The Pheno Group and GW activities

Alberto Mariotti

Also on behalf of the TENA group for the GW activities

Joint HEP@VUB and IIHE meeting 16 November 2021

https://cas.vub.ac.be/cas/images/logo.svg

Pheno @ VUB

Many fundamental questions still open...

What is their signatures in: ? Collider Physics ? ? Cosmoparticle Physics ? ? Gravitational Waves ?

Alberto Mariotti (VUB)

HEP@VUB -- IIHE

The group on BSM and GW physics

Alberto Mariotti

Mairi Sakellariadou

Alex Sevrin

The group on BSM and GW physics

4

Alberto Mariotti

Mairi Sakellariadou

Alex Sevrin

DHD

Simone Blasi

https://inspirehep.net/jobs/1889113

Opening for two PostDoc positions to reinforce modeling and data analysis for SGWB

Aaron Rase

Sam Junius

HEP@VUB -- IIHE

n Tu

Unconventional DM models

★Feebly interacting Dark Matter (FIMP)

*****Produced during the early Universe with Freeze-in mechanism

★Avoids most of standard DM experimental constraints

★Can lead to Long Lived Particles Signatures at the LHC

Large variety of signatures with challenging triggers and reconstructions

Unconventional DM models

★Feebly interacting Dark Matter (FIMP)

★Produced during the early Universe with Freeze-in mechanism

★Avoids most of standard DM experimental constraints

★Can lead to Long Lived Particles Signatures at the LHC

Lifetime and mass of dark sector mediator can pinpoint to cosmological history of our Universe (reheating temperature)

Alberto Mariotti (VUB)

HEP@VUB -- IIHE

Activities and topics in GW

7

Stochastic Background of GW

*Described in terms of

$$\begin{array}{l} \overset{\text{SGWB}}{\underset{\text{energy density}}{\underset{\text{over critical one}}{}}} & \Omega_{\text{GW}}(f) = \frac{f}{\rho_c} \frac{\mathrm{d}\rho_{\text{GW}}}{\mathrm{d}f} \\ \rho_{\text{c}} = \frac{3c^2 H_0^2}{8\pi G} \end{array}$$

*****Assumed to be

- * Isotropic ("or not")
- * Unpolarized
- * Stationary
- * Smaller than detector noise

Should be detected by cross correlation between different detectors

Stochastic Background of GW

★Cosmological SGWB

* Generated by energetic events during cosmological evolution

Stochastic Background of GW

Note: Astrophysical SGWB and cosmological SGWB will superimpose

Alberto Mariotti (VUB)

11

How we detect SGWB?

Do we have some extra handle for the astrophysical SGWB?

Alberto Mariotti (VUB)

HEP@VUB -- IIHE

Example: first order phase transitions

Discontinuous transition between symmetric to non-symmetric phase

First order phase transitions

Described in terms of potential evolution with temperature

Transition from metastable minimum to symmetry breaking vacuum

Alberto Mariotti (VUB)

SGWB from FOPT

- 3 mechanisms to generate SBGW from FOPT
 - +Bubble collisions
 - + Sound Waves in the plasma
 - + Turbulence

Many subtleties in computation of correct GW signal

- Bubble wall velocity/acceleration
- Correct estimation of friction in plasma
- Energy budget determines production mechanism
- **Hydrodynamic simulations**

Bodeker Moore '17

15

SGWB from FOPT

- +Bubble collisions
- + Sound Waves in the plasma
- + Turbulence

Many subtleties in computation of correct GW signal

- Bubble wall velocity/acceleration
- Correct estimation of friction in plasma
- Energy budget determines production mechanism
- **Hydrodynamic simulations**

GW signal is broken power law

$$h^{2}\Omega(f) = \Omega_{*} \left(\frac{f}{f_{*}}\right)^{a_{1}} \left(1 + \left(\frac{f}{f_{*}}\right)^{\Delta}\right)^{(a_{2}-a_{1})/\Delta}$$

constants $a_1, a_2, \Delta, f_*, \Omega_*$

See e.g. LISA W.G. arXiv:1910.13125, O3 data of LIGO/Virgo analysed recently in arXiv:2102.01714

Alberto Mariotti (VUB)

First order phase transitions

- Discontinuous Transition between symmetric to non-symmetric phase (order parameter)
- Characterized by bubble formation
- +Bubbles can source GW

★In Beyond the Standard Model,

★In the Standard Model

- *QCD Phase Transition (T ~ GeV)? In SM No first order
- *EW Phase Transition (T~ 100 GeV)? In SM No first order

(If very light Higgs it could have been strongly first order) '81 Witten

FOPT is signal of BSM physics

Modify EW or QCD phase transition

'New symmetries which undergo PT

E.g. arXiv:2106.15602 with lason Baldes for **baryogenesis**

PT in dark sectors

Alberto Mariotti (VUB)

HEP@VUB -- IIHE

FOPT and baryogenesis

arXiv:2106.15602

+FOPT implies bubble formation and expansion

Conclusions

Many years of interesting Physics are in front of us!

Shedding light into Fundamental Questions in HEP

Alberto Mariotti (VUB)

HEP@VUB -- IIHE