Propagating Air Showers Radio Signals to In-ice Antennas

Uzair Latif* (VUB), Simon de Kockere* (VUB), Tim Huege (KIT, VUB), Krijn de Vries (VUB), Stijn Buitink (VUB), Dieder Van den Broeck (VUB), Nick van Eijndhoven (VUB)

Introduction

- We finally have a full cosmic ray shower simulation simulating radio emissions for in-ice antennas.
- A combination of C7 and Geant4
- Currently analysing the initial results.
- The in-air (me) and the in-ice (Simon) emission codes are stable and are currently working with raytracing included.

Current Status

- In-air radio emission with ray tracing
- In-ice radio emission with ray tracing
- Direct ($\left.1^{\text {st }}\right)$ and Reflected/Refracted ($2^{\text {nd }}$)
- Fresnel coefficients
- Focusing/defocusing factor (in-ice)
- Transition radiation ("for free")

Current Configuration

- Simulation of in-air particle development using CORSIKA 7.7500 with modified CoREAS
- Proton, Energy $1 \times 10^{17} \mathrm{eV}$
- QGSJETII-04 (HE), UrQMD (LE)
- Thinning
- Particle read-out at altitude of 2.835 km as
- Simulation of in-ice propagation using Geant4 10.5
- Propagation of all CORSIKA output particles within 1 m of core.
- Using realistic ice density gradient
- End-point formalism for radio emission

Other details

- Raytracing implemented using interpolation
- Helps account for non-linear refractive index profiles
- Focusing factor formula taken from NuRadioMC
- Limited to a maximum of 2

Shower Geometry

- Vertical Proton Shower at 10^{17} eV
- Ice layer at around 2.85 km a.s.I
- Antenna Star at -150 m depth.
- Shower core hitting at the center of the star.

Energy Fluence-

- In-air emission generates both Askayran and geomagnetic emission, interference explains the asymmetry
- Very similar to radio footprint on the surface

Uzair Latif \& Simon de Kockere

- In-ice emission only generates Askayran emission, giving a very symmetric pattern
- Cherenkov ring clearly visible, as cascade in the ice is very compact $\mathrm{O}(5-10$ m), concentrating emission in small opening angle.
- Spread in Cherenkov ring due to shower evolution in ice.

Spread of In-Ice Cherenkov Cone

- In-air emission illuminates the center, while in-ice emission is very concentrated around its Cherenkov ring
- Slight asymmetry in ring due to interference with geomagnetic in-air emission.

E for shower with $E_{p}=10^{17} \mathrm{eV}, \theta=0$, depth $=-150 \mathrm{~m}$

E for shower with $E_{p}=10^{17} \mathrm{eV}, \theta=0$, depth $=-150 \mathrm{~m}$

E for shower with $E_{p}=10^{17} \mathrm{eV}, \theta=0$, depth $=-150 \mathrm{~m}$

E for shower with $E_{p}=10^{17} \mathrm{eV}, \theta=0$, depth $=-150 \mathrm{~m}$

E for shower with $E_{p}=10^{17} \mathrm{eV}, \theta=0$, depth $=-150 \mathrm{~m}$

E for shower with $E_{p}=10^{17} \mathrm{eV}, \theta=0$, depth $=-150 \mathrm{~m}$

Vertical

E for shower with $E_{p}=10^{17} \mathrm{eV}, \theta=0$, depth $=-150 \mathrm{~m}$

West

E for shower with $E_{p}=10^{17} \mathrm{eV}, \theta=0$, depth $=-150 \mathrm{~m}$

E for shower with $E_{p}=10^{17} \mathrm{eV}, \theta=0$, depth $=-150 \mathrm{~m}$

West

Vertical

E for shower with $E_{p}=10^{17} \mathrm{eV}, \theta=0$, depth $=-150 \mathrm{~m}$

West

Vertical

E for shower with $E_{p}=10^{17} \mathrm{eV}, \theta=0$, depth $=-150 \mathrm{~m}$

West

Vertical

E for shower with $E_{p}=10^{17} \mathrm{eV}, \theta=0$, depth $=-150 \mathrm{~m}$

Vertical

E for shower with $E_{p}=10^{17} \mathrm{eV}, \theta=0$, depth $=-150 \mathrm{~m}$

Vertical

E for shower with $E_{p}=10^{17} \mathrm{eV}, \theta=0$, depth $=-150 \mathrm{~m}$

West

Vertical

E for shower with $E_{p}=10^{17} \mathrm{eV}, \theta=0$, depth $=-150 \mathrm{~m}$

Vertical

E for shower with $E_{p}=10^{17} \mathrm{eV}, \theta=0$, depth $=-150 \mathrm{~m}$

West

Vertical

E for shower with $E_{p}=10^{17} \mathrm{eV}, \theta=0$, depth $=-150 \mathrm{~m}$

West

Vertical

E for shower with $E_{p}=10^{17} \mathrm{eV}, \theta=0$, depth $=-150 \mathrm{~m}$

West

E for shower with $E_{p}=10^{17} \mathrm{eV}, \theta=0$, depth $=-150 \mathrm{~m}$

West

E for shower with $E_{p}=10^{17} \mathrm{eV}, \theta=0$, depth $=-150 \mathrm{~m}$

West

E for shower with $E_{p}=10^{17} \mathrm{eV}, \theta=0$, depth $=-150 \mathrm{~m}$

West

Vertical

E for shower with $E_{p}=10^{17} \mathrm{eV}, \theta=0$, depth $=-150 \mathrm{~m}$

E for shower with $E_{p}=10^{17} \mathrm{eV}, \theta=0$, depth $=-150 \mathrm{~m}$

West

Vertical

E for shower with $E_{p}=10^{17} \mathrm{eV}, \theta=0$, depth $=-150 \mathrm{~m}$

E for shower with $E_{p}=10^{17} \mathrm{eV}, \theta=0$, depth $=-150 \mathrm{~m}$

E for shower with $E_{p}=10^{17} \mathrm{eV}, \theta=0$, depth $=-150 \mathrm{~m}$

Vertical

E for shower with $E_{p}=10^{17} \mathrm{eV}, \theta=0$, depth $=-150 \mathrm{~m}$

E for shower with $E_{p}=10^{17} \mathrm{eV}, \theta=0$, depth $=-150 \mathrm{~m}$

E for shower with $E_{p}=10^{17} \mathrm{eV}, \theta=0$, depth $=-150 \mathrm{~m}$

West

Vertical

E for shower with $E_{p}=10^{17} \mathrm{eV}, \theta=0$, depth $=-150 \mathrm{~m}$

E for shower with $E_{p}=10^{17} \mathrm{eV}, \theta=0$, depth $=-150 \mathrm{~m}$

E for shower with $E_{p}=10^{17} \mathrm{eV}, \theta=0$, depth $=-150 \mathrm{~m}$

E for shower with $E_{p}=10^{17} \mathrm{eV}, \theta=0$, depth $=-150 \mathrm{~m}$

E for shower with $E_{p}=10^{17} \mathrm{eV}, \theta=0$, depth $=-150 \mathrm{~m}$

E for shower with $E_{p}=10^{17} \mathrm{eV}, \theta=0$, depth $=-150 \mathrm{~m}$

E for shower with $E_{p}=10^{17} \mathrm{eV}, \theta=0$, depth $=-150 \mathrm{~m}$

West

Vertical

E for shower with $E_{p}=10^{17} \mathrm{eV}, \theta=0$, depth $=-150 \mathrm{~m}$

E for shower with $E_{p}=10^{17} \mathrm{eV}, \theta=0$, depth $=-150 \mathrm{~m}$

E for shower with $E_{p}=10^{17} \mathrm{eV}, \theta=0$, depth $=-150 \mathrm{~m}$

E for shower with $E_{p}=10^{17} \mathrm{eV}, \theta=0$, depth $=-150 \mathrm{~m}$

West

E for shower with $E_{p}=10^{17} \mathrm{eV}, \theta=0$, depth $=-150 \mathrm{~m}$

Vertical

E for shower with $E_{p}=10^{17} \mathrm{eV}, \theta=0$, depth $=-150 \mathrm{~m}$

West

E for shower with $E_{p}=10^{17} \mathrm{eV}, \theta=0$, depth $=-150 \mathrm{~m}$

Vertical

E for shower with $E_{p}=10^{17} \mathrm{eV}, \theta=0$, depth $=-150 \mathrm{~m}$

West

Vertical

E for shower with $E_{p}=10^{17} \mathrm{eV}, \theta=0$, depth $=-150 \mathrm{~m}$

Vertical

E for shower with $E_{p}=10^{17} \mathrm{eV}, \theta=0$, depth $=-150 \mathrm{~m}$

North

West

E for shower with $E_{p}=10^{17} \mathrm{eV}, \theta=0$, depth $=-150 \mathrm{~m}$

North

West

E for shower with $E_{p}=10^{17} \mathrm{eV}, \theta=0$, depth $=-150 \mathrm{~m}$

E for shower with $E_{p}=10^{17} \mathrm{eV}, \theta=0$, depth $=-150 \mathrm{~m}$

North

West

Vertical

$\underset{\sim}{\text { E }}$

E for shower with $E_{p}=10^{17} \mathrm{eV}, \theta=0$, depth $=-150 \mathrm{~m}$

E for shower with $E_{p}=10^{17} \mathrm{eV}, \theta=0$, depth $=-150 \mathrm{~m}$

West

Vertical

E for shower with $E_{p}=10^{17} \mathrm{eV}, \theta=0$, depth $=-150 \mathrm{~m}$

West

Vertical

E for shower with $E_{p}=10^{17} \mathrm{eV}, \theta=0$, depth $=-150 \mathrm{~m}$

Vertical

E for shower with $E_{p}=10^{17} \mathrm{eV}, \theta=0$, depth $=-150 \mathrm{~m}$

E for shower with $E_{p}=10^{17} \mathrm{eV}, \theta=0$, depth $=-150 \mathrm{~m}$

E for shower with $E_{p}=10^{17} \mathrm{eV}, \theta=0$, depth $=-150 \mathrm{~m}$

E for shower with $E_{p}=10^{17} \mathrm{eV}, \theta=0$, depth $=-150 \mathrm{~m}$

E for shower with $E_{p}=10^{17} \mathrm{eV}, \theta=0$, depth $=-150 \mathrm{~m}$

E for shower with $E_{p}=10^{17} \mathrm{eV}, \theta=0$, depth $=-150 \mathrm{~m}$

E for shower with $E_{p}=10^{17} \mathrm{eV}, \theta=0$, depth $=-150 \mathrm{~m}$

E for shower with $E_{p}=10^{17} \mathrm{eV}, \theta=0$, depth $=-150 \mathrm{~m}$

West

Vertical

Conclusion

- The simulation is working well.
- Analysing the results from first simulated showers.
- Simulating more shower geometries to get a better understanding.
- We can start exploring ways initiating comparisons with Corsika 8 and also porting the framework into Corsika 8.

Thank you!

"Adding" Raytracing to CoREAS

- CoREAS uses end point formalism to calculate E-field emissions.

$$
\vec{E}(\vec{x}, t)=\frac{q}{c}\left[\frac{\hat{r} \times[(\hat{r}-n \vec{\beta}) \times \dot{\vec{\beta}}]}{(1-n \vec{\beta} \cdot \hat{r})^{3} R}\right]_{r e t}
$$

- In this formula, I use the following raytracing parameters:
- Launch angles as the dot product angle
- Geometrical path length of the ray for the value R
- The value of n is taken to be n at the emission point.

Raytracing in Polar Ice

- Rays are refracted owing to the depth-dependent density, and therefore index of refraction profile.
- For any given a transmitter and receiver geometry I have an analytic solution that traces out the rays in ice and air.

Ray paths for a source at a depth of 200 m . The bending causes the formation of 'shadow zones'.

- The refractive index profile for SP ice:

$$
n(z)=A+B e^{C z} \quad, \text { here } \mathrm{A}=1.78, \mathrm{~B}=-0.43, \mathrm{C}=-0.01321 / \mathrm{m}
$$

Air Refractive Index Profile

- Get the GDAS atmosphere file for a given set of GPS coordinates.
- In this case its for a location close to South Pole.

Layer	Altitude Range (m)	A	B	C $\left(\mathrm{~m}^{-1}\right)$
1	0 to 3217.48	1	0.000328911	0.000123309
2	3217.48 to 8363.54	1	0.000348817	0.000141571
3	8363.54 to 23141.80	1	0.000361006	0.000145679
4	23141.80 to 100000	1	0.000368118	0.000146522
5	>100000	1	0.000368117	0.000146522

A, B and C values for the five exponential refractive index layers of the South Pole atmosphere.

- Get the five layer refractive index model using the GDAS file.

$$
n(z)=A+B e^{C z}
$$

Launching Rays from Air to Ice

- Raytracing:
- For a given transmitter receiver geometry we can always find the shortest possible path between them by minimizing the following expression:

$$
f\left(\theta_{s}, h, z\right)=T H D_{A i r}+T H D_{I c e}-T H D_{\text {Total }}=0,
$$

Four parameters that define a Geometry

1) Transmitter altitude
2) Ice Layer Altitude
3) Antenna Depth
4) Total Horizontal

Distance (THD)

Raytracing Time

- So a typical raytracing call involving air and ice takes around 0.05 to 0.1 ms .
- Currently making the atmosphere takes around 22 ms .
- Calling the analytic raytracing function for all shower particles $\left(\sim 10^{\wedge} 9\right)$ at all heights is still not feasible.
- A shower will take around from a week to a month to simulate.
- Therefore, we have to move towards interpolation.

Interpolation Method

- For a given antenna depth I make 2-D grid of:
- THD (Total Horizontal Distance)
- The altitude of the in-air transmitter
- For each grid position I do analytic raytracing and store:
- The initial launch angle of the ray
- The total optical path length of the ray in air and in ice
- The horizontal distance traveled by the ray in air and ice.
- The angle of incidence on the ice surface and the Fresnel coefficients associated with it.
- Linear interpolation is used to calculate a given raytrace parameter.
- It takes around 250 ns to do interpolation for each parameter.

RayTrace results for THD_Air

Percentage Error for THD_Air

Interpolated results for THD_Air

Uzarr Latif \& Simon de Kockere

Time taken to do interpolation

Interpolation Method

- θ (or the launch angle) has a step size of 0.1 deg and h has a step size of 10 m .
- θ starts off at 90.1 deg and ends at 180.0 deg.
- h starts off at 3000 m (the ice layer altitude) and ends at 100000 m .
- If the antenna depth changes we will need to make another 2-D grid for that.
- It takes around 60 ± 2 s to make the whole grid.
- For any given coordinate of (h,THD)
- the closest h bins are calculated
- The corresponding range of THDs for the h bins are found and the closest THD bins are found.
- using the linear interpolation method the interpolation parameter value at the requested coordinate is calculated.

Absolute Error for THD_Air
Percentage Error for THD_Air

Uzair Latif \& Simon de Kockere

Krijn's trick for calculating Fres. Coef

- We know that Fresnel coefficients should only depend on the angle of incidence of the ray.
- If we can parametrise the coefficients in terms of the angle of incidence (or the incidence vector) we can skip the whole rotation part.
- Since we already know the angle of incidence from raytracing this should be straight forward.

Krijn's trick for Fresnel Coef. calculation

$\vec{e}_{R}=$ unit incidence vector
$\vec{e}_{P} \perp \vec{e}_{R} \perp \vec{e}_{S}$
$\Rightarrow \vec{e}_{P}=\vec{e}_{R} \times \vec{e}_{S}=\left|\begin{array}{ccc}\hat{x} & -\hat{y} & \hat{z} \\ R_{x} & R_{y} & R_{z} \\ -R y & R_{x} & 0\end{array}\right| \cdot \frac{1}{\sqrt{R_{x}^{2}+R_{y}^{2}}}$
$\Rightarrow \vec{e}_{P}=\frac{1}{\sqrt{R_{x}^{2}+R_{y}^{2}}}\left[-R_{z} R_{x} \hat{x}-R_{z} R_{y} \hat{y}+\left(R_{x}^{2}+R_{y}^{2}\right) \hat{z}\right]$

So effectively we have described the S and P vectors in terms of the vector of incidence.
So in order to apply Fresnel Coefficients to E-fields we will do:

$$
\begin{align*}
& E_{s}=\vec{E} \cdot \vec{e}_{S} \rightarrow E_{s}^{\prime} \tag{1}\\
& E_{p}=\vec{E} \cdot \vec{e}_{P} \rightarrow E_{p}^{\prime} \tag{2}
\end{align*}
$$

Focusing Factor $1^{\text {st }}$ ray 100 m

Focusing Factor

$\sqrt{\mid \Delta \theta_{\text {aunoh }} / \Delta z}$

$\sqrt{R / \sin \left(\theta_{\text {recieve }}\right)}$

$\sqrt{n T x / n R x}$

Focusing Factor $2^{\text {nd }}$ ray 100 m
$\sqrt{R / \sin \left(\theta_{\text {recieve }}\right)}$

$\sqrt{n T x / n R x}$

Focusing Factor $1^{\text {st }}$ ray 400 m

Focusing Factor

$\sqrt{R / \sin \left(\theta_{\text {recieve }}\right)}$

Focusing Factor $2^{\text {nd }}$ ray 400 m
Focusing Factor

IN AIR BURSTS

WHY DOES THE BOOSTFACTOR MATTER?

The end point formalism (arxiv.org/abs/1112.2126) :

$$
\begin{aligned}
& \vec{E}_{ \pm}(\vec{x}, t)= \pm \frac{1}{\Delta t} \frac{q}{c}(\underbrace{\left.\frac{\hat{r} \times\left[\hat{r} \times \vec{\beta}^{*}\right]}{\left(1-n \vec{\beta}^{*} \cdot \hat{r}\right) R}\right)} \\
& 1-n \beta \cos (\theta):
\end{aligned}
$$

When calculating as $1-n \beta \cos (\theta)$:
What n ?
Boostfactor ${ }^{-1}$

What θ ?

Previous studies (A. Timmermans, Ba. Thesis) show that a straight line approximation might not be valid for very inclined geometries in air

IN AIR BURSTS

WHAT ABOUT INCLINED SHOWERS?

The estimator with local \mathbf{n} and launch angle works well here too!
The others do not agree
Similar results found by A.Timmermans

