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Black hole microstates

I Black holes carry entropy

S = A/4GN

I In statistical mechanics, entropy measures the number of
microstates of a system

S = log Ω

I In the context of string theory, some geometries
corresponding to certain microstates have been identified.
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Black hole microstates - Superstrata

ρcap ∼
√
n a

ρthroat ∼
√
n b

AdS3AdS2×S1

BTZ ρtidal
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Classical and Quantum Chaos

I In classical mechanics, a system is chaotic if

∂q(t)
∂q(0)

= {q(t), p(0)} ∝ eλLt.

with Lyapunov exponent λL

I In quantum systems, we can use the commutator squared

C(t) = −〈[V(0),W(t)]2〉β

instead.
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Classical and Quantum Chaos

For times large compared to the inverse temperature t� β, the
normalized commutator squared is given by

Ĉ(t) = 1− Re ^OTOC(t)

in terms of the out-of-time-order correlator

OTOC(t) = 〈V(0)W(t)V(0)W(t)〉β
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OTOC from Holography [Ben, Kévin, Marine & Vijay ’19]

I Think of OTOC as overlap between in- and out- state

OTOC = 〈out|in〉

|in〉 = φV(X3)φW(X4)|ψ〉 |out〉 = φW(X2)φV(X1)|ψ〉
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BTZ black holes
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Superstrata

ρ*=ρthroat

ρ*=ρcap

ρ*=0
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Thank you for your attention!


