Unsupervised Learning for Discovery and Simulation

Gregor Kasieczka (gregor.kasieczka@uni-hamburg.de) HEP@VUB Seminar 2020-11-05

CLUSTER OF EXCELLENCE

QUANTUM UNIVERSE

Bundesministerium für Bildung und Forschung

DFG

Emmy Noether-Programm

Deutsche

Partnership of Universität Hamburg and DESY

Higgs Boson: Discovery to Precision...

Now

2012: Discovery of the Higgs boson

1000 collider data papers submitted as of 2020-10-06

... but no new physics so far

Selection of observed limits at 95% C.L. (theory uncertainties are not included). Probe **up to** the quoted mass limit for light LSPs unless stated otherwise. The quantities ΔM and x represent the absolute mass difference between the primary sparticle and the LSP, and the difference between the intermediate sparticle and the LSP relative to ΔM , respectively, unless indicated otherwise.

Why are neutrinos massive?

What are the origins of the LHCb flavour anomaly?

What is the nature of dark matter & dark energy?

Why is there more matter than antimatter?

What are the details of cosmic inflation?

How can the Higgs boson be light when the mass receives large quantum corrections?

What next?

- Precision measurements and searches for new physics need
 - better tools to identify known particles and processes
 - higher accuracy and speed
- Finding unknown signatures needs
 - new ways of analysing data
- Future data taking with higher collision rates needs:
 - faster reconstruction and triggering
 - faster simulation and event generation
- (a) promising answer: **Deep Learning**

Menu

Learning generative models

Data-driven anomaly detection

Supervised Learning

- Attempt to learn some target: classification or regression tasks
- Need to have a dataset with known targets (typically from simulation)
- Examples:
 - Flavour tagging
 - Heavy resonance tagging
 - Signal vs background discrimination

Unsupervised learning

- Learn the probability distribution
- No target needed, train directly on data
- Useful for:
 - Generative models
 - Anomaly detection
 - ...?

Generative network

Fast generative models

We **have**: many images

(or collision events,

or detector readouts, ...)

Generators

We **want**: more images.

(Specifically: New examples that are similar to the examples, but not exact copies)

How to encode in neural net?

<u>wired.com</u>

GAN

- Generative Adversarial Network
- Generator generates new fake images from noise
- Second network (discriminator) learns to distinguish fake from real images
- Training via mutual feedback

VAE

- Variational Autoencoder
- Encode examples into latent space of network
- Sample from latent space to produce new examples

https://thispersondoesnotexist.com/

AtlasPublic/ComputingandSoftwarePublicResults <u>http://w3.hepix.org/benchmarking</u>

15

Particle Showers

Main motivation:

Fast simulation of interaction between particles and detector material Initial proposal: CaloGAN (1705.02355)

Generative models are also applied to: phase space integration and sampling, event generation,

Additional Challenges

- How to evaluate convergence of models?
- Correctly model differential distributions
- Condition on a large number of quantities (energy, particle type, impact position, angle, ...)
- Other considerations:

Coverage (do I produce example for all phase

space?)
Saliency (is this a good example
 of the desired type of event)
Mode collapse
Overfitting

Concrete Problem

Describe photon showers in high granularity calorimeter prototype

- 30x30x30 cells (Si-W)
- Photon energies from 10 to 100 GeV
- Use 950k examples (uniform in energy) created with GEANT4 to train

 Not only model individual images but also differential distributions

Architecture

- BIB-AE (based on 1912.00830) with added post-processing
- Unifies features of GAN and VAE
- 71M trainable parameters

Result

Can now learn differential distributions Still room to improve

Potential Limitations

- Generative models are powerful in quickly producing more examples, still need training examples
- Machine learning is great at interpolation, but it cannot do magic
- Expect to simulate typical examples, do not trust the tails of distributions without verification
- Can networks **amplify**?

Amplification: Setup

- Setup:
 - Draw N examples from known truth function
 - Use to train GAN
 - Sample M>N events from GAN

training samples

- Compare per-quantile difference to truth between
 - Initial N examples

Fit

• M GANed examples

$$P(x) = \frac{N_{-4,1}(x) + N_{4,1}(x)}{2}$$
(double Gaussian)

$$N_{\text{qual}}$$

+[x, F(φ(B-x))]-

22

batch B

 $MSE = \frac{1}{N_{quant}} \sum_{j=1}^{N_{quant}} \left(x_j - \frac{1}{N_{quant}} \right)^2$ (average per-quantile difference to truth)

true/fake

-out

2008.06545

Amplification 1D

Improve statistics of training sample by interpolation

2008.06545

Amplification 5D

Use spherical shell instead of double Gaussian

2008.06545

Unsupervised anomaly detection

Decide new physics model to test

Use Monte Carlo simulation to provide realistic estimate of effect new physics and Standard Model prediction

Find a test statistic (e.g. selection criteria and classifier output)

Apply to measured data

Perform statistical analysis / hypothesis test

Collect Nobel prize

Problem: The potential space of new theories is **HUGE**. Cannot cover all possible models.

Can we look for new physics, without knowing what to search for?

$$L = (\hat{y} - g(f(x)))^2$$

- Weakly supervised learning
- Latent space/bottleneck with compressed representation
- Dimension reduction
- Denoising

kvfrans <u>deeplearningbook.org</u>

Example: Jet Images

Autoencoder

31

0.2

0.4

Signal efficiency ε_{S}

0.6

0.0

0.8

1.0

T Heimel, GK, T Plehn, JM Thompson, 1808.08979 Searching for New Physics with Deep Autoencoders M Farina, Y Nakai, D Shih, 1808.08992

Caveats

- Anomaly score for a given signature depends on complexity of signal/background in addition to training data
- We are not looking for individual anomalous events but anomalous regions of phase space
- Usual L2 difference not optimal as loss:
 - Different distributions of pixels compatible with same physics
- Potential improvements from Variational Autoencoders

- Assume signal is resonant in one variable
- Define signal region and sidebands
- Train classifier and look for excess₃₃

Classification without labels: Learning from mixed samples in high energy physics, EM Metodiev, B Nachman, J Thaler, 1708.02949 Anomaly Detection for Resonant New Physics with Machine Learning JH Collins, K Howe, B Nachman 1805.02664

ANODE: ANOmaly detection with Density Estimation

An anomaly is a local over density of events

34

- Build density estimator in sideband region P_{SB}
- Extrapolation to signal region gives background estimate $P_{SB} \rightarrow P_{BG}$
- Build density estimator in signal region P_{SR}
- Likelihood ratio R=P_{SR}/P_{BG}
- Density estimation via MAF (1705.07057) (Masked Autoregressive Flow)

Anomaly Detection with Density Estimation, B Nachman, D Shhih 2001.04990

LHC Olympics 2020

 For more on anomaly detection see material at the recent workshop: <u>https://indico.desy.de/e/anomaly2020</u>

Conclusions

- Deep Learning for particle physics is rapidly developing solutions to a wide range of problems
 - Object and Event classification
 - Anomaly detection
 - Robustness and uncertainties
 - Fast reconstruction and simulation
- Further reading
 - Basic concepts: <u>http://www.deeplearningbook.org/</u>
 - Overview of ML in HEP papers: <u>https://iml-wg.github.io/HEPML-LivingReview/</u>

Thank you!