EeV Neutrino Astronomy

Fe

Kumiko Kotera - Institut d'Astrophysique de Paris

IIHE - 26/11/2020

UHECRs and friends

UHE neutrinos: a challenging no-man's land

Alves Batista, de Almeida, Lago, KK, 2018 GRAND Science & Design, 2018 KK, Allard, Olinto 2010

Current multi-messenger data: useful to understand UHECRs?

Current multi-messenger data: useful to understand UHECRs?

Cosmic backgrounds interactions on CMB, UV/opt/ IR photons

cosmogenic neutrino and gamma-ray production

 $E_{v} \sim 10\% E_{CR}$

Secondaries take up 5-10% of parent cosmic-ray energy

- radiative? baryonic?
- evolution, density?
- magnetic field: deflections?

YV

associated neutrino and gamma-ray production

 $E_v \sim 5\% E_{CR}$ $E_{CR} > 10^{18} eV$

 $E_{\nu} > 10^{16} \text{ eV}$

IceCube neutrinos do not directly probe UHECRs

Actually, none of the current multi-messenger data (except UHECR data) can directly probe UHECRs ... but they help :-)

What we can aim to do with future observatories

cosmogenic: guaranteed

direct from source: likely more abundant

pessimistic scenarios of cosmogenic neutrinos = good!

low background for source neutrinos

The guaranteed cosmogenic neutrinos

Cosmogenic neutrinos: production channels

Cosmogenic neutrinos: principal ingredients

"not-so-free" parameters

- A flux normalisation
- γ injection spectral index
- R_{nax} (max rigidity ~ max. proton energy)
- composition
- source evolution history

depend strongly on observations of UHECRs

less dependent but affects injection spectrum

Information from UHECR spectra and composition

Alves Batista, de Almeida, Lago, KK, 2018

- if emissivity evolution free parameter —> best fit m = -1.5
- Negative source evolution:
 - e.g., tidal disruption events
 - cosmic variance local dominant of sources
- very hard spectral indices difficult to reconcile with most particle acceleration models. α >~1 favored in theory.

phenomenologically reasonable models with good deviances

A flux normalisation

- α injection spectral index in $E^{-\alpha}$
- *R*_{max} (max. rigidity ~ max. proton energy)
- composition
- source evolution e.g., SFR/AGN or in $(1+z)^m$

Fable 1 . Best-fit paramete	rs for	specific	spectral	indices.
------------------------------------	--------	----------	----------	----------

m	α	$\log(R_{\rm max}/{\rm V})$	$f_{ m p}$	$f_{\rm He}$	$f_{\rm N}$	$f_{ m Si}$	$f_{ m Fe}$	D
-1.5	+1.00	18.7	0.0003	0.0002	0.8867	0.1128	0.0000	1.46
SFR	+0.80	18.6	0.0764	0.1802	0.6652	0.0781	0.0001	1.63
AGN	+0.80	18.6	0.1687	0.1488	0.6116	0.0709	0.0000	1.59
GRB	+0.80	18.6	0.1362	0.1842	0.6059	0.0738	0.0000	1.60

Learning from secondary neutrinos?

Alves Batista, de Almeida, Lago, KK, submitted GRAND Science & Design, in prep KK, Allard, Olinto 2010 Van Vliet et al. arXiv:1707.04511

Astrophysical UHE neutrinos: produced at the source

GRAND Science & Design, 2018

Diffuse flux

integrated over the whole population

Point-source fluences

unique shapes for various sources (because of interaction backgrounds)

Computing astrophysical neutrino fluxes

Astrophysical UHE neutrinos: produced at the source

GRAND Science & Design, 2018

Point-source fluences

Can we detect very high-energy neutrino sources?

YES if

good angular resolution (< fraction of degree)
 number of detected events > 100s

Going for transients

clear signatures to do neutrino astronomy

Condition for acceleration at sources luminosity budget

Condition for acceleration at sources for transients

source bolometric luminosity > $10^{45} Z^{-2} E_{20}^2 \text{ erg s}^{-1}$

Lemoine & Waxman 2009

many transient sources could make it Guépin & KK 2016

Optimizing the detectors locations on Earth to detect transients?

Expected number of neutrino events short burst model (e.g., Kimura et al. 2017, 40 Mpc)

If the measured UHECR composition is not protons it is NOT the end of the world at all!

sources emitting observable UHECRs and UHE neutrinos are likely not the same!

▶ a source will be opaque to UHECR protons to produce abundant UHE neutrinos

- **observable** UHE (>10¹⁷ eV) neutrino sources are sources of UHECRs
- **but they are likely NOT observable sources of UHECRs!**

if measured **UHECR composition** heavy **UHE neutrino astronomy** completely possible

EeV Neutrino Astronomy

V

 $\boldsymbol{\nu}$

May your GRAND dreams come true!

V

Kumiko Kotera - Institut d'Astrophysique de Paris - IIHE