

Andrea Campoleoni

Physique de l'Univers, Champs et Gravitation

11th CosPa meeting, Brussels, 29/10/2021

Physics of fundamental interactions @ UMONS

 Three groups working on theoretical physics of fundamental interactions

Physics of the Universe, Fields and Gravitation	 Nicolas Boulanger Andrea Campoleoni Evgeny Skvortsov
Atomic Physics and Astrophysics	Pascal QuinetPatrick Palmeri
Nuclear and Subnuclear Physics	 Claude Semay

Physics of fundamental interactions @ UMONS

 Three groups working on theoretical physics of fundamental interactions

Physics of the Universe, Fields and Gravitation	 Nicolas Boulanger Andrea Campoleoni Evgeny Skvortsov
Atomic Physics and Astrophysics	Pascal QuinetPatrick Palmeri
Nuclear and Subnuclear Physics	 Claude Semay

Physics of fundamental interactions @ UMONS

 Three groups working on theoretical physics of fundamental interactions

Physics of the Universe, Fields and Gravitation Gravitation • Evgeny Skvortsov
Atomic Physics and Astrophysics • Pascal Quinet • Patrick Palmeri
Nuclear and Subnuclear Physics • Claude Semay

Physics of the Universe, Fields and Gravitation

<u>Staff</u>

- Nicolas Boulanger (head)
- Andrea Campoleoni (CQ FNRS)
- Evgeny Skvortsov (CQ FNRS)

<u>Postdocs</u>

- Ivano Basile
- Chrysoula Markou
- Tung Tran
- Thomas Basile

PhD students

- Arnaud Delfante
- Yegor Goncharov
- Simon Pekar
- Shailesh Dhasmana
- Akshay Bedhotiya

- Mattia Serrani
- Victor Dehouck
- Josh O'Connor
- Richard van Dongen
- Kamil Cwiklinski
- Noemie Parrini

Key research themes

- Modified theories of gravity (higher-spin theories and massive gravity)
- Asymptotic symmetries & conserved charges in gauge theories
- Conformal field theories & AdS/CFT

- Modified theories of gravity (higher-spin theories and massive gravity)
- Asymptotic symmetries & conserved charges in gauge theories
- Conformal field theories & AdS/CFT

Cosmological signatures of higher-spin particles

- Modified theories of gravity (higher-spin theories and massive gravity)
- Asymptotic symmetries & conserved charges in gauge theories
- Conformal field theories & AdS/CFT

Cosmological signatures of higher-spin particles

Holographic cosmological models

- Modified theories of gravity (higher-spin theories and massive gravity)
- Asymptotic symmetries & conserved charges in gauge theories
- Conformal field theories & AdS/CFT

Cosmological signatures of higher-spin particles

Holographic cosmological models

Effective field theories for gravitational wave production from spinning objects

- Modified theories of gravity (higher-spin theories and massive gravity)
- Asymptotic symmetries & conserved charges in gauge theories
- Conformal field theories & AdS/CFT

Cosmological signatures of higher-spin particles

Holographic cosmological models

Effective field theories for gravitational wave production from spinning objects

Constraints on gravitational waves

A common leitmotiv: higher-spin particles (s > 2)

- Plenty of higher-spin resonances in hadronic interactions...
- ...but fields in the standard model have at most spin 1
- Gravity and supergravity push the limit to spin 2 (*but they aren't renormalisable*)

A common leitmotiv: higher-spin particles (s > 2)

- Plenty of higher-spin resonances in hadronic interactions...
- ...but fields in the standard model have at most spin 1
- Gravity and supergravity push the limit to spin 2 (*but they aren't renormalisable*)

Higher is the spin, more constrained are the interactions

- Common lore: for elementary particles the previous list stops at spin 2
- Why? A bunch of time-honoured no-go results

- Common lore: for elementary particles the previous list stops at spin 2
- Why? A bunch of time-honoured no-go results
 - 1964, Weinberg: no "soft" HS, i.e. no *long-range* HS interactions
 - 1967, Coleman-Mandula: no HS symmetries of the S-matrix
 - 1979, Aragone-Deser: no minimal coupling with gravity for massless and massive fields with s ≥ 2

- Common lore: for elementary particles the previous list stops at spin 2
- Why? A bunch of time-honoured no-go results
 - 1964, Weinberg: no "soft" HS,
 i.e. no *long-range* HS ________
 interactions
 - 1967, Coleman-Mandula: no
 HS symmetries of the S-matrix
 - 1979, Aragone-Deser: no minimal coupling with gravity for massless and massive fields with s ≥ 2

apply only to massless particles are not valid in (A)dS!

- Common lore: for elementary particles the previous list stops at spin 2
- Why? A bunch of time-honoured no-go results
 - 1964, Weinberg: no "soft" HS,
 i.e. no *long-range* HS ________
 interactions
 - 1967, Coleman-Mandula: no
 HS symmetries of the S-matrix
 - 1979, Aragone-Deser: no minimal coupling with gravity ______
 for massless and massive fields with s ≥ 2

apply only to massless particles are not valid in (A)dS!

does not exclude nonminimal couplings

many counter-examples already known: massive gravity bi-gravity, etc.

Examples (and yes-go results)

- Some examples of higher-spin models
 - String theory (massive excitations, quantum complete, nice but complicated; not easy to get dS)
 - Vasiliev theories (massless fields in (A)dS, non-localities and quantum properties under investigation; <u>good for cosmology: defined on dS!</u>)
 - Low-dimensional models (simple model with higher-spin fields exist in $D \le 3$; toy models for higher-spin cosmology)
 - Conformal higher-spin gravity (extension of conformal gravity)
 - Chiral higher-spin gravity (quantum finite, but non-unitary model in flat space; useful effective field theory?)

Examples (and yes-go results)

- Some examples of higher-spin models
 - String theory (massive excitations, quantum complete, nice but complicated; not easy to get dS)
 - Vasiliev theories (massless fields in (A)dS, non-localities and quantum properties under investigation; <u>good for cosmology: defined on dS!</u>)
 - Low-dimensional models (simple model with higher-spin fields exist in $D \le 3$; toy models for higher-spin cosmology)
 - Conformal higher-spin gravity (extension of conformal gravity)
 - Chiral higher-spin gravity (quantum finite, but non-unitary model in flat space; useful effective field theory?)
- Consistent interactions up to cubic order classified in both Minkowski & (A)dS

Examples (and yes-go res

- X. Bekaert, N. Boulanger and P. Sundell, *How higher-spin gravity surpasses the spin two barrier: no-go theorems versus yes-go examples*, Rev. Mod. Phys. 84 (2012), 987-1009 [arXiv:1007.0435 [hep-th]].
- Some examples of higher-spin mod

V. E. Didenko and E. D. Skvortsov, *Elements of Vasiliev theory*, arXiv:1401.2975 [hep-th].

- String theory (massive excitations, quantum complete, nice but complicated; not easy to get dS)
- Vasiliev theories (massless fields in (A)dS, non-localities and quantum properties under investigation; <u>good for cosmology: defined on dS!</u>)
- Low-dimensional models (simple model with higher-spin fields exist in $D \le 3$; toy models for higher-spin cosmology)
- Conformal higher-spin gravity (extension of conformal gravity)
- Chiral higher-spin gravity (quantum finite, but non-unitary model in flat space; useful effective field theory?)
- Consistent interactions up to cubic order classified in both Minkowski & (A)dS

Applications (/): cosmology

- Could the *inflationary era* be described by a higher-spin theory?
 What would the observational imprints for such a scenario be?
 - D. Anninos, V. De Luca, G. Franciolini, A. Kehagias and A. Riotto, *Cosmological Shapes of Higher-Spin Gravity*, JCAP 04 (2019), 045 [arXiv:1902.01251 [hep-th]].
 - Analysis of the tensor non-Gaussianities for the graviton field induced by higher-spin interactions (Einstein gravity + higher-derivative corrections fixed by HS symmetry).
- Could <u>dark-matter</u> be composed by weakly-interacting massive higher-spin particles?
 - S. Alexander, L. Jenks and E. McDonough, *Higher spin dark matter*, Phys. Lett. B 819 (2021), 136436 [arXiv:2010.15125 [hep-ph]].
 - Models for gravitational production of superheavy bosonic higher spin fields during inflation and proposals for characteristic signatures of bosonic higher spin dark matter in directional direct detection.

Applications (//): post-Minkowskian, post-Newtonian approx

- Emission of gravitational waves by two compact spinning objects from quantum massive higher-spin amplitudes?
 - A. Guevara, A. Ochirov and J. Vines, *Black-hole scattering with general spin directions from minimal-coupling amplitudes*, Phys. Rev. D 100 (2019) no.10, 104024 [arXiv:1906.10071 [hep-th]].
 - Study of the link between classical scattering of spinning black holes and quantum amplitudes for massive spin-s particles.

Applications (//): post-Minkowskian, post-Newtonian approx

- Emission of gravitational waves by two compact spinning objects from quantum massive higher-spin amplitudes?
 - A. Guevara, A. Ochirov and J. Vines, *Black-hole scattering with general spin directions from minimal-coupling amplitudes*, Phys. Rev. D 100 (2019) no.10, 104024 [arXiv:1906.10071 [hep-th]].
 - Study of the link between classical scattering of spinning black holes and quantum amplitudes for massive spin-s particles.

Several ad hoc analyses: no clear systematics yet. But...

Applications (//): post-Minkowskian, post-Newtonian approx

- Emission of gravitational waves by two compact spinning objects from quantum massive higher-spin amplitudes?
 - A. Guevara, A. Ochirov and J. Vines, *Black-hole scattering with general spin directions from minimal-coupling amplitudes*, Phys. Rev. D 100 (2019) no.10, 104024 [arXiv:1906.10071 [hep-th]].
 - Study of the link between classical scattering of spinning black holes and quantum amplitudes for massive spin-s particles.

Several ad hoc analyses: no clear systematics yet. But...

N. Boulanger, C. Deffayet, S. Garcia-Saenz and L. Traina, *Theory for multiple partially massless spin-2 fields*, Phys. Rev. D 100 (2019) no.10, 101701 [arXiv:1906.03868 [hep-th]].

Atomic Physics and Astrophysics

Group Members

Pascal Quinet

Head of Unit, Research Director of the F.R.S.-FNRS, Part-time Professor

Patrick Palmeri

Research Associate of the F.R.S.-FNRS

Jérôme Deprince Postdoctoral Researcher

Sébastien Gamrath PhD Researcher, Teaching Assistant

Helena Carvajal Gallego
 PhD Researcher, FRIA Fellow

Modeling of atomic structures and processes

Determination of fundamental parameters for radiative and non-radiative processes in complex atomic systems (from neutrals to highly ionized).

Applications in Astrophysics

Chemical abundances in peculiar stars and compact object atmospheres. High-density effects on emission spectra from black hole accretion disks. Opacities in kilonova spectra observed following neutron star mergers.

Applications in Laboratory Plasma Physics

Spectral analysis and diagnostics of plasmas confined in fusion reactors.

Applications in Nuclear Physics

Atomic structure of short-lived isotopes. Hyperfine structures, isotope shifts.

Computational methods in atomic physics

Pseudo-relativistic and fully-relativistic theoretical approaches. Semi-empirical methods.

Multiplatform approaches

Uncertainty estimates in atomic calculations. Complete and unique expertise within the atomic physics community.

Experimental atomic physics

Laser-induced spectroscopy measurements in collaboration with different laboratories (Lund Laser Center, Sweden; Jilin University, China).

Computing resources

Powerful local workstation + Access to High-Performance CECI Clusters

High-density effects on X-ray K lines of iron

[Collaboration with NASA GSFC, Caltech, Western Michigan University]

Highlighting the main effects due to the plasma environment on the K lines of iron ions in the context of accretion disks around black holes (Ionization potentials, K thresholds, radiative and Auger rates) [still to be done : plasma effects on ionization and recombination processes].

Highly-excited states in heavy ions

[Collaboration with Lund Laser Center and Jilin University]

Semi-empirical determination of radiative parameters for higly-excited states in lowly ionized heavy atoms of interest for NLTE astrophysical models and stellar nucleosynthesis investigations (recent works on Nb, Nb+, Rh+, Ba, La, Re, Ir).

Spectral analysis of hot white dwarfs

[Collaboration with Tübingen University]

Calculations of new atomic data in moderately charged ions observed in high-resolution UV spectra of hot white dwarfs, highlighting large overabundances of heavy elements (Z > 30).

Atomic data for cosmochronology

[Collaboration with Université Libre de Bruxelles]

Spectral line list of cosmochronological interest deduced from new calculations of radiative parameters in Th+ and U+.