

Status Update $H^{++}H^{--} \rightarrow Lep$ Search

ULB

UNIVERSITÉ LIBRE DE BRUXELLES

Barbara Clerbaux, **Santiago Paredes Saenz**, Laurent Thomas <u>santiago.paredes@cern.ch</u>

April 2021

About us

Laurent Thomas Postdoc Santiago Paredes Sáenz Postdoc Barbara Clerbaux Professor

- <u>CMS-PAS-HIG-16-036</u> (12.9 fb⁻¹)
 - > Draft of update: CMS-AN-17-100
 (35.9 fb⁻¹)
 - ▶ Archived since 2018
 - > By Devin N. Taylor (UC Davis)
- ATLAS Paper (36.1 fb^{-1})
 - CERN-EP-2017-198; arXiv:1710.09748
 - → *Only targets pair-production

• Strategy:

- Combining ideas from CMS and ATLAS analyses
- Focus on 4 lepton channel in UL2017 at first
 - ▶ **e**/μ only
- Currently studying:
 - Data VS MC in control regions
 - Processing other bkg MC

Status - channels

Status - selections

→ p _T	>	20	GeV
------------------	---	----	-----

- → $|\eta| < 2.5$
- → Iso: cutBasedHEEP

FIFCTRONS

- → dxy < 0.05
- → dz < 0.1

MUONS \rightarrow \mathbf{p}_{τ} > 20 GeV \rightarrow $|\eta| < 2.4$ → ID: mediumID \rightarrow dxy < 0.2 \rightarrow dz < 0.5 \rightarrow tkRelIso/p_T < 0.4

Status - selections

• Work in progress: Cuts

Status - selections

				,
Full li	lsts	of	da	ta
and $\boldsymbol{M}\boldsymbol{C}$	data	set	S	in
backup				

• Efficiency

• MC (UL2017)

	signal	ttbar	ZZ	signal (%)	ttbar (%)	ZZ (%)
Initial Events	198000	21412700	14284590	-	-	-
Trigger + preprocessing	145650	8648554	647153	73.56%	40.39%	4.53%
b-jet veto	142692	2440269	639693	72.07%	11.40%	4.48%
exactly 4 e/mu	39288	611	7825	19.84%	>0.01%	0.05%
lep. charge sum == 0	37927	449	7733	19.16%	>0.01%	0.05%
Control	6	315	5123	>0.01%	>0.01%	0.04%
Validation	13	28	872	0.01%	>0.01%	0.01%
Signal	21322	2	56	10.77%	>0.01%	>0.01%
Overall efficiency (SR)	10.77%	>0.01%	>0.01%	10.77%	>0.01%	>0.01%

NanoAODs

/TTTo2L2Nu_TuneCP5_13TeV-powheg-pythia8/RunIISummer19UL17NanoAODv2-106X_mc2017_realistic_v8-v1/NANOAODSIM

'Homebrew' NanoAOD made from

/ZZTo4L_M-1toInf_TuneCP5_13TeV_powheg_pythia8/RunIISummer20UL17MiniAOD-106X_mc2017_realistic_v6-v1/MINIAODSIM

Custom NanoAODs

/HPlusPlusHMinusMinusHTo4L_M-1000_TuneCP5_13TeV_pythia8/NANOAODStep_UL17 → Privately generated

Status - signal

- Signal MC
 - → Same as <u>CMS-AN-17-100</u>
 - └ 'LeftRightSymmmetry' in
 - PYTHIA 8, 1 TeV , vev ~ 0
 - → Equal coupling to $\mathbf{e}/\mu/\tau$ → Selecting \mathbf{e}/μ only!

Status - signal

- Signal MC
 - → Same as <u>CMS-AN-17-100</u>
 - └> 'LeftRightSymmmetry' in
 - PYTHIA 8, 1 TeV , vev ${\sim}0$
 - → Selecting \mathbf{e}/μ only!

- Control region
- Opposite-sign lepton pairs
- Only ZZ background A
 Mostly OK
 - ↓ Some discrepancy

- Control region
- H⁻⁻ candidate p_T
- Only ZZ background

- Validation region
- Opposite-sign lepton pairs
- Only ZZ background
- Very low stats

- Validation region
- H^{--} candidate p_{τ}
- **Only ZZ** background
- Very low stats

Next Steps

Next Steps

- **Next** steps:
 - Run on more MC background samples
 - Produce more signal mass points
 - Finalize MC background estimate (UL2017)
 - Data driven backgrounds charge misID, etc.
 - First pass of statistical setup in Combine [
 - **Explore** new variables, cuts on MC
 - → + optimize

Next Steps

- Next steps:
 - Finalize trigger strategy + check efficiency
 - Finalize selection and optimization [
 - Apply all scale factors
 - Final background estimation CR+VR and plots
 - Unblind 10% or 20% of SR
 - Run analysis on 2016 and 2018
 - Finalize statistical analysis + Combine setup

Thanks!

Barbara Clerbaux, Santiago Paredes Saenz, Laurent Thomas

<u>iago.paredes@cern.ch</u>

April 2021

Backup

Barbara Clerbaux, **Santiago Paredes Saenz**, Laurent Thomas <u>santiago.paredes@cern.ch</u>

Triggers

• Work in progress: Trigger list

OR OF:

- → 'HLT_Ele27_WPTight_Gsf',
- → 'HLT_IsoMu24',
- → 'HLT_Ele23_Ele12_CaloIdL_TrackIdL_IsoVL_DZ',
- → 'HLT_Mu17_TrkIsoVVL_Mu8_TrkIsoVVL_DZ',
- → 'HLT_Mu8_TrkIsoVVL_Ele23_CaloIdL_TrackIdL_IsoVL_DZ',
- → 'HLT_Mu23_TrkIsoVVL_Ele12_CaloIdL_TrackIdL_IsoVL_DZ'

Data Samples List

• 2016 NANOAOD not yet ready

20**17** & 20**18**:

/DoubleMuon/Run2017*-UL2017_MiniAODv1_NanoAODv2-v1/NANOAOD /DoubleMuon/Run2018*-UL2018_MiniAODv1_NanoAODv2-v2/NANOAOD

/DoubleEG/Run2017*-UL2017_MiniAODv1_NanoAODv2-v1/NANOAOD
/EGamma/Run2018*-UL2018_MiniAODv1_NanoAODv2-v1/NANOAOD

/MuonEG/Run2017*-UL2017_MiniAODv1_NanoAODv2-v1/NANOAOD /MuonEG/Run2018*-UL2018_MiniAODv1_NanoAODv2-v1/NANOAOD

MC Samples List

NANOAODSIM's:

/WZTo3LNu_mllmin01_NNPDF31_TuneCP5_13TeV_powheg_pythia8/RunIISummer20UL17NanoAODv2-106X_mc2017_realistic_v8-v1 /DYJetsToLL_M-50_TuneCP5_13TeV-amcatnloFXFX-pythia8/RunIISummer19UL17NanoAODv2-106X_mc2017_realistic_v8-v1 /TTTo2L2Nu_TuneCP5_13TeV-powheg-pythia8/RunIISummer19UL17NanoAODv2-106X_mc2017_realistic_v8-v1 /WWTo2L2Nu_TuneCP5_DoubleScattering_13TeV-pythia8/RunIISummer19UL17NanoAODv2-106X_mc2017_realistic_v8-v1 /TTWJetsToLNu_TuneCP5_13TeV-amcatnloFXFX-madspin-pythia8/RunIISummer19UL17NanoAODv2-106X_mc2017_realistic_v8-v1 /TT_Mtt-1000toInf_TuneCP5_13TeV-powheg-pythia8/RunIISummer19UL17NanoAODv2-106X_mc2017_realistic_v8-v1 /TT_Mtt-700to1000_TuneCP5_13TeV-powheg-pythia8/RunIISummer19UL17NanoAODv2-106X_mc2017_realistic_v8-v1 /ST_tW_antitop_5f_NoFullyHadronicDecays_TuneCP5_13TeV-powheg-pythia8/RunIISummer19UL17NanoAODv2-106X_mc2017_realistic_v8-v1

Homebrew NANOAOD's:

/pnfs/iihe/cms/store/user/lathomas/ZZTo4L_M-1toInf_TuneCP5_13TeV_powheg_pythia8/NANOAODStep_UL17/210212_190310

• eventSelection.py

- Main analysis script written in python
- ➡ ROOT::RDataFrame and ROOT::VecOps::RVec for event and object selection
 - \rightarrow Efficient, readable code
 - → Multi-thread friendly(ROOT.EnableImplicitMT(1))
- Easy configuration and pipeline integration

Analysis Strategy

Analysis Strategy: CMS

- Search for **3** or **4 leptons** in the final state
 - Pair Production: + + -
 - Asso Production: ± ± ∓
- **Pre**selection: p_T , η , ΔR_{II} , m_{II} , b-veto
- Selection
 - → 3 lep: **Σp_T**(lep), **MET**, **m_H**

ե 4 lep: **Σp_T**(lep), **m_H**

Analysis Strategy: CMS

- Background estimation
 - ▶ Prompt bkg → MC Simulation
 - Various control/validation
 regions
 - Somethype is a straight of the straight of
 - Use sideband regions in m_{ll}
 2D for 4 lep, 1D for 3 lep

Analysis Strategy: ATLAS

- Search for 2, 3 or 4 leptons in the final state
 All target pair-production
- **Pre**selection: p_T , η , b-veto
- Selection

 - 4 lep: average m_H, separation of m_{H++} and m_{H--}, Z veto

Analysis Strategy: ATLAS

- Define various m_h regions Estimate background via
 Control/validation/signal MC simulation
 - Fake bkg in data

Analysis Strategy

- Various statistical approaches
 - Possible expansions to other models, generic same-sign lepton search, etc.

Analysis Strategy

- Various statistical approaches
 - Possible **expansions** to other **models**, 4

generic same-sign lepton search, etc.

Observed exclusion 95% CL

Expected exclusion 95% CL

(13 TeV)

Associated Production

Pair Production

Combined

CMSPreliminary

 $100\% \Phi^{\pm\pm} \rightarrow e^{\pm}e^{\pm}$

 $100\% \Phi^{\pm\pm} \rightarrow e^{\pm}\mu^{\pm}$

