Ice modelling & station calibration at the RNO-G neutrino detector

Bob Oeyen

13th CosPa meeting | Gent, Belgium - 19.06.2023

Shent University Experimental Particle Physics and gravity

Ice modelling & station calibration at the RNO-G neutrino detector

Calibration of the detector Ice, position & system response

Signal propagation in ice

Ice models & calibration pulses

Measuring ice properties

Surfaces pulses & weather balloons

The reconstruction of neutrino events

relies on the ice & position calibration

The reconstruction of neutrino events relies on the ice & position calibration and the system response calibration

The reconstruction of neutrino events

relies on the ice & position calibration A This talk

and the system response calibration

Ice modelling & station calibration at the RNO-G neutrino detector

Calibration of the detector

Ice, positions & system response

Signal propagation in ice Ice models & calibration pulses

Measuring ice properties

Surfaces pulses & weather balloons

Antenna position calibration depends

on the pulser position and vice-versa

Antenna position calibration depends

on the ice model and vice-versa

A single exponential description of the ice

is favoured as it allows for fast computation

Ray paths are analytically solvable

The top layer of the ice sheet is not well

described by a single exponential profile

First principles on compression & densification

The top layer of the ice sheet is better

described by an exponential polynomial

First principles with higher order corrections

Ice modelling & station calibration at the RNO-G neutrino detector

Calibration of the detector

Ice, positions & system response

Iterative calibration procedure

Antenna positions vs ice models

Measuring ice properties

Surfaces pulses & weather balloons

The bedrock echo of a surface pulse gives information

on the glacier thickness & attenuation length in ice

Probe thickness glacier

The attenuation length of radio waves in ice is of

kilometre scale & decreases with higher frequency

Peaks in the time series of a surface pulse indicate

reflective layers with -70 dB to -60 dB reflectivity

Depth information from conductivity layers allow

us to calculate the refractive index of the bulk ice

the refractive index of ice at the phased array

the refractive index of ice at the phased array

Over-flying weather balloons can be used to probe

Bob Oeyen | 13th CosPa meeting [19.06.2023—Gent, Belgium] — Radio detection of cosmic particle

RNO-G preliminary

Ice modelling & station calibration at the RNO-G neutrino detector

Calibration of the detector

Ice, positions & system response

Iterative calibration procedure

Antenna positions vs ice models

Measuring ice properties

Surfaces pulses & weather balloons

Calibration of RNO-G detector convoluted task

but progress is made by several people

Glacier ice complex with lots of open question,

but we progress towards a better understanding

Continuous 1D profiles

Exponential polynomial profile

- Attenuation length: ± 750 m
- Refractive index bulk ice: 1.778 ± 0.006
- Refractive index deep firn: 1.736 ± 0.004

More complex ice properties ?

- 1D-profile depending on location ??
- Birefringence → not significant in vertical direction
- Reflective layers → -70 dB to -60 dB
- Dispersion

GHENT UNIVERSITY

RNO-G

Radio Neutrino Observatory - Greenland