

Extreme Universe Space Observatory

Search for UHE Cosmic Rays from Space – challenges & perspectives

M. Bertaina – University & INFN Torino April 16th, 2021 Université Libre de Bruxelles

Cosmic rays with energy $E > 7 \cdot 10^{19}$ eV must have their sources within 50Mpc

MORADOS

El Salitral-Pto. Virgen del Cari

El Salitral-Pto.

Co. de las Cab

Ortíz

Astroparticle Physics

Pampa Amarilla; Province of Mendoza 3000 km², 875 g/cm², 1400 m Lat.: 35.5° south

COIHUECO

El Chacay

Malargüe

M. Bertaina

LEONES

70 km

10

Leading Observatories of Ultrahigh Energy Cosmic Rays

Telescope Array Utah, US (5 country collaboration) 700 km² array 3 fluorescence telescopes

Pierre Auger Observatory Mendoza, Argentina (19 country collaboration) 3,000 km² array 4 fluorescence telescopes

Pierre Auger Observatory (Argentina)

A. Castellina

THE IMPORTANCE OF AN HYBRID DETECTOR

Experimental situation in early 2000s

AGASA: continuing spectrum

Rescale Auger and TA energies

- Constant rescaling factor of 5.2%
 - From fitting ratio of fluxes Auger/TA into a unity in the ankle region
 - Auger energies *raised* by 5.2%
 - TA energies *lowered* by 5.2%
- Agree in the ankle region 10^{18.4} eV < E < 10^{19.4}eV after rescaling
- Difference above 10^{19.4} eV persists after locking energy scales of experiments

8

Power-Law Fit

Combined Fit of Spectrum and Xmax Distributions

rigidity-dependent cutoff at source: $E_{\text{max}} = R_{\text{cut}} Z$, power law injection $E^{-\gamma}$, propagation with CRPropa3, Gilmore12 EBL, Dolag12 LSS

PIERRE

Anisotropy hints @E > 40 EeV

How many UHECRs > 60 EeV?

Auger w/ 3,000 km²

- ~25 events > 60 EeV/ yr
- Telescope Array w/ 700 km²
 - ~5 events > 60 EeV/ yr
- Auger + TA \sim 30 events/go
- Earth surface ~ 5 10⁸ km²
 ~3.4 10⁶ events/yr

Go to SPACE!

To look down on the

Atmosphere!

How many UHECRs > 60 EeV?

- Auger + TA ~30 events/yr
- JEM-EUSO ~200 events > 60 EeV/y • Earth - surface ~ $5 \ 10^8 \ \mathrm{km}^2$

 \sim 3.4 10⁶ events/yr

JEM-EUSO is

an Astronomical Earth Observatory from Space

1979, An idea* of John Linsley

John Linsley in 1979 in the Field Committee Report of NASA "Call for Projects and Ideas in High Energy Astrophysics for the 1980s"

The concept to observe, by means of Space Based devices looking at Nadir during the night, the fluorescence light produced by an EAS proceeding in the atmosphere

Y. Takahashi (1995): MASS: Maximum Energy Auger (Air Shower Satellite Italian Mission)

Fig. 3 Artist view of the MASS on orbit.

Science Instrument

Focal Surface Detector

JEM-EUSO Observation Principle

An idea of the monitored area (2)

ISS Orbit

Inclination: 51.6° Height: ~400km

JEM-EUSO can observe the arrival direction of EECR very uniformly owing to the nature of the ISS orbit.

http://www.nasa.com/

Technical challenges of the observation from space compared to UHECR detectors from ground

- » Low power consumption (<1kW for JEM-EUSO 3x10⁵ pixels)
- » Low mass (~1-2 tons for JEM-EUSO)
- » Low telemetry (300 kbit/s for JEM-EUSO on ISS)
- » Radiation hard instrumentation
- » Space-qualified instrumentation (need to increase TRL)

~100x100 cm²

FS of EUSO-SPB 2304 pixels (3mm/pix) 17x17 cm²

AUGER

Comparing Auger FD and JEM-EUSO telescope

	Auger (1 FD site)	EUSO-SPB	JEM-EUSO
mirror size	6 x 11 m ²	1 m ² lens	4m ²
FoV	6 x (30 x 30) deg ²	11 x 11 deg ²	4 x 4 deg ² /PDM
Ang. resolution	1.5 deg/pixel	0.2 deg/pixel	0.075 deg/pixel
Pixel size	5x5 cm ²	1 pixel 3x3 mm ²	3x3 mm ² /pixel
Camera size	6 x 440 pixels	2304 pixel	2304 pixel/PDM
EAS distance	40 km	30 km	400 km
light intensity (@40km=1)	1	1.8	0.01
time resolution	100 ns	2.5 μs	2.5 μs
signal acquisition	charge integration	photon counting	photon counting

A significant difference in the detectors, a technological challenge...

Scientific challenges:

- » Energy threshold below GZK cutoff (a factor of 2 higher energies means very few statistics and no inter calibration with ground experiments!).
- » Light conditions continuously varying (ISS speed 7.5 km/s —> night/day change every 45 minutes).
- » Atmospheric conditions (clear sky, clouds, lightning, cities and anthropic light) continuously changing.
- » We need to test the capability of the instrument to adapt its working conditions to the different situations.
- » We need to record and recognise the different atmospheric and anthropic conditions.

Annual Exposure nadir mode

Conversion factor between Aperture and Exposure: ~13%

Special Issue on the JEM-EUSO Mission

- 15 papers addressing science and technology of JEM-EUSO
- The EUSO-Balloon pathfinder \bullet
- The JEM-EUSO instrument \bullet
- Ground-based tests of JEM-EUSO components at the Telescope Array \bullet site, "EUSO-TA"
- Space experiment TUS on board the Lomonosov satellite as pathfinder of \bullet **JEM-EUSO**
- The JEM-EUSO observation in cloudy conditions \bullet
- Calibration aspects of the JEM-EUSO mission \bullet
- JEM-EUSO: Meteor and nuclearite observations \bullet
- JEM-EUSO observational technique and exposure \bullet
- Ultra high energy photons and neutrinos with JEM-EUSO \bullet
- Science of atmospheric phenomena with JEM-EUSO \bullet
- Performances of JEM–EUSO: energy and X max reconstruction \bullet
- The atmospheric monitoring system of the JEM-EUSO instrument \bullet
- The infrared camera onboard JEM-EUSO \bullet
- Proposal of a Computing Model Using GRID Resources for the JEM-EUSO \bullet Space Mission

Astrophysical Instrumentation and Methods

Peter was Dallmain

lotable 2015 had it

PARTY AND

31

JEM-EUSO Program

EUSO-TA (2013-)

EUSO-Balloon (2014)

TUS (2016)

EUSO-SPB1 (2017)

Mini-EUSO (2019)

EUSO-SPB2 (2023)

K-EUSO (2024+)

POEMMA (2028+)

EUSO-SPB1

(2017) Angular resolution better than 1°

Energy-equivalent threshold measurement

Would-be showers

<u>Main improvements</u>: - Upgraded electronics: SPACIROC 3 - Complete autonomous scheme with trigger - Solar panels for long duration flight - Optics performance + stability

EUSO-SPB2 (2023)

0 120 140 160

Time, μs

Time, μs

Mini-EUSO/UV-ATMOSPHERE (scheduled to fly to ISS on August 22nd 2019)

> DATA with self trigger: D1 : 2.5 µs res. (128 L1GTUs) D2: 320 µs res. (128 L2GTUs) D3: 40.96 ms res. (full movie)

> > Front

lens

Near

Infrared

Camera

Visible

Camera

toliono

UHECR

Earth emission

Rear

ens

CPU

Focal

surface

MINI-EUSO ISS (400 km)

Meteor

Atmospheric Science

Lighting, TLF

Bioluminescence

Sea

Zynq

board

Front-end

ASICs

Strange Quark matter

Laser-generated cosmic ray signal

EUSO-

PBalloon

40km

FoV: <u>+</u> 22 deg. (9 times TUS)

simulation

TUS & Mini-EUSO: complementarity to be exploited in view of K-EUSO & POEMMA

	TUS	Mini-EUSO	JEM-EUSO
Optics	Mirror	Lenses	Lenses
Optical aperture	2 m ²	0.05 m ²	4 m ²
FS	256 PMTs	2304 pixels	>3x10 ⁵ pixels
Acquisition	Charge integration	Photon Counting	Photon Counting
Sampling rate	µs, 100µs OR ms scale	µs, 100µs AND ms scale	µs, 100µs AND ms scale
D.C.	30%	2%	13%
FoV	6400 m ²	82000 km ²	160000 km ²
deadtime	53 – 60 s every trigger	No dead time between triggers (up to 4 per 5s)	No dead time between triggers

Quite different optical systems, acquisition modes, TUS is ~10x more sensitive but similar exposure

JEM-EUSO

Mini-EUSO & TUS	JEM-EUSO
~1 pixel	~ 1 MAPMT
~1 PMT	~ 1 PDM

Comparison @ order of magnitude level

Diffuse lights give similar signals in pixels for JEM-EUSO & Mini-EUSO

FoV

Mini-EUSO

Triggers in EAS acquisition mode

B.A. Khrenov et al. JCAP. 09 (2017) 006; https://doi.org/10.1088/1475-7516/2017/09/006

Detector operated between April 2016 and November 2017 80,000 events triggered

- noise-like waveforms including anthropogenic illumination over cities (~80%)
- slow flashes caused by distant lightning strikes
- instant track-like flashes
- events with complex dynamics (elves,...)
- Events with EAS characteristics (only a few)

What we would expect in case of UHECRs... EAS simulations for TUS

For the TUS detector simulation we use the JEM-EUSO - ESAF code with implemented TUS design.

F. Fenu., Simulations for the JEM-EUSO program with ESAF, PoS(ICRC2019) 252

After a first screening of the triggered events, 6 of them show characteristics similar to those expected from EAS. All of them have been recorded on North America!

The ``Minnesota event'' Event 03.10.2016 05:48:59UTC

Modules

The Vaisala GLD360 ground based lightning location network did not register any lightning strikes in a region with radius of 930 km and during 10 s period around the time of the TUS event. Signal, ph./(μs · m²) 00 05 01 05 Signal, ph./(μs · m²) 1 ZeV proton $(\Theta = 50^{\circ})$: Time, µs Timo µS (13.1 (13, 4) - (13,4) (13, 3)(12, 2) (13, 3) (12, 4)(11.2 - (12,3) - (13,2) (12, 3) (12, 1) (12, 2)(11, 1) - (11,3) (13, 2) 10 - (11,2) 0+0 Time, μ s

Similarities exist but energy extremely high

B.A. Khrenov et al. JCAP. 03 (2020) 033;

TUS161003 event ($\Theta = 44 \pm 4^{\circ}$):

46 https://doi.org/10.1088/1475-7516/2020/03/033

ESAF simulation 1 ZeV proton ($\Theta = 50^{\circ}$):

Discussion & possible interpretations

B.A. Khrenov et al. JCAP. 03 (2020) 033;

https://doi.org/10.1088/1475-7516/2020/03/033

UHECR interpretation:

- E > 10²¹ eV makes the probability of an UHECR event extremely unlikely (10⁻³ – 10⁻⁵) extrapolating UHECR spectrum
- The time difference ~60 µs between EAS maximum and end of the event implies h_{max} ~ 7.5 km --> slant depth ~550 gr/cm²

Anthropogenic origin of the event:

- Laser shots from an airplane, difficult to reproduce the observed light curve but can not be exlcuded...
- 2 Xenon flashers of 40-50 $\mu s,$ 7-10 km apart shifted in time by 30-40 $\mu s,$ the first flasher 2-3 times brighter than second one could mimic observations

Other physical origin:

- Neutrino, gamma, etc... excluded by slant depth
- Dust grains?

The observation of this event proves the possibility to detect from space light tracks compatible with EAS and helps developing strategies to carefully study the events

Interestingly J. Linsley, the father of EECR events, was born and graduated in Minnesota....

TLEs detected in EAS mode: ELVE

P. Klimov et al. Remote Sensing. 2019, 11, 2449; doi:10.3390/rs11202449

TUS event 18.09.2016, 9.66S, 17.14W

Detailed exposure study currently on going

Duty cycle depends on the trigger scheme (TUS 53-60s dead time/event) but gives hints of brightest regions on Earth

Cloud impact

Using Merra-2 satellite data to associate cloud presence and compute exposure. Work in progress...

Mini-EUSO/UV-ATMOSPHERE (flew to ISS on August 22nd 2019)

DATA with self trigger: D1 : 2.5 µs res. (128 L1GTUs) D2: 320 µs res. (128 L2GTUs) D3: 40.96 ms res. (full movie)

Front

lens

Near

Infrared

Camera

Visible

Camera

italiana

UHECR

Earth emission

Rear

ens

CPU

Focal

surface

MINI-EUSO ISS (400 km)

Meteor

Atmospheric Science

Lighting, TLF

Bioluminescence

Sea

Zynq

board

Front-end

ASICs

Strange Quark matter

Laser-generated cosmic ray signal

EUSO-

PBalloon

40km

FoV: <u>+</u> 22 deg. (9 times TUS)

simulation

Uv transparent window, Zvezda module, International Space Station

https://www.youtube.com/watch?v=IX edBGVHc4o&t=62s

Sampling rate: μs , 100 μs **<u>AND</u>** ms scale

S. Bacholle et al., "Mini-EUSO Mission to Study Earth UV Emissions on board the ISS", The Astrophysical Journal Supplement Series, Vol. 253, pag. 36 (2021), <u>https://doi.org/10.3847/1538-4365/abd93d</u> https://arxiv.org/abs/2010.01937

M. Casolino, L. Marcelli

Mini-EUSO - µs timescale trigger performances

M. Battisti, F. Bisconti, P. Klimov, F. Fenu, A. Golzio

The same flasher triggered three different time. The event was located in a mountain region in China

Left: flat fielded focal plane view. Right: lightcurve of the most luminous pixel

Mini-EUSO 2x10²² eV p simulation

80 frames

30

15 10

L. Marcelli, M. Casolino, M. Battisti, E. Arnone

2 Elves - simultaneous detection with ASIM

Meteors

- Most of the meteors are detected where the background is lower
- The false positives rate is
 higher over continents

Current findings: ~1500 meteors ~1300 meteor cand. in ~1900 min

With an efficiency of 8% the distribution peak is in a range of magnitude values of [+4.8,+5.3]

- Meteors
 Meteor candidates
- Noise
- Unidentified events

Detail	from	session	06

Α.	Cell	lino

Abs. mag	U-band flux (erg/s/cm ² /A)	mass (g)	event rate (Mini)	
+7	$6.7 \cdot 10^{-12}$	2·10 ⁻³	0.4/s	
+ 5	4.2.10 -11	10^{-2}	2.4/min	
0	4.2.10 -9	1	0.11/orbit	
- 5	4.2.10-7	100	2.5/year	

G. Abdellaoui et al., "Meteor studies in the framework of the JEM-EUSO program", Planet. Space Sci., 143, 245 (2017)

Considering S06 and S11 (moon 2%):

Total number of observed meteors:

356 + 343 = 699

- Total number of meteor candidates: 201 + 109 = 310
- Total sessions duration: 282 + 168 = 450 min

Events rate:

1.5 events/min (only M)
2.3 events/min (M+M?)

L. Piotrowski, D. Barghini, H. Miyamoto, S. Bertone & F. Reynaud

L. Piotrowski, F. Bisconti

8

Lamezia Terme Event – Italy

Clouds

60°N

30°N

0°

30°S

60°S

Diffuse light

PRELIMINARY

(using same approach as EUSO-Balloon)

	Observation time [h]	Average rate [count / (pixel 2.5 μs)]
All data	25.9	5.2
Sea data	14.6 (56%)	4.5
Sea & no moon	7.0 (27%)	1.5

For this condition, the average of 1.5 counts per pixel⁻¹ 2.5 µs⁻¹ is • consistent with ~550 photons m⁻² sr⁻¹ ns⁻¹ for 250--500 nm

20 30 40 50 60 70 80 90

middle

Maximum medium cloud cov

60°N

Cloud Systems

Himawari & Meteosat satellites

ERA model

0 15 30 45 70 100 160

300

K-EUSO

- In the Russian Federal
- Space Program
- Passed the stage of preliminary design with Roscosmoc
- Technical requirements, accomodation, operations study performed by Energia space corporation
- Evolution of KLYPVE Russian detector (reflector)
- Launch in 2024+

N-S Dipole Anisotropy

^{10²} Number of Events

ground observatory $\delta(E_N/E_S) \approx 0.5$

10

Dipole sensitivity (3 σ)

10

10

North – TA

6 yrs

 10^{3}

South – Auger

K-EUSO

The design of the detector should provide measurements of UHECR with a threshold neat 50 EeV with statistics of ~100 events per year.

radiation

• Placement:

Russian Segment of the ISS

- Main technical parameters
- K-EUSO Telescope with an optical Schmidt scheme (a large area of the entrance window and a wide field of view)
 - ✓ Mirror diameter 3.6-4 м
 - ✓ Time resolution 1-2.5 us
 - ✓ FOV 40 degrees.
 - ✓ Angular resolution ~10⁻⁶ sr
 - ⁶³ Mass ~ 500 850 kg

POEMMA: PROBE OF EXTREME MULTI-Messenger Astrophysics

POEMMA DESIGN BASED ON: OWL AND JEM-EUSO STUDIES, EUSO BALLOON EXPERIENCE, & CHANT CONCEPT + LEGACY IN FLUORESCENCE FROM GROUND

CHANT

EMIZ.

R har R har R har A CHERENKOV FROM ASTROPHYSICAL NEUTRINOS

TELESCOPE

Mission Concept

Stereo Viewing of UHECRs E \gtrsim 20 EeV via Fluoresence: 10's of µsec timescale

Upward τ -lepton EAS E \gtrsim 20 PeV via Cherenkov: ~10 nsec timescale

POEMMA & Mission Description: Summary of results presented in arXiv:2012.07945

POEMMA UHECR & UHE Neutrino Performance via air fluorescence measurements. Summary of results presented in PhysRevD.101.023012

POEMMA VHE Neutrino Performance via optical Cherenkov measurements. Summary of results presented in PhysRevD. 100.063010 and PhysRevD. 102.123013

POEMMA Operational Modes: UHECR Stereo versus Limb-viewing Neutrino

Stereo Viewing of UHECRs E ≥ 20 EeV via Fluoresence: 10's of µsec timescale

1.E+7

1.E+6

1.E+5

1.E+4

1.E+3

1.E+2

1990

Exposures (L=km^2*sr*yr)

POEMMA: Instruments defined by weeklong IDL run at GSFC

			SHUTTER DOORS										
		TAE	3LE I: POEMMA	Specifications:			1,00	00	Microv	vave た くち	15	Visible ● Flight System	าร
	Photomete	er Components		Spacecraft				AMS	Radar	18 18		+ Ground Prote	otypes
	Optics	Schmidt	45° full FoV	Slew rate	90° in 8 min			[\"=				x x	
		Primary Mirror	r 4 m diam. 🔍	Pointing Res.	0.1°				Comm			ades	
		Corrector Lens	3.3 m diam.	Pointing Know.	0.01°		E ¹⁰	DO E			Ast	ronomy & Surveillar	ice
		Focal Surface	1.6 m diam.	Clock synch.	10 nsec		Ó.	E	+\		\frown		
		Pixel Size	$3 \times 3 \text{ mm}^2$	Data Storage	7 days		ter	F			$\langle \rangle$	$ \rangle $	
	DEC	Pixel FoV	0.084°	Communication	S-band	o Neutrino Telescopes	a	. [\setminus \mid \setminus	
	PFC	MAPM1 (1 μ s)	126,720 pixels	Wet Mass	3,450 Kg		Dia	10		Comm	<u>e</u>	\rightarrow V	
	PLC	$\frac{51PM}{(20 \text{ ns})}$	15,360 pixels	Power (w/cont)	(2 Observatories)		-	lounch li	PUEM				\odot
	Photomete	Mass	1 550 kg	Lifetime	(2 Observatories)	•					$\langle \rangle$	$\langle \rangle$	
		Nidss Dowor (w/cont	1,550 kg	Orbit	5 year (5 year goal) $525 \text{ km} = 28.5^{\circ} \text{ Inc}$					4 (\backslash	\setminus	
		Data	< 1 GB/dav	Orbit Period	95 min			100	10 1	0.1	0.01		
		Dutu	<1 Ob/duy	Observatory Sep	$\sim 25 - 1000 + \text{km}$			100	10 1	0.1	0.01	0.001 0.000	0.00001
						-			Su	rface Prec	cision R	.MS, mm	
]	Each Obser	rvatory = Photom	neter + Spacecraf	t; POEMMA Missi	on = 2 Observatories			Imogi	ng 10	4 0000	from	diffractic	n limi

Imaging ~10⁴ away from diffraction limit

POEMMA: Hybrid Focal Plane

UV FLUORESCENCE DETECTION USING MAPMTS WITH BG3 FILTER (300 - 500 nm) DEVELOPED BY JEM-EUSO: 1 USEC SAMPLING

CHERENKOV DETECTION WITH SIPMS (300 - 1000 NM): 20 NSEC SAMPLING

Elementary Cell (EC) SiPM (8x8) FS filled with ECs 0.8 m O 0 0.6 0.4 PCB1 PCB2 0.2 Si-Diode Interconnector Ē 0.0 --0.2 **30 SIPM FOCAL** SURFACE UNITS -0.4 TOTAL 15,360 PIXELS 512 PIXELS PER FSU -0.6 KIX 69 (64x4x2)-150 -100 -50 0 X [mmj SI-DIODE FOR LEO RADIATION -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 BACKGROUNDS X [m] REJECTION **55 PHOTO DETECTOR MODULES** (PDMs)= 126,720 PIXELS 1 PDM = 36 MAPMTs = 2,304 PIXELS

POEMMA UHECRS & VS

Bementary Cell (EC) SPM (8x8)

POB2

Interconnector

PCB1

S-Diode

5 filled with ECs

SIGNIFICANT INCREASE IN EXPOSURE GOOD ENERGY, ANGULAR, AND SHOWER MAXIMUM RESOLUTIONS, Uniform sky coverage to guarantee the discovery of UHECR sources Spectrum, Composition, Anisotropy E>50 EeV

POEMMA: stereo reconstructed angular resolution: see PhysRevD. 101.023012

Diffuse neutrino performance

Figure 21. POEMMA 5-yr. sensitivity to EAS showers resulting from neutrino interactions in the Earth or in the atmosphere. Left: The black solid curve shows the POEMMA sensitivity to τ -induced EAS showers arising from v_{τ} interactions in the Earth and detected via optical Cherenkov (scaled to three flavors) [139]. The black dashed curve is the sensitivity for POEMMA30(\times 12) (extrapolating the POEMMA30 sensitivity to 360° FoV in azimuth). The 90% CL upper limits from Auger (scaled for sliding decade-wide neutrino energy bins and for three flavors) [147], IceCube [148], and ANITA I-IV [149] are shown along with 3-yr. sensitivity projections for ARIANNA [150], ARA-37 [151], and GRAND10k [152]. For comparison, also plotted is the combined allowed ranges from [153] and [154] for the all-flavor cosmogenic neutrino flux arising from UHECR interactions with the cosmic microwave background. Right: Black curves show the POEMMA sensitivity to EAS showers arising from neutrino interactions in the atmosphere and detected via fluorescence from charged-current and neutral-current interactions from all three neutrino flavors. The solid (dashed) curve is calculated using cross sections from Ref. [155] (Ref. [142]). For comparison, predictions for strongly coupled string moduli (maroon band) [123] are also shown along with upper limits from ANITA I-IV (blue line) [149] and Westerbork Synthesis Radio Telescope (WSRT; red line with tan band) [156] and a projected sensitivity for LORD (green band) [157].
Exposure for ToO Observations

Stereo Mode Long duration: 1 day

Figure 14. Left: Illustration of the geometrical configuration in the orbital plane (satellite position, \vec{u}_{sat} , versus satellite velocity \vec{v}_{sat}). The satellite is located at point S. The arrival direction of an EAS generated by a v_{τ} is characterized by its Earth emergence angle θ_e and the corresponding angle away from the limb δ in the point of view of the satellite. The detector has a conical FoV of opening angle α_c , with an offset angle α_{off} (away from the Earth limb) and pointing direction $\vec{n_d}$. Right: Cherenkov viewing angle δ below the limb versus Earth emergence angle θ_e [77].

Figure 19. Left: POEMMA ToO sensitivity to a short, 1000 s burst shown by the blue band, where the dark blue band corresponds to source locations between the dashed curves in the sky coverage Figure 18. Also shown are all-flavor upper limits from IceCube and Auger (solid histograms) for neutrino searches within ±500 s around the binary neutron star merger GW170817 [145], the projected sensitivity of GRAND200k at zenith angles 90° and 94° [28], and models taken from Kimura et al. [95] of the all-flavor neutrino fluence from a short gamma-ray burst during the prompt and extended emission (EE) phases, assuming on-axis viewing ($\theta = 0^\circ$) and a source at D = 40 Mpc. Right: Sky plot of the expected number of neutrino events with POEMMA as a function of galactic coordinates for the Kimura et al. [95] short gamma-ray burst with moderate EE model, placing the source at 40 Mpc. Point sources are galaxies from the 2MRS catalog [146]

NEUTRINO: Target Of Opportunity (TOO)

Figure 18. POEMMA cosmic neutrino sky coverage Left: Sky coverage for sources at a given orbital position in the sine of the declination and right ascension, without including the effect of the Sun, at a given time of the year for viewing angles to $\delta = 18.3^{\circ}$ below the limb [2]. Right: The fractional neutrino sky exposure for one year in declination versus right ascension, assuming a defined variation in the POEMMA limb-pointing directions over the year to achieve full-sky coverage. The calculation takes into account the effects of the sun and moon on the duty cycle for observations [77].

Table 2. Figure at left: Poisson probability of POEMMA detecting at least one ToO versus mission time for several modeled source classes. Table at right: Promising source classes for detecting at least one ToO event with POEMMA based on a Poisson probability of $\geq 10\%$. Also included are the horizon distance for detecting one neutrino per ToO event, the mission time for 10% chance of detecting *geq*1 ToO event, and the model reference.

T. M. Venters, et al., POEMMA's target of opportunity sensitivity to cosmic neutrino transient sources [arXiv:1906.07209 [astro-ph.HE]].

CONCLUSIONS

- The JEM-EUSO program is an essential element of the roadmap of the UHE Community
- Prototypes and Models of the major elements (Lenses, PDM, DP Unit) have been produced and are being tested to increase the TRLs levels.
- The First Pathfinders (EUSO-TA and EUSO-Balloon) are providing exciting technical and science-oriented data: the transition from paper work to prototyping and measurements has been done.
- The small scale missions (EUSO-SPB, Mini-EUSO and TUS) are providing new scientific results.
- Large Mission concepts are actively studied: K-EUSO is expected to provide first key results from space on the interpretation of UHECR science, and then POEMMA is expected to unveil the highest energy sky ever explored.

THANK YOU