

Bibliography :	
1.) Edmund Wilson:	Introd. to Particle Accelerators Oxford Press, 2001
2.) Klaus Wille:	Physics of Particle Accelerators and Synchrotron Radiation Facilicties, Teubner, Stuttgart 1992
3.) Peter Schmüser:	: Basic Course on Accelerator Optics, CERN Acc. School: 5 th general acc. phys. course CERN 94-01
4.) Bernhard Holzer	Lattice Design, CERN Acc. School: Interm.Acc.phys course, http://cas.web.cern.ch/cas/ZEUTHEN/lectures-zeuthen.htm
5.) Herni Bruck: Ac	celerateurs Circulaires des Particules, presse Universitaires de France, Paris 1966 (english / francais)
6.) M.S. Livingston,	J.P. Blewett: Particle Accelerators, Mc Graw-Hill, New York,1962
7.) Frank Hinterber	ger: Physik der Teilchenbeschleuniger, Springer Verlag 1997
8.) Mathew Sands:	The Physics of e+ e- Storage Rings, SLAC report 121, 1970
9.) D. Edwards, M.	Syphers : An Introduction to the Physics of Particle Accelerators, SSC Lab 1990

1.) Electrostatic Machines: The Cockcroft-Walton Generator

1928: Encouraged by Rutherford Cockcroft and Walton start the design & construction of a high voltage generator to accelerate a proton beam

1932: First particle beam (protons) produced for nuclear reactions: splitting of Li-nuclei with a proton beam of 400 keV

Particle source: Hydrogen discharge tube on 400 kV level Accelerator: evacuated glas tube Target: Li-Foil on earth potential

Technically: rectifier circuit, built of capacitors and diodes (Greinacher)

robust, simple, on-knob machines largely used in history as pre-accelerators for proton and ion beams recently replaced by modern structures (*RFQ*)

Example for such a "steam engine": 12 MV-Tandem van de Graaff Accelerator at MPI Heidelberg

3.) The first RF-Accelerator: "Linac"

1928, Wideroe: how can the acceleration voltage be applied several times to the particle beam

schematic Layout:

Energy gained after n acceleration gaps

$$E_n = n * q * U_0 * \sin \psi_s$$

n number of gaps between the drift tubes **q** charge of the particle U_{θ} Peak voltage of the RF System Ψ_{S} synchronous phase of the particle

* acceleration of the proton in the first gap

* voltage has to be "flipped" to get the right sign in the second gap \rightarrow RF voltage \rightarrow shield the particle in drift tubes during the negative half wave of the RF voltage

Application: until today THE standard proton / ion pre-accelerator CERN Linac 4 is being built at the moment

Cyclotron:

! ω is constant for a given q & B

 $\begin{array}{l} !! \quad B^*R = p/q large \ momentum \ \rightarrow \ huge \\ magnets \end{array}$

 $!!!! \omega \sim 1/m \neq const.$ works properly only for non relativistic particles

PSI Zurich

Application: Work horses for medium energy protons Proton / Ion Acceleration up to ≈ 60 MeV (proton energy) nuclear physics radio isotope production, proton / ion therapy

Advanced Photon Source, Berkley

7.) The Beta Function

General solution of Hill's equation:

(i) $x(s) = \sqrt{\varepsilon} \sqrt{\beta(s)} \cdot \cos(\psi(s) + \phi)$

 ε , Φ = integration constants determined by initial conditions

 $\beta(s)$ periodic function given by focusing properties of the lattice \leftrightarrow quadrupoles

 $\beta(s+L) = \beta(s)$

Inserting (i) into the equation of motion ...

 $\psi(s) = \int_0^s \frac{ds}{\beta(s)}$

 $\Psi(s) = , phase advance"$ of the oscillation between point ,0" and ,s" in the lattice. For one complete revolution: number of oscillations per turn , Tune"

Can we understand, what the optics code is doing?

$$matrices \quad M_{foc} = \begin{pmatrix} \cos(\sqrt{|K|}l_q) & \frac{1}{\sqrt{|K|}}\sin(\sqrt{|K|}l_q) \\ -\sqrt{|K|}\sin(\sqrt{|K|}l_q) & \cos(\sqrt{|K|}l_q) \end{pmatrix} \qquad M_{drift} = \begin{pmatrix} 1 & l_d \\ 0 & 1 \end{pmatrix}$$

$$strength and length of the FoDo elements \qquad K = +/- 0.54102 \text{ m}^{-2}$$

$$lq = 0.5 \text{ m}$$

$$ld = 2.5 \text{ m}$$
The matrix for the complete cell is obtained by multiplication of the element matrices
$$M_{FoDo} = M_{qfh} * M_{ld} * M_{qd} * M_{ld} * M_{qfh}$$
Putting the numbers in and multiplying out

Putting the numbers in and multiplying out ...

 $M_{FoDo} = \begin{pmatrix} 0.707 & 8.206 \\ -0.061 & 0.707 \end{pmatrix}$

beam sizes in the order of my cat's hair !!

IV) ... *let's talk about acceleration*

- * the orbit of any particle is the sum of the well known x_{β} and the dispersion
- * as D(s) is just another orbit it will be subject to the focusing properties of the lattice

$$\Delta Q = Q' \quad \frac{\Delta p}{p} \quad ; \qquad Q' = -\frac{1}{4\pi} \oint k$$

.2957

it is a pancake

LHC Operation where are we ?							
	LHC Design	LHC 2010	Tevatron				
Momentum at collision	7 TeV/c	3.5 TeV	1 TeV				
Dipole field for 7 TeV	8.33 T	4.16 T	4.3 T				
Protons per bunch	1.15 × 1011	1.15 × 1011	2.7/1.0 × 1011				
Number of bunches/beam	2808	48	36				
Nominal bunch spacing	25 ns	397 ns					
Normalized emittance	3.75 µm	3.75 µm 3.0 µm					
Absolute Emittance	5 × 10-10	8 × 10 ⁻¹⁰ 2.8 × 10 ⁻⁹					
Beta Function	0.5 m	3.5 m	0.35 m				
rms beam size (IP)	16 µm	53 µm	32 µm				
Luminosity × 10 ³²	1.0 × 10 ³⁴	2.0 ×	10 ³¹	4.0			

LHC Operation									
23-Aug-2010 09:43:18	Fill #: 1298	Energy:	3500 GeV	I(B1): 4.07e+12	I(B2): 3.82e+12				
Experiment Status	ATL			CMS					
Instantaneous Lumi (ub.s)	^- 1 5.1	18	0.150	5.240	5.139				
BRAN Luminosity (ub.s)^	-1 4.9	17	0.162	4.592	4.521				
Fill Lumiosity (nb)^-1	215	.5	4.7	220.3	200.8				
BKGD 1	0.0	20	0.017	9,304	0.207				
BKGD 2	2.0	00	0.389	2.497	4.619				
BKGD 3	0.0	00	0.006	0.003	0.087				
LHCb VELO Position	Gap: 0.0 mm	8	TABLE BEAMS	TOTEM	STANDBY				
5E12 4E12 3E12 2E12 1E12				<u> </u>	-3000 -2000 -1000				
22:00 00: 	00 02	::00	04:00	06:00	08:00				
Barkground 1	6 09:30 09:3	Jpdated: 09:41:5	8 Background 2 100 8 80 9 40 20 40 	Hildrey on the dependent in the second	Updated: 09:42:18				

