Radio detection of cosmic rays with LOFAR ... and beyond

Katie Mulrey

HEP@VUB Meeting, 29 April, 2021

*kmulrey@vub.be

Cosmic Rays and Multi-Messenger Astronomy

Gamma rays: point to sources, can be absorbed, multiple emission mechanisms

Neutrinos: point to sources, not absorbed, weak interaction

Cosmic rays: charged and deflected, info in composition, easy to detect

29/4/2021 **HEP@VUB**

K. Mulrey

2

29/4/2021

K. Mulrey

HEP@VUB

29/4/2021

HEP@VUB

K. Mulrey

Hillas criterion: $E_{max} \propto Z e B r$

E_{Fe, max}= 26 x E_{p,max}

- Below 10¹⁹ eV, can't point directly to sources
- Transition to heavier composition indicates the maximum source energy is reached

4

To answer this question, we need to determine the *energy* and *composition* of cosmic rays.

Detecting comic-ray air showers

Detection Strategy

Instrument a wide area or use a large target to maximize effective area.

Detection Methods

- Particles
- Fluorescence
- Cherenkov light
- Radio

K. Mulrey

HEP@VUB

29/4/2021

5

Detecting comic-ray air showers

HEP@VUB

29/4/2021

K. Mulrey

- Indirect detectioncan't determine composition
- X_{max} is an observable that gives information about composition

Radio Emission

29/4/2021

HEP@VUB

K. Mulrey

- Generated in the electromagnetic components of the air shower
- Radiation pattern, signal strength, and pulse shapes contain information about shower development

7

Low Frequency ARray

29/4/2021

HEP@VUB

K. Mulrey

Low Frequency ARray

29/4/2021

K. Mulrey

HEP@VUB

8

Radio Detection Experiments

T. Huege. Physics Reports, 620:1-52, 2016.

K. Mulrey

HEP@VUB 29/4/2021

Cosmic Ray Detection at LOFAR

29/4/2021

K. Mulrey

HEP@VUB

 Simulate ~30 P and Fe showers with realistic atmosphere and known arrival direction (natural distribution of X_{max})

HEP@VUB

- Calculate reduced χ^2 for each simulation
- Parabola fit determines event X_{max}
- Resolution < 20 g/cm²

K. Mulrey

• Systematic uncertainties < 9 g/cm²

$$E_{\rm radio} = f_r \times E_{\rm sim}$$

Free parameters: energy and core position

29/4/2021

K. Mulrey

HEP@VUB

29/4/2021

K. Mulrey

HEP@VUB

Composition Results

Corstanje et al. 2021. arXiv:2103.12549v1

K. Mulrey

Composition Results

Corstanje et al. 2021. arXiv:2103.12549v1

Beyond X_{max}

$$N' = \left(1 + \frac{RX'}{L}\right)^{R^{-2}} \exp\left(\frac{-X'}{LR}\right)$$

29/4/2021

K. Mulrey

HEP@VUB

From P. Mitra

17

Beyond Xmax

 $\langle ln(A) \rangle = f_p \ln(1) + f_{He} \ln(4) + f_N \ln(14) + f_{Fe} \ln(56)$

- 5000 CONEX showers for each combination
- Studying L and X_{max}/R together yields more info about composition and hadronic interaction model

Can the composition be better determined by including L in the fit?

• Determining L requires sensitive measurements

From P. Mitra

K. Mulrey

Radio Detection Experiments

29/4/2021

T. Huege. Physics Reports, 620:1-52, 2016.

HEP@VUB

K. Mulrey

Radio Detection Experiments

LOFAR

- X_{max} resolution: 20 g/cm²
- Energy resolution: 9%
- Core resolution: 3-10 m
- Northern hemisphere

SKA

- X_{max} resolution: 6-8 g/cm²
- Energy resolution: 3%
- Core resolution: 50 cm
- Southern hemisphere

Coming online soon ...

K. Mulrey

HEP@VUB

29/4/2021

K. Mulrey

HEP@VUB

29/4/2021

HEP@VUB

K. Mulrey

29/4/2021

HEP@VUB

K. Mulrey

Radiation Energy

Radiation Energy

a = parametrization of the charge-excess fraction

Method from: *C. Glaser, et al. JCAP, 1609(09):024, 2016*

K. Mulrey

quantity that can be directly compared between experiments

Energy Measurements

K. Mulrey HEP@VUB 29/4/2021

Energy Measurements

Particle footprint

HEP@VUB

K. Mulrey

$$\chi^{2}_{\text{particle}} = \sum_{\substack{\text{particle} \\ \text{detectors}}} \left(\frac{d_{\text{det}} - f_{p} d_{\text{sim}}}{\sigma_{\text{det}}} \right)^{2}$$
$$E_{\text{particle}} = f_{p} \times E_{\text{sim}}$$

29/4/2021

South-North (m)

Radio footprint 1e-15 400 8 300 Measured energy, ε (J) 200 6 100 -4 0 -100 -2 -200 n -400 -300 -200 -100 100 200 0 West-East (m)

Energy Measurements

29/4/2021

South-North (m)

K. Mulrey

HEP@VUB

27

Radiation Energy

At a radiation energy of 1 MeV, the energy scales of Auger and LORA agree to within 6 \pm 20 %

K. Mulrey et al. JCAP (2020)

Radiation Energy

At a radiation energy of 1 MeV, the energy scales of Auger and LORA agree to within 6 ± 20 %

> **Dominated by uncertainty on calibration / antenna. How can we improve this?**

K. Mulrey et al. JCAP (2020)

K. Mulrey

HEP@VUB 29/4/2021

Measure the radiation energy with the same antenna array!

- *Autonomous*: self triggering, independent energy measurement, no interference with main experiment
- Portable: can be deployed at different sites, spacing can be adjusted to probe different energy regimes
- Result: Quantify systematic differences between energy scales of the different experiments

Energy Reconstruction

1. Integrate fluence footprint to get radiation energy (2D LDF)

$$f = \varepsilon_0 c \left(\Delta t \sum_{t_1}^{t_2} |\vec{E}(t_i)|^2 - \Delta t \frac{t_2 - t_1}{t_4 - t_3} \sum_{t_3}^{t_4} |\vec{E}(t_i)|^2 \right) \quad \begin{array}{l} \text{A. Aab et al.} \\ \text{PRL 116 (2016)} \\ \text{no.24, 241101} \end{array}$$

- Only 5 stations- use direction/core info from host experiment
- Resolution ~20%

2. Use broadband spectral information (ARIANNA style)

Corrected radiation energy $\frac{\sqrt{\Phi'_E}}{E_{shower}} = A \cdot \exp(-s \cdot (|m_f| \cdot \text{GHz})^{0.8})$

Welling et al. JCAP 10 (2019) 075

- Make use of spectral information to determine where you are w.r.t the Cherenkov cone
- Resolution ~15%

K. Mulrey

HEP@VUB

29/4/2021

HEP@VUB

K. Mulrey

Short Term

- Develop and deploy prototype array
- Develop techniques for broadband event reconstruction

Long Term

- Include more stations to reach higher energies
- Self-sustaining program for use by other experiments

K. Mulrey

HEP@VUB

RET-CR Surface array

29/4/2021

K. Mulrey

HEP@VUB

34

VUB prototype

VUB prototype

K. Mulrey

Krijn, Rose, Quique

HEP@VUB 29/4/2021

VUB prototype

Krijn, Rose, Quique

K. Mulrey

HEP@VUB

Radio detection of cosmic rays

Questions?

K. Mulrey HEP@VUB

Extra

K. Mulrey HEP@VUB 29/4/2021

Energy Reconstruction

29/4/2021

HEP@VUB

K. Mulrey

Energy Reconstruction

Energy reconstruction: work in progress

30-80 MHz

K. Mulrey

HEP@VUB

Polarization

29/4/2021

K. Mulrey

HEP@VUB

39

Atmospheric Corrections

Atmospheric Corrections

- New: implement density and refractivity directly into CORSIKA/CoREAS simulations
- Available as a standard option since CORSIKA 76300
- For extreme conditions, can shift X_{max} up to 15 g/cm²

SetA: GDAS atmosphere SetB: US Standard atmosphere SetC: SetB + linear correction

Antenna Calibration

1

30

50

frequency (MHz)

40

60

70

signal chain allows for the determination of the amplitude calibration

K. Mulrey et al. Astropart. Phys 111 (2019) 1-11.

HEP@VUB

29/4/2021

K. Mulrey

80

Antenna Calibration

- Spectral shape shows good agreement between simulation and data
- K. Mulrey et al. Astropart. Phys 111 (2019) 1-11.

Absolute calibration makes radiobased energy scale possible

Figure 1.13: Category3: Radio fluence LDFs with similar X_{max} , different R, L

Figure 1.14: Category
4: Radio fluence LDFs with similar $X_{\rm max},\,L$ different
 R

K. Mulrey HEP@VUB 29/4/2021

46

K. Mulrey HEP@

Radio-based energy uncertainties

Uncertainty	Value	
Event-by-event		
angular dependence of antenna model	5%	
temperature dependence	negligible	
reconstruction uncertainty	typically 9%	
composition uncertainty	10 %	
Total event-by-event	$11\% \bigoplus$ reconstruction uncertainty	
Absolute scale		
antenna calibration and system response	13%	
hadronic interaction models	3%	
radio simulation method	2.6%	
Total absolute scale	13.6%	

Particle-based energy uncertainties

K. Mulrey

Uncertainty	Value	
Event-by-event		
scintillator response variation	2.5%	
reconstruction uncertainty	10-50%	
composition uncertainty	2-30%	
Total event-by-event	$2.5\% \bigoplus$ reconstruction uncertainty	
	\bigoplus composition uncertainty	
Absolute scale		
scintillator calibration	3%	
hadronic interaction models	7%	
Total absolute scale	7.6%	

HEP@VUB

X_{max} uncertainties

	Syst. uncertainty	Added stat. unc.
Choice of hadronic interaction model	$5\mathrm{g/cm^2}$	
Remaining atmospheric uncertainty	$\sim 1{ m g/cm^2}$	$\sim 2{ m g/cm^2}$
Five-layer atmosphere CORSIKA	$2{ m g/cm^2}$	$4\mathrm{g/cm^2}$
Possible residual bias	$3.3\mathrm{g/cm^2}$	
Curve fit for χ^2 optimum	$\leq 1{ m g/cm^2}$	
Total, added in quadrature	$7{ m g/cm^2}$	

$$\begin{pmatrix} \mathcal{E}_{\theta} \\ \mathcal{E}_{\phi} \end{pmatrix} = \begin{pmatrix} A_{\theta} \\ A_{\phi} \end{pmatrix} 10^{f \cdot m_f} \, \exp(\Delta \, j)$$

- Make use of spectral information to determine where you are w.r.t the Cherenkov cone
- Single antenna reconstruction?
- Resolution ~15%

HEP@VUB

Scintillator Array Extension

 $\begin{pmatrix} 600 \\ 400 \\ -400 \\ -200 \\ -200 \\ -400 \\ -600 \\ -600 \\ -1000 \\ -800 \\ -600 \\ -600 \\ -400 \\ -200 \\$

HEP@VUB

K. Mulrey

Simulated core positions

Existing stationsExpansion

29/4/2021

- Current cosmic-ray trigger is based on 20 scintillators on the superterp
- Expand by adding 20 scintillators at neighboring stations

Triggering outside superterp: Explore fringes of footprint

52

GDAS Atmospheric Corrections

A. Corstanje Astropart. Phys. 89 (2017)

HEP@VUB

P. Mitra et al. PoS ICRC2017 (2018) 325

K. Mulrey

- GDAS provides atmosphere measurements (temp, humidity, pressure)
- Any location (1°x1°), time (3-hourly)
- Integrated into simulations
- For extreme conditions, can shift X_{max} up to 15 g/cm²

Beyond Xmax

Can the composition be determined better by including L in the fit?

- Determining L requires sensitive measurements
- MC simulation-based reconstruction is limited by computation resources (MGMR3D)

H. Dembinski et al., PoS(ICRC2017)533