Atm Neutrino OEC (Online Event Classification) update report

Feng Gao, M. Colomer EU JUNO Collaboration meeting 2023-05-11

Background

Keypoint of OEC

- Saving T/Q pairs for all triggered events by default
- Waveforms according storage strategy may be removed/compressed

For high energy events:

- Atmospheric neutrinos can improve JUNO's sensitivity to the mass ordering, it's useful to keep atmo neutrinos waveform.
- Muon's rate is about 4Hz, If save all muon waveforms , the data transmission is 217 MB/s, while the aim is to 60MB/s.

Goal : to correctly classify atmospheric neutrinos with OEC

Here we study :

- Part 1: How to reduce the muon as much as possible (to ~ the same level as signal), keeping high signal (from atm v events) selection efficiency
- Part 2 : In case of atm v signal, how to select only the first readout and remove the secondary readout

Muon detsim: root://junoeos01.ihep.ac.cn//eos/juno/dirac/juno/production/muon/muon_202201/prd***

Atmospheric neutrinos generator:

/storage/gpfs_data/juno/junofs/users/sgiulio/Atmo/GENIE/V3_00_06/gstroot/root/atmo_numu_nue_LS_0-30GeV_20-12_10M.gst.root Software version : studies based on J22.2-rc2

Part 1 : Reduce the muon contamination

- How to identify a muon?

Muons : will first trigger the water pool (WP) or top tracker (TT)

Partly contained (PC) atm neutrinos (that can be used for physics) will trigger CD first

Muon events - CDTrigger/WPTrigger time diff VS Eoec(CD)

- OEC's default selection >20 MeV: 27250 CD trigger
- Muno's WP trigger time and CD trigger time:
 - 89% WP trigger time early than secondary CD trigger time, 11% reverse, the minimum time difference is 32ns.
- -> veto time: [-32 ns, X us] after WP Muon is used to remove muon events.

5

Muon events:

- Muon is vetoed by WP or TT, remove secondary events by time window around it
- Energy cut removes lots of secondary entries which is far to primary WP Muon
- Time veto removes the high energy secondary readout tagged as CD Muon

Part 2 : Keep atom's first readout - remove secondaries

- Keep only the first readout (primary lepton):
 - Secondary triggers dominated by AP have less energy -> energy cut
 - Secondary triggers: time window veto around the primary

Atmo events: selection of first readout efficiency and loss after cuts

- 2k Atmo true events, 1495 primary +1886 secondary Atmo entries. •
- Secondary entries focus on the combined area of E < 100 MeV and Tdiff < 1 us

Atmo events: primary CC/NC ratio

- 2k atmo events, 69.5% CC event, 30.5% NC event. 11% PC event, 89% FC events.
- For FC events, they sometimes also produce WP triggers, using the same strategy of muon, the atmo efficiency is calculated (NB: limited statistics sample)

Cut E	Tagged						Lost				
	total-eff		CC-eff		NC-eff		loss	CC-lost		NC-lost	
20MeV	1886	94.3%	1391	100%	495	81.3%	5.7%	0	0%	114	18.7%
100MeV	1717	85.9%	1366	98.2%	351	57.6%	14.1%	25	1.8%	258	42.4%
100MeV +WP	1571	78.5%	1230	88.4%	341	56.0%	21.5%	161	11.6%	268	44.0%

From OEC's default selection: 20 MeV to 100 MeV + WP trigger:

- tagged events ratio goes from 94.3% (20MeV default) to 78.5% (after our cuts)
- High efficiency for charge current (CC) events: 88.4% are tagged.

```
total efficiency = \frac{first \ readout \ tagged \ as \ CDMuon}{ture \ totall \ number \ of \ atmo}
```

 $CC efficiency = \frac{first \ readout \ tagged \ as \ CDMuon: CC}{ture \ totall \ number \ of \ atmo: CC}$

Summary

Applying Energy cut and time veto

• To remove muon and its secondary events, 100 MeV cut and [-32 ns, 4 us] time veto after WP trigger are used.

The remaining contamination going down to: 1.24E-05.

 When applying same cuts to atmospheric neutrinos, and 1us time after primary atmo: The remaining rate of secondary triggers is: 0.03%
 High efficiency for charge current (CC) events: 88.4% are tagged.

backup •

By checking the pz of 2k neutrinos:

- 1044 upgoing atmo 52.2%
- 956 downgoing atmo 47.8%

1886 Atmo events from OEC selection(>20MeV)

- 972 upgoing atmo, efficiency: 93.1%
- 914 downgoing atmo, efficiency:95.6%

1717 Atmo events from custom selection(>100MeV)

- 874 upgoing atmo, efficiency: 83.7%
- 843 downgoing atmo, efficiency:88.17%

1571 Atmo events from custom selection(>100MeV+strategy)

- 808 upgoing atmo, efficiency: 77.4%
- 763 downgoing atmo, efficiency:79.8%

Overview: from Maxim, JUNOdocdb: 9884

• Function of OEC

- ✓ OEC will be implemented on DAQ
- ✓ Converts the 40.7 GB/s data stream with full waveform
 (@1kHz) to the about 60 MB/s
- Classify event based on physical characteristics and determine waveform storage strategy
- Key point Doc-6670, Doc-6672, Doc-6689, Doc-7338, Doc-7342, Doc-4892
- ✓ Saving T/Q pairs for all triggered events by default
- Waveforms according storage strategy may be removed/compressed
- The OEC software is ready to deal with the real data, and the test shows well stability and reliability.
- OEC software implement during commissioning period is ongoing

Atmo events - Secondary Atmo/ Primary time diff VS Eoec(CD)

- 2k Atmo true events, based on 20 MeV cut, 1495 primary +1886 secondary Atmo entries.
- primary: 165 PC(11%), 1330 FC(89%)
 - PC: WP trigger early than CD atmo -32ns: 150,90.9% (not able to distinguish from muon), later than 32ns: 15, 9.1% (able to distinguish from muon)

13

Secondary entries focus on the combined area of E<100MeV

compare J22.2.rc2 and J22.1.rc4: Oec output

Eoec and Qedep

