

Activities at the STAR Institute (Space Sciences and Technologies

for Astrophysics Research)

Jean-René Cudell

Atri BhattacharyaVincent Boudart

COSPA restart meeting, ULB, 29/10/2021

See Christophe Collette Precision Mechatronics Laboratory <u>http://www.pmlab.be</u>

Activities

Gravitational waves

Early detection of neutron star mergers

Convolutional neural networks for the detection of the early inspiral of a gravitational-wave signal, **G. Baltus**, J. Janquart, M. Lopez, A. Reza, S. Caudill and **J.R.C.**, Phys.Rev.D 103 (2021), 102003

Detection of unmodeled signals -> Vincent's talk

Search for primordial black holes

<u>The hunt for sub-solar primordial black holes in low mass ratio binaries is open</u>, K. S. Phukon, **G. Baltus**, S. Caudill, S. Clesse, A. Depasse, **M. Fays** et al., e-Print: 2105.11449 [astro-ph.CO]

New Filter for phase lock loop

 IWAVE -- An Adaptive Filter Approach to Phase Lock and the Dynamic Characterisation of Pseudo-Harmonic Waves, Edward J. Daw, Ian J. Hollows, Elliot L. Jones, Ross Kennedy, Timesh Mistry, Maxime Fays et al., e-Print: 2109.00104 [physics.ins-det]

Machine learning

- Good at identifying patterns
- cats/dogs or noise/GWs
- Extremely fast after training
- Massively parallel computing

Convolutional Neural Network for early inspiral detection

In progress: better training and optimized network 1st preliminary alert could be sent 2 minutes BEFORE MERGER during future runs

IWAVE filter

- Novel adaptive filtering approach to the dynamic characterisation of waves of varying frequency and amplitude embedded in arbitrary noise backgrounds.
- Characterised by single input parameter with low computational load
- Low latency: real-time tracking on single CPU core

 > Potential for low-latency searches by removing violin modes, 60 Hz
 power line, etc...

Modeling neutron star matter

B. Biswas, P. Char, R. Nandi, and S. Bose, PRD 103, 103015 (2021)

tension between nuclear data and astrophysical observations (large radii)

- Use an EOS from aTaylor expansion around the nuclear saturation density and a phenomenological model (piecewise polytropes $P\propto \rho^{\gamma}$) at high density
- Use Bayesian analysis to determine the transition point.
- correctly reproduces neutron star properties along with nuclear matter properties at saturation

Properties of the secondary component of GW190814

Heaviest neutron star (NS) or smallest black hole (BH)?

2.50–2.67 M_{\odot} "mystery object" with a 22.2–24.3 M_{\odot} black hole seen in LIGO and Virgo

- 1. <u>Non-rotating NS</u>: We found the probability to be $\sim 1\%$
- 2. <u>Fast rotating NS</u>: ~ 8% probability being a NS if the highest spinning pulsar has the maximum possible spin in nature.
- 3. <u>Black hole:</u> It sets an upper bound on the **maximum mass of neutron stars (2.21**_{-0.21}^{+0.19} M_{\odot}) assuming the NS and the BH populations do not overlap.

B. Biswas, R. Nandi, P. Char, S. Bose, and N. Stergioulas, MNRAS 505, 1600 (2021)

Cosmic-Ray showers

Unitarisation dependence of diffractive scattering in light of high-energy collider data, A. Vanthieghem, **A. Bhattacharya, Rami Oueslati, J.R.C.,** JHEP 09 (2021), 005 <u>Proton inelastic cross section at ultrahigh energies,</u> **A. Bhattacharya, J.R.C., R. Oueslati,** A. Vanthieghem, Phys.Rev.D 103 (2021) 5, L051502

Overlooked uncertainty

- All Monte Carlos use the eikonal scheme to account for multiple pomeron exchanges
- It is known that this is wrong in QCD
- Use another scheme to describe soft forward interactions
- factor 2 uncertainty in single diffractive @ultrahigh energy
- ➡same for muons

IceCube physics → see Atri's talk

Gravitational lensing and dark matter

Double dark matter vision: twice the number of compact-source lenses with narrow-line lensing and the WFC3 grism, A.M. Nierenberg, ... **D. Sluse** et al., Mon. Not. Roy. Astron. Soc. 492 (2020) 4, 5314-5335

Narrow lines from the diffuse matter around quasars enable the detection of so far undetected subhalos

Flux anomalies among images come from dark matter substructures and can give a probability for their mass: data from 11 lensed events from the Hubble Space telescope

Coming soon: data for 31 lensed quasars from the James Webb Space Telescope approved

∆ DEC (")

Strong lensing and the Lemaître constant H₀

H0LiCOW - XIII. A 2.4 per cent measurement of H0 from lensed quasars: 5.3σ tension between early- and late-Universe probes, K.C. Wong... **D. Sluse** et al., Monthly Notices of the Royal Astronomical Society, 498 (2020) 1420-1439

Time-Delay Cosmography

6 strongly-lensed quasars Measure time delays between images using the variability of the quasar as a clock ->measurement of H₀

H0LICOW accretes researchers and becomes **TDCOSMO** (http://tdcosmo.org) **Many TDcosmo papers studying the systematic uncertainties in the extraction of H0**

Quasars for cosmology and fundamental physics

- Bounds on the circular polarisation lead to bounds on Axion-Like Particles
- Hutsemekers effect: systematic alignment of light polarisation for large-scale clusters of quasars

Alignments with largescale structures? Dipole? Failure of the cosmological principle? Rotation of the polarisation of electromagnetic waves from quasars with cosmological distance along a preferred axis

In progress

Understanding the quasar internal structure with polarimetry and microlensing:

- relation between polarization and SMBH spin axis
- orientation versus evolutionary effects

Developing wide field polarimetry to measure the polarization of 10⁴ quasars :

- large-scale structures
- CMB foreground correction

Preparing future X-ray polarimetry: - study of the SMBH immediate vicinity

- testing ALPs with high-energy photons

