Quantum Chromodynamics (QCD)

QCD: Currently the best known theory to describe the strong interaction.

SU(3) gauge theory with fermions in fundamental representation.
Fundamental degrees of freedom:

@ gluons: Aj, a=1,...,8

@ quarks: 1, 3(color) x 4(spin) x 6(flavor) components

1 —
Laco = — 5 F&,F +0(D," — m)u,

pure gauge part fermionic part
where
F2, = 0,A2 — 9,A2 + gfa AL AC field strength
a .
D, =9, + gA? 5 Covariant derivative — gives quark—gluon

interaction



SU(3) group

SU(3): group of 3 x 3 unitary matrices with unit determinant:
Q@ UUM =13,3, thatis, U™'=U",

U € SU(3)
Q detU=1.
8 generators:  Gell-Mann matrices X2 (a=1,...,8)
a
Lie algebra of SU(3): Linear combinations A= A? %

@ Hermitean: AT = A,
@ traceless: TrA=0.

a
U = exp(iA) = exp (iA"i )é) : elements of group SU(3).

a
[A, B] = ifdeAbBe % fabe:  structure coefficients.



Quantum Chromodynamics (2)

Lqcp is invariant under local gauge transformations:
i
AL (x) = G)AL(X)G(x)! ~ g (0.G(x)) G(x)'

¥'(x) = G(x)i(x)
&' (x) = $(x)G' (x)

Only gauge invariant quantities are physical.

Properties of QCD:
@ Asymptotic freedom:
Coupling constant g — 0 when energy scale y — .

— Perturbation theory can be used at high energies.
@ Confinement:

Coupling constant is large at low energies.
—> Nonperturbative methods are required.
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Quantum Chromodynamics (3)

Quantization using Feynman path integral:

[T 194,101(3) - On(a) #1541
(0] T[O1(x1) - - On(Xn)] 0) = ~ .
vl faa,) 6505

'S oscillates — hard to evaluate integrals.
Wick rotation:  t — —it analytic continuation to Euclidean spacetime.
— €S — e 5, where

1 _
Se = /d“x Lg = /d“x [4’:;qu511 + p(DAH + m)y
positive definite Euclidean action.



Quantum Chromodynamics (4)

Vector components: ©=0,1,23 — u=1,234
Euclidean correlator
/ (0] [A0] [dA.] O (X) -+~ On(xn) € Sel¥74]

(0101(x) - Onlxs) 0} = )
1(X4 E /[dl/}] [dy] [dA,] o Se[v0A]

Expectation value of  O¢(x1) - -- On(Xn)
with respect to positive definit measure  [dy] [d¢] [dA,] e~ .



Lattice

Lattice regularization

"Most sytematic" nonperturbative approach:

lattice QF T

Take a finite segment of spacetime,
put fields at vertices of hypercubic lattice with lattice spacing a:

m—1

Usual boundary conditions:

m—2)

&) Bosons:

Periodic in all directions

Fermions:

Time direction: antiperiodic

Space directions: periodic




Lattice

Lattice regularization (2)

We have to discretize the action:
intagral over spacetime [ d*x — sumoversites a*>,
derivatives 0, — finite differences

Momentum p < 2 = natural UV cutoff.

At finite "a" results differ from the continuum value.
Rlatt. — Rcont. + O(au)

for some dimensionless quantity R.

To get physical results, need to perform:
@ Infinite volume limit  (V — o),
© Continuum limit  (a — 0).



Lattice

Example: scalar field

Continuum action:

1

Simplest lattice action:

4

1 ¢ Px

_ 4 X+[ fi 2

5-Ya (22 [za} i im ¢X+A¢X)
X u:‘]

where fi:  unit vector in direction .

Introduce dimensionless quantities: ¢’ =¢a, m =ma, XN =\

4
1
S= Z ( [2+ m’ ] + N f22¢§(+ﬁ¢§<ﬂ)
p=1
Lattice spacing a does not appear explicitly in the calculations.
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Lattice

Example: scalar field

the ¢* theory is trivial

it does not exist as an interactive continuum theory
it exists (as an interactive model) only as a cutoff theory
— the Higgs mass can not be larger than about 600 GeV

analytic & numerical works provide the evidence (Luscher, Weisz ...)
goes far beyond the perturbative unitarity arguments

in each point of the two dimensional parameter-space: n’ and \
one can determine the renormalized mass and quartic coupling
high order hopping parameter expansion for mga>0.5
renormalization group equation techniques for mpa<0.5

(the latter approaches the infinite cutoff or continuum limit)



mpga=0 defines the critical line (continuum limit)

construct lines of constant physics (LCP):
a—0 but mg=const., Ag=const.

as "a" gets smaller along these LCPs the bare )\’ gets larger
actually before the LCPs reach the critical line one gets \' = oo
(only the trivial theory \' = 0 reaches the critical line)

assume that the maximum momenta are a few times larger than My
maximal renormalized self-coupling, thus maximal Higgs mass

is obtained at the maximal bare coupling \' = co
using the Higgs vacuum expectation value (overall scale)

one obtains My <600 GeV

for even higher cutoffs (more than a few times) = smaller My



Yang-Mills

Yang—Mills theories on the lattice

Regularization has to maintain lattice version of gauge invariance.

Gauge fields — on links connecting neighboring sites.
@ Continuum: A,, elements of Lie algebra of SU(3).
o Lattice: U, = €3, elements of group SU(3) itself.

Upipip = U}t;u Ux+ﬂ;_ﬂ = U;L = U;;M
y+i '
Ux:u
X+ ji
Uy, = GeUsuGL, 5
Lattice gauge transformation: Wl = Gythx
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Yang-Mills

Gauge invariant quantities on the lattice

@ Giluon loops

Tr [Uxy;u Uxg +aw T Usy —¢;c]

@ Gluon lines connecting g and q

v ¢x1 Ux1;u Ux1+/l;z/ T Uané;ewxn

&0

X4



Yang-Mills

Gauge action

Continuum gauge action:

Sgont. — /d4X _Fa Fa

4 [ 2%
Simplest gauge invariant lattice action: Wilson action
, 6
Sy = 52 ( 2 Re[Py, W]) b= Sgit = S+ 0(2°),
1/<u

where Py.,,, is the plaquette:

Py = Tr [Ux;u Uxvpw Ux+y " U)]: u} P




Yang-Mills

Gauge action — Symanzik improvement

Add 2 x 1 gluon loops to Wilson action:

Sg)’manzik =3 Z {1 — % (CO Re[PX;W,] + ¢y RG[P)%;;:,] + ¢4 Re[PE;H)}
X

v<p

X+ D X+20+ 70

X X+ 2

=

Consistency condition: ¢y + 8¢y = 1.

1 . .
¢1=—15 givestree level improvement —- S@=S5°"+O(a*)



Fermions

Fermion doubling

Continuum fermion action

S = / A X B0, + My,
Naively discretized:

4

i — Ux+p — Ux—p —

analve — a4§ : wx} :’YM X+Mza X—/f + mT/’xT/}x
X N:1

Inverse propagator:

sinp,a

Gr?a1ive(p) =iy
Extra zeros at p, =0,+£2 = 16 zeros in 13! Brillouin zone.
In d dimensions 27 fermions instead of 1 = fermion doubling.
e 4



Fermions

Wilson fermions

. r .
S'=8—a sa'y v 0,
X

Wilson term
where

Dd’x — 24: d}X—i—u 2wx + wx ,u

32

p=1
0 <r<1 Wilson parameter, usually r=1.

G\7V1 (p) = Gnalve + 5 Z sin? (Pua/2)

p=1
Maoublers = O(a~') = doublers disappear in continuum limit.



Fermions

Wilson fermions (2)

Work with dimensionless quantities: a2y — ¢

SW—Z{¢XZ[ @Z’X-&-u (7u+r)¢x—ﬂ]+(ma+4r)7/)x¢x}
Rescale ¢ by v/2x, k= 2ma1+8r hopping parameter.

Action including gauge fields:

Z { lz wx UX uwx+;t Ex—}—ﬁ (ryu + f) U)J[;/L'(/}X

+ be}



Fermions

Wilson fermions (3)

@ Advantages
@ Kills all doublers.

@ Disadvantages

@ No chiral symmetry at a # 0.
= Massless pions at r¢ # & .

Additive quark mass renormalization.

@ Large discretization errors:

SV = st 1 O(a)



Fermions

Wilson fermions — Clover improvement

iackr I
Sfclover _ SfW K Zl/}XO'uy}-x /,A,ywx SfconL + O(a2), Opv = Z [’Yu,%]

clover term
1
fx;uu - Z (UX;H UX+[.L;VUX+V H«U;V - U; o L,U; A—Dip UX—[L—&;V Ux—z?;y“!‘
T T
+ UX"UX ;L+l/,u,UX f; VUX*ﬂFM - UX 12 U): a—oiv UX i UX*IA’”‘)

discretized version of field strength F,. .




Fermions

Kogut—Susskind (staggered) fermions

Fermion degrees of freedom ——  corners of hypercube.

In d dimensions:
29/2 spinor components of Dirac spinors
29 corners of hypercube
— describes 29/29/2 = 29/2 flavors (tastes).
lfd=4 = 4flavors (tastes) = 4! rooting required.



Fermions

Kogut—Susskind (staggered) fermions (2)

3(color) x 4(spin) components 3(color) x 1(spin) components

SfS = ZYX {; Z Mx,u (Ux;uXerﬂ - U)]:—ﬁ;uXX*ﬁ) + maxx} )
X I

where »
Mx,u = (—1)25:1 v staggered phase.




Fermions

Kogut—Susskind (staggered) fermions (3)

@ Advantages

@ Remnant chiral symmetry at a # 0
= no additive quark mass renormalization.
© O(&?) discretization errors.

© Fast.
@ Disadvantages

@ 4 tastes (flavors) instead of 1
= rooting trick required.

@ Taste symmetry breaking.



Algorithms

Integral over fermions

Full lattice QCD action

—— ——
gluonic part  fermionic part

Fermions are described by Grassmann variables — have to integrate out
analytically.

/ [AU] [d] [d] e~ Se(V+T M) v / [dU] =5V det M(U)
— Effective action for gluons
Seft. (U) = Sg(U) — In (det M(U)).

Staggered fermion matrix describes 4 tastes.
Rooting trick: for ny flavors, take power % of determinant:

SS. (U) = Sy(U) —In (det M(U)”f/“) = Sy(U) — % In (det M(U))
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Algorithms

Expectation values of fermionic quantities

O(x,y) = <Euwd>y (@dwu)x fermionic operator

/ [AU] [00] [d] By oy 2 g iy @ SO+ M(U)
0/0(x.%)[0) = _
/ [dU] [d7)] [de] e~ SaW+E M) v
/[dU] [Mx_,}’ [My,}’d(U)r det M(U) e~ SV)
) / [dU] det M(U) e=Ss()
/[dU] Trcolor,spin [(M)Z;/u) (M;;’d)} e*seff.(U)

/[d U] e St (V)




Algorithms

Expectation values of fermionic quantities (2)

[Expectation valueof  O= (@“wd)y @dwu>x }

with respect to action S(U, ¢, ) = Sg(U) — ¢ M(U) 2.

!

with respect to action Seit (U) = Sy(U) — In (det M(U)).

/ [4U] [d9] [ay] © e~ SW40) / [dU] O’ e~ Ser (V)
[uui@iae s [lagesa®

(0[O0) =



Algorithms

Importance sampling

Monte Carlo simulation: calculate (0| O |0) stochastically.

Naive way: take random gauge configurations U, according to the
uniform distribution and calculate the weighed average:

_S.,
Za Oa e S,.: value of Sy at U,,

(0]0|0) = Z o—Sa O,: value of O at U,.

S, large for most configurations — small portion of configurations
give significant contribution.

Importance sampling: generate configurations with probability based
on their |mportance — probablllty of U, is proportional to =S~

1
Then (0] O|0) O, with relative error —.
R Z VN



Algorithms

Importance sampling (2)

Simplest method: Metropolis algorithm.
Choose an initial configuration Uj.
@ Generate Uy, 1 from Uy with a small random change.
© Measure the change AS in the action.
Q If AS <0, keep Uk, 1-
Q If AS > 0, keep Uk, 1 with a probability of e A4S,

@ Uy is far from the region where e~S is significant.
= Many steps required to reach equilibrium distribution:
Thermalization time.

@ Ui — Uk, 1 by small change.
— Subsequent configurations are not independent.
Number of steps required to reach next independent
configuration:  Autocorrelation time.



Setting the scale

All quantities in the calculation are in lattice units
— lattice spacing a has to be determined.

Process of obtaining a:

@ Choose physical quantity A such that
e experimental value Aeyp, is well known,
e easily measurable on the lattice,
@ not sensitive to discretization errors,
o [A] = (GeV)", v #0.
© Measure dimensionless Al,, = A, - @ on the lattice.

/ 1/v
O Setting  Aptt. = Aexp.  yields a= <Iatt> .




Setting the scale (2)

@ A = string tension

= lim dV(R)
7= R—oco dR
Experimental value: /o = 465MeV

V(R) =— Tlinoo 1 In[W(R, T)], W(R,T) =

Static g—q potential



Setting the scale (3)

© A= ry Sommer parameter,

dV(R)

2-
A dR

=1.65
RZI’O

Experimental value: rp = 0.469(7) fm

© A= Fyk leptonic decay constant of Kaon
Experimental value: fx = 159.8 MeV



Spectroscopy

Hadron spectroscopy

Aim: obtain mass of hadron state O.

(0|O(t)0(0)]0) amplitude of process:
hadron state created by O at instant 0 is annihilated at instant t.

Projectto p = 0:

OP=0(t) = 3 " e PXO(t,x)

=>_0(t,x)

p=0
Obtaining operator with given parity:

Oy = % (0 + POP—1)



Spectroscopy

Hadron spectroscopy (2)

Euclidean time evolution:
o(t) = e 0(0) e
H: Hamiltonian of QCD.

0|O(HO Z | (ilO(0 e (E—Fo)t

E;: energy of eigenstate ]/>,
Ey:  energy of vacuum state,
m; = E; — Eo:  mass of hadronic state  |/).
At large t
(0l0(1)0(0)|0) ~ | (/]0(0)[0)
|I):  lowest state with  (/|O(0)|0) # O.
e 4



Finite T

Finite temperature QFT

Partition function of a quantum system with Hamiltonian H at
temperature T:

Z=Te[e 7]

Bosonic QFT — integral over 3d field configurations .

Te[67] = [1ael (ol Tl

Integrand: |¢) — |p) transition probability amplitude after imaginary
time t = —i/T.

(0l e MIT |g) = / [d¢] exp [i /t:wdf L<¢’7 gf?)]

Bli=o=¢
Bli——iyT=0



Finite T

Finite temperature QFT (2)

e ] el o[ uelo)

Plizo=¢
Bli=——iyT=9

Introduce T =it — Euclidean Lagrangian appears

— / [d¢] exp[/::/Tdr/dSX £E<¢, gf)]

Blr—0=¢
Olr=1/7=0

> _ Tr[e‘H/T} :/[dw] / [d] eXp[_/T:UTdT/ch £E<¢7g€f)‘|

¢|7‘:0:§0
Blr=1/7=9

_ Euclidean path integral over 4d field
Se(e)
/ [do} e ~ " configurations with periodicity 1/T.

Olr=0=lr=1/T



Finite T

Finite temperature QCD

Zacp = / [dU] [d¥] [dy] e Se(Ue¥)

_ a _
/[dU] [d] [de] exp [/O dxy /dSX EE(Ua@Z’an)]

Boundary condition in the imaginary time (temperature) direction:
Gluons: periodic,
Quarks: antiperiodic.

Temperature of lattice with temporal extension N;:

1

T= .
a~Nt

asymptotic

freedom

Increase of 3 decrease ofa — increase of T.
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