Radio detection of air showers with AERA, Pierre Auger Radio Detector, GCOS

characterize cosmic rays: -direction -energy -mass (particle type) @~100% duty cycle

LOFAR Cosmic Rays (5 km²) 2007

LOPES (0,5 km²) 2001

Jörg R. Hörandel - Radboud University Nijmegen, Vrije Universiteit Brussel

Global Cosmic Ray Observatory - GCOS (60000 km²) 2035 cosmic ray

Pierre Auger Radio Detector (3000 km²) 2023

Auger Engineering Radio Array - AERA

The Auger Engineering Radio Array Auger Engineering Radio Array

~150 antennas ~17 km² **30-80 MHz**

100 stations since March 2013

tations

arch 2015

Jörg R. Hörandel - Radboud University Nijmegen, Vrije Universiteit Brussel

Footprint of radio emission on the ground 🖑 🎟

Jörg R. Hörandel - Radboud University Nijmegen, Vrije Universiteit Brussel

Measurement of the Radiation Energy in the Radio Signal of Extensive Air **Showers as a Universal Estimator of Cosmic-Ray Energy**

A. Aab et al., PRL 116 (2016) no.24, 241101

Jörg R. Hörandel - Radboud University Nijmegen, Vrije Universiteit Brussel

Measurement of the Radiation Energy in the Radio Signal of Extensive Air **Showers as a Universal Estimator of Cosmic-Ray Energy**

Reconstruction Air Shower

B. Pont, UHECR symposium 2022

Jörg R. Hörandel - Radboud University Nijmegen, Vrije Universiteit Brussel

Event-specific setup:

- + AERA station layout + 240 additional 'star-shape' stations centered around core (for interpolation)
- + GDAS atmospheres (Global Data Assimilation System) at Auger at time of data
- + Magnetic field model at time of data

B. Pont, UHECR symposium 2022

Jörg R. Hörandel - Radboud University Nijmegen, Vrije Universiteit Brussel

econstructing X_{max} from the radio footprint ψ

B. Pont, UHECR symposium 2022

Jörg R. Hörandel - Radboud University Nijmegen, Vrije Universiteit Brussel

13th CoSpa, Gent - June 2023

Radboud University Constructing Xmax from the radio Cotprint University

B. Pont, UHECR symposium 2022

Jörg R. Hörandel - Radboud University Nijmegen, Vrije Universiteit Brussel

B. Pont, UHECR symposium 2022

Jörg R. Hörandel - Radboud University Nijmegen, Vrije Universiteit Brussel

Radboud University

<u>Resolution</u> improves with energy.

- Up to 'better than 15 g/cm²'
- Trend driven by low SNR at low energy. \bullet

╋

Resolution competitive with e.g.:

Auger fluorescence [arXiv:1409.4809]

Reasured AERA Xmax distributionsity

- (Mixed)-light composition at $E=10^{17.5}-10^{18.5}$ eV.

B. Pont, UHECR symposium 2022

Jörg R. Hörandel - Radboud University Nijmegen, Vrije Universiteit Brussel

good agreement shower by shower fluorescence vs radio

Syste atic uncertainties on Xmax

- Basic effects
- low-number statistics
- Cross-checks
- **B. Pont, UHECR symposium 2022**

Jörg R. Hörandel - Radboud University Nijmegen, Vrije Universiteit Brussel

Radboud University

: hadronic model in CORSIKA, GDAS atmosphere, Auger SD energy scale • Method specific effects : data selection (acceptance), X_{max} reconstruction : effects of possible outlier values and reconstruction quality cuts : residual bias checks with Zen/Az/core/... vs <X_{max}> and E

Horizontal air showers have large footprints in radio emission

this is MEASURED with the small 17km² AERA

A. Aab et al., JCAP10(2018)026

Jörg R. Hörandel - Radboud University Nijmegen, Vrije Universiteit Brussel

AUGER

The Radio Detector of the Pierre Auger Observatory

Jörg R. Hörandel - Radboud University Nijmegen, Vrije Universiteit Brussel

Key science questions •What are the sources and acceleration mechanisms of ultra-high-energy cosmic rays (UHECRs)?

- Do we understand particle acceleration and physics at energies well beyond the LHC (Large Hadron Collider) scale?
- •What is the fraction of protons, photons, and neutrinos in cosmic rays at the highest energies?

The Radio Detector of the Pierre Auger Observatory

Jörg R. Hörandel - Radboud University Nijmegen, Vrije Universiteit Brussel

 dual polarized radio antenna (30-80 MHz) on each SD station

1661 positions over 3000 km²

 mass sensitivity for inclined air showers radio: e/m WCD: muons

complementary to SSD/WCD

Expected number of cosmic rays in 10 years Karlsruhe Institute of Technology

T. Huege, UHECR symposium 2022

Jörg R. Hörandel - Radboud University Nijmegen, Vrije Universiteit Brussel

- integral spectrum from folding flux with aperture
- expect ~4000 cosmic rays above 10¹⁹ eV

Expected mass composition sensitivity

T. Huege, UHECR symposium 2022

Jörg R. Hörandel - Radboud University Nijmegen, Vrije Universiteit Brussel

$FOM = 1.61 \pm 0.04$

Equal to X_{max} with perfect

Goal for the Upgrade: 1.5

see also proof of principle study with AERA, PoS(ARENA2022)

Precision measurement of muon number

T. Huege, UHECR symposium 2022

Jörg R. Hörandel - Radboud University Nijmegen, Vrije Universiteit Brussel

 very precise measurement of muon number with WCD & RD at highest energies

 especially measurement of the variation of the muon number will be very powerful

Serious logistics effort to get all components to the Observatory

- solar panels 2000 units
- antenna arms 6800 parts
- ropes (6 km) and tensioners for the mast
- Al tubes for frame 13600 parts
- Al plates and antenna foot 8500 parts
- small parts, u-bolts, nuts, screws, ... ~400000 pieces
- housings for digitizers 2000
- pigtail cables for the LNA 4000
- housings for LNAs and bottom loads 12000 parts
- glass fiber antenna masts 1700
- ferrites 8500
- mounting brackets for solar panels 3400 pieces
- L-ground bracket inside the dome 1700 pieces
- bottom load PCBs 2000 pieces
- LNAs 2000 units
- signal cables from LNA to digitizer 10200 cables
- digital cable from digitizers to UUB 1700 cables
- fixtures to assemble ferrites 24 units
- digitizers 2000 units

-> 6 sea containers, 75 m³ each & several (~5-10) air freight cargos

Jörg R. Hörandel - Radboud University Nijmegen, Vrije Universiteit Brussel

Calibration with Galactic signal

Simulated galactic signal in the EW loop

- EW calibration constant: 1.03 ± 9.6% ± 2%
- NS calibration constant: 0.96 ± 9.7% ± 2%
- <u>Uncertainty caused by the Antenna model: max 1.5%</u>

T. Fodran, ICRC 2022 T. Fodran, ARENA 2022

Jörg R. Hörandel - Radboud University Nijmegen, Vrije Universiteit Brussel

Air showers measured with engineering array Nice 3-fold event above lg(18.4/eV) Arrival direction

- 1

Event 67742721 :-)

Time (UTC): 2022/4/19 18:14:47 Time (GPS): 1334427305 s 414520000 ns Trigger: 4C1; 6T5 T5Has Stations: 18 (Acc: 3, Bad: 41)

Global reconstruction (LDF + axis) (5)

 $E = (7.74 \pm 1.10) \times 10^{18} \text{ eV}$ $(\theta, \phi) = (75.4 \pm 0.1, 74.1 \pm 0.1) \text{ deg}$

 $(x,y) = (-19.10 \pm 0.10, 9.82 \pm 0.27) \text{ km}$ $N19 = 1.4 \pm 0.2$ radius = 46.75 ± 0.27 km

Monitoring

average stations age: 15.7 yr T = 6.0°C; T (day) = 6.0°C

Station List Options

Le Qui Don: fluence = 2397.0 +/- 272.5 eV/m^2, SNR = 3798.2, d = 583 m Nuria Jr.: fluence = 2274.0 +/- 258.9 eV/m^2, SNR = 3418.4, d = 375 m Peru: fluence = 120.8 +/- 19.1 eV/m^2, SNR = 134.6, d = 1196 m Granada: fluence = -0.5 +/- 7.3 eV/m^2, SNR = 2.2, d = 1749 m Ruca Malen: fluence = 0.4 +/- 3.2 eV/m^2, SNR = 1.8, d = 677 m Jaco: fluence = -0.3 +/- 4.3 eV/m^2, SNR = 1.8, d = 1448 m

Brussel

Jörg R. Hörandel - Radboud University Nijmegen, Vrije Universiteit Brussel

beyond 3000 km²?

Multi-messenger astropartic provedrum and mass composition deror the ankle 1. Introduction protons, nuclei, gamma ray She existencer utra high-energy cosmis and recent the measurements point to a

GCOS homepage: http://particle.astronentry web with a second back of the second back of t 3rd GCOS workshop, Brussels, June

Jörg R. Hörandel - Radboud University Nijmegen, Vrije Universiteit Brussel

energy bin. The conversion to Hater association of the second station of the second station of the second second station of the second se

Multi-messenger astroparticle physics beyond 2030 protons, nuclei, gamma rays, neutrinos, (gravitational waves)

The road ahead as outlined in a Snowmass white paper:

•Twenty years of UHECR discoveries

Particle physics at the cosmic frontier

Jörg R. Hörandel - Radboud University Nijmegen, Vrije Universiteit Brussel

arXiv: 2205.05845

A sensitive probe to BSI

Multi-messenger astroparticle physics beyond 2030 protons, nuclei, gamma rays, neutrinos, (gravitational waves) Submitted to the US Community Stud The road ahead as outlined in a Snowmass white paper: Upgrades of the current giant arrays

Figure 5.14: Map showing the relative cosmic-ray composition detected by the Pierre Auger Observatory above $10^{18.7}$ eV with the FD, in Galactic coordinates. From Ref. [54].

Interdisciplinary science

arXiv: 2205.05845

Jörg R. Hörandel - Radboud University Nijmegen, Vrije Universiteit Brussel

Ultra-High-Energy Cosmic Rays The Intersection of the Cosmic and Energy Frontiers ergy Cosmic-Ray (UHECR)

Multi-messenger astroparticle physics beyond 2030 protons, nuclei, gamma rays, neutrinos, (gravitational waves)

Multi-messenger astroparticle physics

arXiv: 2205.05845

Jörg R. Hörandel - Radboud University Nijmegen, Vrije Universiteit Brussel

Figure 1: Diagram summarizing the strong connections of UHECRs with particle physics and astrophysics, the fundamental objectives of the field (in orange) for the next two decades, and the complementarity of current and next-generation experiments in addressing them. Jörg R. Hörandel - Radboud University Nijmegen, Vrije Universiteit Brussel

2022 May arXiv:2205.0584

16

 \sim

Ultra-High-Energy Cosmic Rays The Intersection of the Cosmic and Energy Frontiers

Abstract: The present white paper is submitted as part of the "Snowmass" process to help inform the long-term plans of the United States Department of Energy and the National Science Foundation for high-energy physics. It summarizes the science questions driving the Ultra-High-Energy Cosmic-Ray (UHECR) community and provides recommendations on the strategy to answer them in the next two decades.

arXiv: 2205.05845

GCOS - The Global Cosmic Ray Observatory

I. Maris, UHECR symposium 2022

Jörg R. Hörandel - Radboud University Nijmegen, Vrije Universiteit Brussel

- UHECRs observatory covering more than 60,000 km² (40,000 -80,000 km²)
- With 60,000 km² we can reach the integrated Auger 2030-exposure in 1 years AugerPrime expected exposure in 6 months
- Targeting very good quality events for energies \geq 30 EeV (5-fold) and full efficiency at 10 EeV (3-fold) events)
 - Resolutions per event: energy better than 10%, muon resolution better than 10%, $X_{\rm max}$ better than 30 g/cm², and angular resolution better than 1°
 - Full sky coverage with sites in both hemispheres and surrounded by mountains

Acceptance/exposure? What statistics will we need? $E > 10^{19.5} eV \sim 100 / yr (1000 km^2 and 2\pi)$ ~5% light particles ~50% efficiency **40000 km²** -> 1000 light particles/decade (E>10^{19.5} eV)

Where: full sky coverage? -> equator, several sites, ...

What is realistic in terms of area and number of detectors?

10x existing arrays? $->40\ 000 - 60\ 000\ \text{km}^2$ 10x number of units? ->15000 - 22000 detectors 2,0 - 2,5 km spacing

Jörg R. Hörandel - Radboud University Nijmegen, Vrije Universiteit Brusse

¹³th CoSpa , Gent - June 2023 31

Jörg R. Hörandel - Radboud University Nijmegen, Vrije Universiteit Brussel

$$egin{split} egin{split} S_{ ext{top}}\ egin{split} S_$$

Not only total signal, but also time distributions

Ioana Maris Antoine Letessier-Selvon et al., Nucl. Instr. Meth. A 767 (2014) 41–49

Jörg R. Hörandel - Radboud University Nijmegen, Vrije Universiteit Brussel

prototype measurements at Auger Observatory

Mean LDFs for the electromagnetic and muonic components

r [m]

900 events ($E > 0.03 \, {
m EeV}$, $\theta < 45^{\circ}$)

Advanced WCD complemented by fluorescence and radio detectors

fluorescence light detection

GCOS Cyclops FD: Small elevation, large area, small pixels

e.g. MACHETE Design J. Cortina et al. APP (2016) 46

Nepomuk Otte PoS ICRC19

Figure 7: Proposed optics for *Trinity* based on the MACHETE optics. The primary mirror is composed of 68, 1 m² mirrors. the focal plane (red curved surface) is populated with 3,300 pixels each consisting of a solid non-imaging light concentrator coupled to an SiPM. The field of view covered by one telescope is $5^{\circ} \times 60^{\circ}$.

- 2 MACHETE rings $\rightarrow 360^{\circ} \times 10^{\circ}$ FoV
- cost: \sim 10 M\$ Trinity whitepaper arXiv:1907.08727
- 0.3° pixel, effective aperture 10 m^2
- $(S/N)_{\rm FD} \propto \sqrt{A/\Omega_{\rm pix}} \to (S/N)_{\rm Cyclops} / (S/N)_{\rm Auger} = \sqrt{10 \ {\rm m}^2/0.3^{\circ 2}} / \sqrt{3 \ {\rm m}^2/1.5^{\circ 2}} = 9$
- \rightarrow optimization for GCOS needed & check dual use ν +UHECR

M. Unger

radio detection

- large spacing of 2,0 2,5 km challenging for radio detection
 - try to record sufficient information from one position -> broad frequency range, see e.g. ARIANNA
 - have radio outriggers around SD position

Radio detection of air showers with AERA, Pierre Auger Radio Detector, GCOS

characterize cosmic rays: -direction -energy -mass (particle type) @~100% duty cycle

(17 km²) 2010

LOFAR Cosmic Rays (5 km²) 2007

LOPES (0,5 km²) 2001

Jörg R. Hörandel - Radboud University Nijmegen, Vrije Universiteit Brussel

Global Cosmic Ray Observatory - GCOS (60000 km²) 2035

- **Pierre Auger Radio Detector** (3000 km²) 2023
- **Auger Engineering Radio Array AERA**
 - significant progress over last two decades
 - enables us to look optimistically towards the next decade and beyond

