

• 30x30x30 cells (Si-W)
• Photon energies from 10 to 100 GeV
• Use 950k examples (uniform in energy) 

created with GEANT4 to train

• Not only model individual images but  
also differential distributions



Architecture
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• BIB-AE (based on 1912.00830) 
with added post-processing

• Unifies features of GAN and VAE
• 71M trainable parameters



Result
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Can now learn differential distributions
Still room to improve



Potential Limitations 
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• Generative models are powerful in quickly producing more 
examples, still need training examples

• Machine learning is great at interpolation, but it cannot do 
magic

• Expect to simulate typical examples, do not trust the tails of 
distributions without verification

• Can networks amplify?



Amplification: Setup

222008.06545

• Setup:

• Draw N examples from known truth function

• Use to train GAN

• Sample M>N events from GAN

• Compare per-quantile difference to truth between

• Initial N examples

• M GANed examples

• Fit

(double Gaussian)

(average per-quantile difference to truth)



Amplification 1D
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Improve statistics of training sample by interpolation

2008.06545



Amplification 5D

242008.06545

Use spherical shell instead of double Gaussian



Unsupervised anomaly detection

25
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Decide new physics model to test

# I:i÷Fhy sics↳
Use Monte Carlo simulation to provide 
realistic estimate of effect new physics and 
Standard Model prediction

Find a test statistic (e.g. selection criteria 
and classifier output)
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Apply to measured data

Perform statistical analysis / hypothesis test

Collect Nobel prize



Can we look for new physics, without knowing 
what to search for?

28

Problem: The potential space of new theories is 
HUGE. Cannot cover all possible models.



Autoencoder

• Weakly supervised learning

• Latent space/bottleneck with compressed representation

• Dimension reduction

• Denoising

f(x) g(f(x))

L = (ŷ � g(f(x)))2

kvfrans
deeplearningbook.org 29

http://deeplearningbook.org
http://deeplearningbook.org


=
Top Quark 
 Jet

QCD Jet

=
30

Example: Jet Images



Autoencoder

• Train on pure QCD light quark/
gluon jets and apply to top tagging

• Top quarks/ new physics 
identified as anomaly

QCD or What?
T Heimel, GK, T Plehn, JM Thompson, 1808.08979
Searching for New Physics with Deep Autoencoders
M Farina, Y Nakai, D Shih, 1808.08992 31



Caveats
• Anomaly score for a given signature depends on 

complexity of signal/background in addition to 
training data

• We are not looking for individual anomalous 
events but anomalous regions of phase space

• Usual L2 difference not optimal as loss:

• Different distributions of pixels compatible 
with same physics

• Potential improvements from Variational 
Autoencoders

32



CWola Hunting
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• Assume signal is resonant in one variable

• Define signal region and sidebands

• Train classifier and look for excess
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Figure 1. An illustration of the CWoLa framework. Rather than being trained to directly classify
signal (S) from background (B), the classifier is trained by standard techniques to distinguish data as
coming either from the first or second mixed sample, labeled as 0 and 1 respectively. No information
about the signal/background labels or class proportions in the mixed samples is used during training.

Theorem 1. Given mixed samples M1 and M2 defined in terms of pure samples S and B

using Eqs. (2.3) and (2.4) with signal fractions f1 > f2, an optimal classifier trained to

distinguish M1 from M2 is also optimal for distinguishing S from B.

Proof. The optimal classifier to distinguish examples drawn from pM1 and pM2 is the likelihood

ratio LM1/M2
(~x) = pM1(~x)/pM2(~x). Similarly, the optimal classifier to distinguish examples

drawn from pS and pB is the likelihood ratio LS/B(~x) = pS(~x)/pB(~x). Where pB has support,

we can relate these two likelihood ratios algebraically:

LM1/M2
=

pM1

pM2

=
f1 pS + (1� f1) pB
f2 pS + (1� f2) pB

=
f1 LS/B + (1� f1)

f2 LS/B + (1� f2)
, (2.6)

which is a monotonically increasing rescaling of the likelihood LS/B as long as f1 > f2, since

@LS/B
LM1/M2

= (f1 � f2)/(f2LS/B � f2 + 1)2 > 0. If f1 < f2, then one obtains the reversed

classifier. Therefore, LS/B and LM1/M2
define the same classifier.

An important feature of CWoLa is that, unlike the LLP-style weak supervision in Sec. 2.2,

the label proportions f1 and f2 are not required for training. Of course, this proof only

guarantees that the optimal classifier from CWoLa is the same as the optimal classifier from

fully-supervised learning. We explore the practical performance of CWoLa in Secs. 3 and 4.

The problem of learning from unknown mixed samples can be shown to be mathematically

equivalent to the problem of learning with asymmetric random label noise, where there have

been recent advances [32, 40]. The equivalence of these frameworks follows from the fact that
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Figure 1. An illustration of the CWoLa framework. Rather than being trained to directly classify
signal (S) from background (B), the classifier is trained by standard techniques to distinguish data as
coming either from the first or second mixed sample, labeled as 0 and 1 respectively. No information
about the signal/background labels or class proportions in the mixed samples is used during training.

Theorem 1. Given mixed samples M1 and M2 defined in terms of pure samples S and B

using Eqs. (2.3) and (2.4) with signal fractions f1 > f2, an optimal classifier trained to

distinguish M1 from M2 is also optimal for distinguishing S from B.

Proof. The optimal classifier to distinguish examples drawn from pM1 and pM2 is the likelihood

ratio LM1/M2
(~x) = pM1(~x)/pM2(~x). Similarly, the optimal classifier to distinguish examples

drawn from pS and pB is the likelihood ratio LS/B(~x) = pS(~x)/pB(~x). Where pB has support,

we can relate these two likelihood ratios algebraically:

LM1/M2
=

pM1

pM2

=
f1 pS + (1� f1) pB
f2 pS + (1� f2) pB

=
f1 LS/B + (1� f1)

f2 LS/B + (1� f2)
, (2.6)

which is a monotonically increasing rescaling of the likelihood LS/B as long as f1 > f2, since

@LS/B
LM1/M2

= (f1 � f2)/(f2LS/B � f2 + 1)2 > 0. If f1 < f2, then one obtains the reversed

classifier. Therefore, LS/B and LM1/M2
define the same classifier.

An important feature of CWoLa is that, unlike the LLP-style weak supervision in Sec. 2.2,

the label proportions f1 and f2 are not required for training. Of course, this proof only

guarantees that the optimal classifier from CWoLa is the same as the optimal classifier from

fully-supervised learning. We explore the practical performance of CWoLa in Secs. 3 and 4.

The problem of learning from unknown mixed samples can be shown to be mathematically

equivalent to the problem of learning with asymmetric random label noise, where there have

been recent advances [32, 40]. The equivalence of these frameworks follows from the fact that
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Distinguishing mixed samples is equivalent to 
signal/background classification!

Classification without labels: Learning from mixed samples in high 
energy physics, EM Metodiev, B Nachman, J Thaler, 1708.02949
Anomaly Detection for Resonant New Physics with Machine Learning
JH Collins, K Howe, B Nachman
1805.02664



ANODE: ANOmaly detection with 
Density Estimation

34

• Build density estimator in sideband region PSB

• Extrapolation to signal region gives background estimate PSB  -> PBG

• Build density estimator in signal region PSR

• Likelihood ratio R=PSR/PBG

• Density estimation via MAF (1705.07057) 
(Masked Autoregressive Flow)

An anomaly is a local over density of events

Anomaly Detection with Density Estimation, B 
Nachman, D Shhih 2001.04990



LHC Olympics 2020
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• For more on anomaly detection see material 
at the recent workshop: 
https://indico.desy.de/e/anomaly2020

https://indico.desy.de/e/anomaly2020
https://indico.desy.de/e/anomaly2020


Conclusions
• Deep Learning for particle physics is rapidly developing solutions to a wide 

range of problems

• Object and Event classification

• Anomaly detection

• Robustness and uncertainties

• Fast reconstruction and simulation

• Further reading

• Basic concepts:  
http://www.deeplearningbook.org/

• Overview of ML in HEP papers: 
https://iml-wg.github.io/HEPML-LivingReview/

36

Thank you!

http://www.deeplearningbook.org/
https://iml-wg.github.io/HEPML-LivingReview/
http://www.deeplearningbook.org/
https://iml-wg.github.io/HEPML-LivingReview/

