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STATE-OF-THE-ART SIMULATION CODES LIMIT OUR ANALYSES

INTRODUCTION

When detecting extensive air showers (EAS) using their radio emission,
we use Monte-Carlo based simulation codes to

» Characterising and evaluating our detector performance.

» We will want to simulate many more antennas for future arrays (GRAND, SKA, Auger Radio
Detector).

» Perform analyses on our data (for example reconstructing X,,,.,)-

» We want to extract more information from radio data, like for example the width and
asymmetry of the particle number distributions (often referred to as the L and R parameters).
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WE NEED A FASTER WAY OF
SIMULATING THE RADIO EMISSION FROM EAS

INTRODUCTION

1 CORSIKA/CoREAS shower with

* Proton primary

- Primary energy of 1018 eV
« 6 simulated antennas

took 8 days to complete.

VRIJE
UNI</ERSITEIT Template synthesis of EAS

BRUSSEL 18-6-2023 | 3

jue




TEMPLATE SYNTHESIS USES SEMI-ANALYTICAL RELATIONS
TO CHARACTERISE THE RADIO EMISSION FROM EAS

THE METHOD

> In template synthesis, we characterise the radio signal in an antenna using a
parametrized function.

> By relating the parameters of this function to the air showers properties (primary
energy, geometry, longitudinal profile), we find relations which can be used to
“morph” the emission from one EAS to one with different properties.

» These relations are extracted from a set of Monte-Carlo simulations, thus benefitting
from their precision.

The goal: have a method which only needs one Monte-Carlo simulation as input to
synthesise the radio emission from hundreds of other ones for a fraction of the
computational cost.
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TEMPLATE SYNTHESIS CONSIDERS SLICES
OF THE ATMOSPHERE AS POINT SOURCES

THE METHOD

Instead of parametrizing the total emission, we look at the emission

coming from atmospheric slices with constant atmospheric depth.

» The emission from a slice depends on the number of particles in
it, Nyice, @S Well as the age of the shower in that slice.
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WE CONSIDER THE GEOMAGNETIC AND CHARGE-EXCESS
COMPONENTS SEPARATELY

THE METHOD
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WE PARAMETRIZE THE AMPLITUDE FREQUENCY SPECTRUM
OF EACH COMPONENT

THE METHOD
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WE PARAMETRIZE THE AMPLITUDE FREQUENCY SPECTRUM

OF EACH COMPONENT

THE METHOD

Ageo (@ Maiee) - exb ) = fo) £ ¢ X = o))

Spectral parameters
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THE SPECTRAL PARAMETERS CAN BE RELATED TO THE XMAX
OF THE SHOWER

THE METHOD

Value of a/b/c parameter
®
Value of a/b parameter

Xmax Of the shower Xmax Of the shower
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THE SPECTRAL PARAMETERS ARE CORRELATED WITH XMAX

We repeat this process for 600 showers, simulated with CORSIKA and using CoREAS
for the calculation of the radio emission.

We used QGSIJETII-04 and FLUKA as hadronic interaction models.

All showers had the same, vertical geometry.

The atmosphere and magnetic field were also kept constant.

Half of the showers had a proton as primary particle, the other half had an iron nucleus.

For each primary type, we simulated showers with primary energies of 10'7, 10'® and 10° eV
(100 showers for each energy).

vvyyyvyy
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THE SPECTRAL FUNCTIONS ENCODE THE PARABOLIC DEPENDENCE
OF THE SPECTRAL PARAMETERS ON XMAX

THE METHOD

The previous plot was made for one atmospheric slice and for a single antenna. We can

do this for every simulated antenna, going over every of the 207 slices to obtain the
complete spectral functions

G(Ta.nta Xs]ice:u Xma.x) — pg’ + P? : Xma}; + pg’ . Xiax

b(rant: Xslicea Xmax) — pg T p? - Xmax + pg ) Xgm,x
C(Tant: Xslicea Xmax) — PE T ’prf : Xma}; T Pg : Xgmx
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WE SYNTHESISE STARTING FROM A LONGITUDINAL PROFILE

THE SYNTHESIS

Given a target longitudinal profile, we can use the spectral functions to synthesise the
radio emission. To do this, we start from our initial microscopic simulation (the “origin”).

> We have the X°9™ and the x9¢,

> With these we can evaluate the spectral functions for the origin and the target in every slice.
> For every slice, we also have the number of particles in the origin and target profile,
N9 and N9t respectively.

slice slice

> Together with the evaluated spectral parameters, we can calculate the fitted amplitude spectra

in each slice.
A= (a- Ngjic) expb-(f —fo) +c-(f —fo)%)
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WE PROCESS THE ORIGIN SHOWER INTO A TEMPLATE

Phase freq. W
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spectrum J
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Signal ()
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Amplitude freq. Divide by Ageo/ce
spectrum : i gi i gi
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FROM THE TEMPLATE WE SYNTHESISE THE SIGNAL

THE SYNTHESIS

[
»

(Phase freq.

Template I

Multiply with Age,/ce

evaluated with X,22¢ and N_; 9%

L spectrum

. Signal
v (slice, target
antenna) shower

_{

Amplitude freq.
Spectrum
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WE EVALUATE THE PERFORMANCE OF TEMPLATE SYNTHESIS
OVER OUR SIMULATION SET

« To gauge the capability of template synthesis to accurately synthesise the radio
emission, we subsequently use every shower from our simulation as the origin shower.

« We then synthesise the emission for every other shower in the set (using the
longitudinal profile from CORSIKA).

« Using two different metrics, we score the synthesised signal.

a) Comparing the peaks of the synthesised and CoREAS signals.
b) Comparing the energy fluence of the synthesised and CoREAS signals.
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THE SHIFT IN XMAX DETERMINES THE SYNTHESIS QUALITY
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WE HAVE A PROOF-OF-PRINCIPLE FOR VERTICAL AIR SHOWERS

CONCLUSION

» The method performs well for vertical air showers.

> We are preparing a publication on these results (Template synthesis approach for radio emission
from extensive air showers; M. Desmet, S. Buitink, T. Huege, D. Butler, R. Engel, O. Scholten).

> Recent results indicate we can play the same game for other geometries and achieve
good synthesis quality.
Next steps:

» Understand the scaling of the spectral functions with geometry.

> For this, we will probably need to reinterpret the spectral functions as being dependent on (some
proxy of) shower age instead of purely X,,,,.
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THE SHIFT IN XMAX DETERMINES THE SYNTHESIS QUALITY
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TEMPLATE SYNTHESIS CONSIDERS SLICES
OF THE ATMOSPHERE AS POINT SOURCES

THE METHOD

» The emission from a slice depends on the number of particles in

it, Ngice, @S Well as the age of the shower in that slice.
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45-DEGREE TEMPLATE SYNTHESIS

Mapping 708.53 g/cm2 to 673.46 g/cm2 in antenna 015510
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TEMPLATE SYNTHESIS USES SEMI-ANALYTICAL RELATIONS

TO CHARACTERISE THE RADIO EMISSION FROM EAS

THE METHOD

Radio Morphing

Template Synthesis

Reference shower

Scaling with shower parameters (prim. E,
zenith, air density,...)

Single point of emission

(3D interpolation)
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