Soft Displaced Leptons at the LHC

HEP@VUB: PhD Event

A.R.Sahasransu

Based on paper <u>arxiv[2007.03708]</u>, accepted by JHEP With F. Blekman, N. Desai, A. Filimonova and S. Westhoff

Thermal higgs portal dark matter at the LHC

Thermal relic: Co-annihilating dark matter

Weak cour

Compressed mass spectrum: process exponentially supressed by

$$\frac{m_{Xi} - mXj}{T}$$

ed particle

19 Nov. 2020

Thermal higgs portal dark matter at the LHC

Weak coupling with standard model

Long-lived particle

Soft leptons from singlet-triplet model

Filimonova and Westhoff [1812.04628] Bharucha, Bruemmer and Desai [1804.02357]

Soft leptons from singlet-triplet model

Filimonova and Westhoff [1812.04628] Bharucha, Bruemmer and Desai [1804.02357]

HEP@VUB: PhD Event, A.R.Sahasransu, asahasra@cern.ch

Filimonova and Westhoff [1812.04628] Bharucha, Bruemmer and Desai [1804.02357]

Soft leptons from singlet-triplet model

Filimonova and Westhoff [1812.04628] Bharucha, Bruemmer and Desai [1804.02357]

HEP@VUB: PhD Event, A.R.Sahasransu, asahasra@cern.ch

Background: Displaced di-lepton analysis at 13 TeV

Background: Displaced di-lepton analysis at 13 TeV

- > Data driven background estimate for displaced leptons.
- > Estimates in regions based on the **impact parameter** (\mathbf{d}_0) .

19 Nov. 2020

- \triangleright p_T cut is driven by trigger constraints to reduce background.
- > Too tight for our model.

Background: Displaced di-lepton analysis at 13 TeV

- > Data driven background estimate for displaced leptons.
- \succ Estimates in regions based on the **impact parameter** (**d**₀).

- \succ p_T cut is driven by trigger constraints to reduce background.
- > Too tight for our model.

Background estimation

- > Lepton enriched $b\overline{b}$ sample.
- e and μ transfer factor measured separately to keep statistic.

Background estimation

- > Lepton enriched $b\overline{b}$ sample.
- e and μ transfer factor measured separately to keep statistic.

Background estimation

CMS-PAS-EXO-16-022

 p_{T} : (42, 40)

 $S_{I} < 3.2$

 $S_{II} < 0.5$

 $S_{\rm III} < 0.019$

 \triangleright e and μ transfer factor measured separately to keep statistic.

Signal model parameters

- > Detector acceptance is affected by $c\tau_c$.
- \blacktriangleright Lepton kinematics depends on Δm .

#	$m_c \; [\text{GeV}]$	$\Delta m \; [\text{GeV}]$	$c\tau_c \ [\mathrm{cm}]$	$\mathcal{B}(\ell^+\ell^-)$
1	324	20	2	0.025
2	220	20	3	0.014
3	220	20	0.1	1
4	220	20	1	1
5	220	20	10	1
6	220	20	100	1
7	220	40	1	1

Signal model parameters

- > Detector acceptance is affected by $c\tau_c$.
- \blacktriangleright Lepton kinematics depends on Δm .

#	$m_c \; [\text{GeV}]$	$\Delta m \; [\text{GeV}]$	$c\tau_c \ [\mathrm{cm}]$	$\mathcal{B}(\ell^+\ell^-)$
1	324	20	2	0.025
2	220	20	3	0.014
3	220	20	0.1	1
4	220	20	1	1
5	220	20	10	1
6	220	20	100	1
7	220	40	1	1

Signal model parameters

- > Detector acceptance is affected by $c\tau_c$.
- **>** Lepton kinematics depends on Δm.

#	$m_c \; [\text{GeV}]$	$\Delta m \; [\text{GeV}]$	$c\tau_c \ [cm]$	$\mathcal{B}(\ell^+\ell^-)$
$\frac{1}{2}$	324 220	20 20	$\begin{vmatrix} 2\\ 3 \end{vmatrix}$	$0.025 \\ 0.014$
3	220	20	0.1	1
4	220	20	1	1
5	220	20	10	1
6	220	20	100	1
7	220	40	1	1

Signal Yield (For $\mathcal{Q} = 140 \text{ fb}^{-1}$)

	HF background ($\mathcal{Q}=2.6\text{fb}^{-1}$)	4123	644	25 🔶
#	$(m_c [\text{GeV}], \Delta m [\text{GeV}], c \tau_c [\text{cm}])$	$S_{\mathbf{I}}$	S_{II}	$S_{\rm III}$
1	(324, 20, 2)	0.38	0.43	1.18
2	(220, 20, 3)	1.18	1.40	5.55
3	(220, 20, 0.1)	139	37	5.98
4	$(220, 20, 1) \rightarrow (\mathcal{Q} = 140 \text{fb}^{-1})$	174	157	283
5	(220, 20, 10)	32	93	318
6	(220, 20, 100)	1.35	2.15	31
7	(220, 40, 1)	1067	980	1826
	HF background (\mathscr{Q} = 140fb ⁻¹)	221997	34688	1318

- Background with luminosity scaling is 200000!
- Signal yield relatively very low for ∆m = 20 GeV.
- $\Delta m = 40 \text{ GeV is already}$ excluded.

Scaled with luminosity

Signal Yield (For $\mathcal{Q} = 140 \text{ fb}^{-1}$) : Limit plot

- Background with \succ luminosity scaling is 200000!
- Signal yield relatively very low for $\Delta m = 20$ GeV.
- $\Delta m = 40 \text{ GeV}$ is already \succ excluded.

Model independent neural network to improvesignal vs backgroundsignal (m [GeV], \Deltam [GeV])(220, 40)

➤ Trained (80%) and tested (20%) on (324, 20, 2).

One classifier for all benchmarks.

Model independent neural network to improvesignal vs backgroundsignal (m [GeV], \Deltam [GeV])(220, 40)

➤ Trained (80%) and tested (20%) on (324, 20, 2).

One classifier for all benchmarks.

Exclusion limit for the benchmarks

Exclusion limit for the benchmarks

Conclusion and Outlook

> Soft displaced leptons are typical signs of dark matter from co-scattering and co-annihilation.

 \succ To observe these signatures at the LHC, events with soft leptons need to be selected.

>LHC signal with soft displaced leptons are challenged by large heavy flavour background.

> Multivariate analysis effectively discriminates between signal and HF background.

> Neural network reduces background by two orders of magnitude.

> With 140 fb⁻¹ $c\tau_c$ values between 2 mm and 2 m can be excluded.

> Analysis with LHC Run 2 data involving displaced lepton and MET.

> Can be discovered with LHC data.

19 Nov. 2020

 \triangleright Requires cross triggers with lower p_T threshold and other objects.

Higgs portal dark matter

Standard simulation framework

Event Selection in CMS-PAS-EXO-16-022

> Dominant background: Leptons from heavy flavour jet misidentified as isolated leptons.

