Introduction to Quantum Field Theory and QCD Lectures I \& 2

Darren Forde CERN \& NIKHEF

BND Summer School 2010 Oostende, Belgium, Sept 6-17th 2010

Overview

- Aim of these lectures is to explain the basics of how computations are performed in quantum field theories.
- We will restrict ourselves to:
- Perturbative computations.
- Re-normalisable theories such as QED and QCD.
- This is still leaves a large amount to cover.

Lecture I

- Why we need quantum field theory?
- The basics of a quantum field theory.
- The simplest example; the Klein-Gordon Field.
- The simple harmonic oscillator and ladder operators.
- The Hilbert and Fock spaces of a theory.

The Standard Model

- The Standard Model (SM) encompasses our Knowledge of particle physics.
- There are the fundamental particles,

Charge (e) Gauge Bosons
Leptons $\left\{\begin{array}{llll}V_{e} & V_{\mu} & V_{T} & 0 \\ e & \mu & T & -I\end{array}\right.$
γ
$W^{ \pm}, Z$
2/3
g
Spin I

- Those related to QCD we never see unconfined in Nature.

QCD

- Different quarks are bound together
- Mesons - quark and anti-quark doublet.
- Baryons - quark, quark, quark triplet.
- There is a whole spectrum of particles with different charges and spin depending upon which quarks are bound.
- For example,
- Mesons - π, K, ρ, \ldots
- Baryons - p, n, \wedge, Δ, \ldots

Relativistic QM

- To understand the SM we need to understand Quantum Field Theory.
- Why is it needed? we want to combine Special Relativity (SR) and Quantum Mechanics (QM).
- Try to create a relativistic Schrodinger Eq. Create using the correspondence principle,

$$
\begin{aligned}
& E^{2}=p^{2}+m_{0}^{2} \\
& \Rightarrow \quad-\partial_{t}^{2} \Psi=\left(-\nabla^{2}+m_{0}^{2}\right) \Psi \\
& \Rightarrow \quad\left(\square+m_{0}^{2}\right) \Psi=0
\end{aligned}
$$

The Klein-Gordon Eq.

Correspondence Principle

$$
E \rightarrow i \partial_{t}
$$

$$
\vec{p} \rightarrow-i \vec{\partial}
$$

$$
\square=\partial_{t}^{2}-\nabla^{2}
$$

Negative Energy Solutions

- The solution to the KG eq can be written as a plane-wave,

$$
\psi(\vec{x})=e^{-i k_{\mu} \cdot x^{\mu}}
$$

- Inserting this into the KG equation we get,
$\left(\partial_{\mu} \partial^{\mu}+m_{0}^{2}\right) e^{-i k_{\mu} \cdot x^{\mu}}=\left(\left(-i k_{\mu}\right)\left(-i k^{\mu}\right)+m_{0}^{2}\right) e^{-i k_{\mu} \cdot x^{\mu}}=0$
- Which means that $k^{2}=m_{0}^{2}$ and so we have a negative energy,

$$
E= \pm \sqrt{\vec{k}^{2}+m_{0}^{2}}
$$

Causality

- The Hamiltonian for a single relativistic particle is given by,

$$
H=\sqrt{\vec{p}^{2}+m_{0}^{2}}
$$

- Compute the amplitude for a particle to travel between x and x ' in time t.

$$
\begin{aligned}
A\left(x, x^{\prime}, t\right) & =\left\langle x^{\prime}\right| e^{-i H t}|x\rangle \\
& =e^{-m} \sqrt{\left(x^{\prime}-x\right)^{2}-t^{2}}
\end{aligned}
$$

- We see that this does not vanish outside the light cone for space-like separations,

$$
\left(x^{\prime}-x\right)_{8}^{2}-t^{2}<0
$$

Conclusions

- Particles would have to travel faster than the speed of light!

- This along with negative energy states tells us that quantising a relativistic particle is not the solution.
- We need something else, Quantum Field Theory.

Quantum Field Theory

- The quantisation of dynamical systems of fields.
- All of modern particle physics is based upon this.
- Need comes from the difficulties of trying to quantise relativistic particles (i.e. negative energy states, multiple particles, difficulties with causality.)
- We will be interested in the dynamics of fields $\varphi(x, t), x$ is a momentum 3 -vector,
- Unlike in quantum mechanics both x and t will be labels (in QM x is a dynamical variable).

Lagrangians

- Like classical field theory QFT is described via a Lagrangian L, of one or more fields φ (x) and their derivatives $\partial_{\mu} \varphi$.
- The action S is given by,

$$
S=\int d^{4} \vec{x} \mathcal{L}\left(\phi, \partial_{\mu} \phi\right)
$$

- The equation of motion of the field is derived using the Euler-Lagrange equation,

$$
\partial_{\mu}\left(\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi\right)}\right)-\frac{\partial \mathcal{L}}{\partial \phi}=0
$$

The Klein-Gordon Field

- The simplest starting point is to consider the quantisation of the Klein-Gordon field,

$$
\mathcal{L}_{K G}=\frac{1}{2}\left(\partial_{\mu} \phi\right)^{2}-\frac{1}{2} m^{2} \phi^{2}
$$

- With an equation of motion (using the EulerLagrange equation) for the field φ,

$$
\left(\partial^{\mu} \partial_{\mu}+m^{2}\right) \phi=0 .
$$

- To quantise this we will proceed in analogy with the quantisation of a simple harmonic oscillator.

The Hamiltonian

- The Hamiltonian formalism is best suited to performing this quantisation.
- The Hamiltonian, H, of a system can be defined with respect to the Lagrangian via,

$$
H=\int d^{3} x[\pi(\vec{x}) \dot{\phi}(\vec{x})-\mathcal{L}]
$$

- We also define the conjugate momentum to be,

$$
\pi(\vec{x})=\frac{\partial \mathcal{L}}{\partial \dot{\phi}(\vec{x})}
$$

- $\dot{\phi}$ is the differential of the field, φ, with respect to time, t.

The Klein-Gordon field

- The Hamiltonian for the Klein-Gordon field is given by,

$$
H=\int d^{3} x\left[\frac{1}{2} \pi^{2}+\frac{1}{2}(\nabla \phi)^{2}+\frac{1}{2} m^{2} \phi^{2}\right]
$$

Energy Cost to move in time
Energy Cost of the field Energy Cost to Sheer in Space

- We no longer have a manifestly Lorentz invariant expression.

Canonical Quantisation

- In quantum mechanics quantisation of a discrete system is performed by imposing commutation relations between the position q_{i} and momentum p_{i} of one or more particles,

$$
\left[q_{i}, p_{j}\right]=i \delta_{i j}, \quad\left[q_{i}, q_{j}\right]=\left[p_{i}, p_{j}\right]=0
$$

- To quantise the Klein-Gordon field we will proceed in a similar way by promoting φ, and π to operators and imposing equivalent equal time commutation relations,

$$
[\phi(\vec{x}), \pi(\vec{y})]=i \delta^{(3)}(\vec{x}-\vec{y}), \quad[\phi(\vec{x}), \phi(\vec{y})]=[\pi(\vec{x}), \pi(\vec{y})]=0
$$

The simple harmonic oscillator (SHO)

- When quantising the KG field we will need to find the spectrum of the system.
- To do this we will draw an analogy with the SHO.
- The equation of motion for a SHO with frequency, $\omega_{P}=\sqrt{|p|^{2}+m^{2}}$, is given by,

$$
\left[\frac{\partial^{2}}{\partial t^{2}}+\left(|p|^{2}+m^{2}\right)\right] \phi(\vec{p}, t)=0
$$

Ladder operators

- We want to promote the φ and p to operators and impose our commutation relations.
- Write φ and p in terms of "ladder" operators, a, and $a^{\dot{\dagger}}$,

$$
\phi=\frac{1}{\sqrt{2 \omega}}\left(a+a^{\dagger}\right), \quad \vec{p}=-i \sqrt{\frac{\omega}{2}}\left(a-a^{\dagger}\right)
$$

- If a, and a^{\dagger} satisfy $\left[a, a^{\dagger}\right]=1$ then we satisfy the commutation relation, $[\phi, p]=i$.

SHO Spectrum

- We can now investigate the spectrum of the Hamiltonian,

$$
H=\frac{1}{2} p^{2}+\frac{1}{2} \omega^{2} \phi^{2}=\omega\left(a^{\dagger} a+\frac{1}{2}\right)
$$

- Starting from the zero-point energy state $|0\rangle$, with eigenvalue $\omega / 2$, (which is defined via $a|0\rangle=0$), we can use,

$$
\left[H, a^{\dagger}\right]=\omega a^{\dagger}, \quad[H, a]=-\omega a
$$

- To define the full spectrum of states, with eigenvalues $(n+1 / 2) \omega$,

$$
|n\rangle=\left(a^{\dagger}\right)^{n}|0\rangle
$$

Quantising the KleinGordon Field

- To relate the Klein-Gordon field to the SHO consider the Fourier transform of the KleinGordon field,

$$
\phi(\vec{x}, t)=\int \frac{d^{3} p}{(2 \pi)^{3}} e^{i \vec{p} \cdot \vec{x}} \phi(\vec{p}, t)
$$

- At each point \times we have an $\mathrm{SHO} \varphi(p, t)$ with equation of motion,

$$
\left[\frac{\partial^{2}}{\partial t^{2}}+\left(|p|^{2}+m^{2}\right)\right] \phi(\vec{p}, t)=0
$$

- The KG field is a continuum of SHO's.

Solutions of the KleinGordon field

- A solution to the KG field can be written as a plane-wave solution,

$$
\phi(\vec{x}, t)=a e^{-i(\omega(\vec{p}) t-\vec{p} \cdot \vec{x})}
$$

- The more general solution can be written as,

$$
\phi(\vec{x}, t)=\int \frac{d^{3} p}{(2 \pi)^{3}} \frac{1}{\sqrt{2 \omega(\vec{p})}}\left(a e^{i(\omega(\vec{p}) t-\vec{p} \cdot \vec{x})}+a^{*} e^{-i(\omega(\vec{p}) t-\vec{p} \cdot \vec{x})}\right)
$$

φ and π Operators

- In analogy to the SHO we write down the field operators as,

$$
\begin{aligned}
& \phi(\vec{x})=\int \frac{d^{3} p}{(2 \pi)^{3}} \frac{1}{\sqrt{2 \omega(\vec{p})}}\left(a(\vec{p}) e^{i \vec{p} \cdot \vec{x}}+a^{\dagger}(\vec{p}) e^{-i \vec{p} \cdot \vec{x}}\right) \\
& \pi(\vec{x})=\int \frac{d^{3} p}{(2 \pi)^{3}}(-i) \sqrt{\frac{\omega(\vec{p})}{2}}\left(a(\vec{p}) e^{i \vec{p} \cdot \vec{x}}-a^{\dagger}(\vec{p}) e^{-i \vec{p} \cdot \vec{x}}\right)
\end{aligned}
$$

- There is a continuum of SHO states and so we label the corresponding ladder operator by the momentum p, i.e. $a(p)$ and $a^{\dagger}(p)$.

Commutation Relations

- There is a separate commutation relation for each $a(p)$ which we write as,

$$
\left[a(\vec{p}), a^{\dagger}\left(\vec{p}^{\prime}\right)\right]=(2 \pi)^{3} \delta^{(3)}\left(\vec{p}-\vec{p}^{\prime}\right)
$$

- These can then be used to show that the expected equal time commutation relations are satisfied,

$$
\begin{aligned}
& {[\phi(\vec{x}), \pi(\vec{y})]=i \delta^{(3)}(\vec{x}-\vec{y})} \\
& {[\phi(\vec{x}), \phi(\vec{y})]=[\pi(\vec{x}), \pi(\vec{y})]=0}
\end{aligned}
$$

The KG Hamiltonian

- We want to compute the spectrum of states of the system.
- The Hamiltonian can be written in terms of the ladder operators as,

$$
H=\int \frac{d^{3} p}{(2 \pi)^{3}} \omega(\vec{p})\left(a^{\dagger}(\vec{p}) a(\vec{p})+\frac{1}{2}\left[a(\vec{p}), a^{\dagger}(\vec{p})\right]\right)
$$

- The second term is the sum over all zero-point energies and is divergent, it is proportional to $\delta(0)$.
- In experiments we only measure relative differences to the ground state so it can be dropped.

The Energy of the

system

$$
H=\int \frac{d^{3} p}{(2 \pi)^{3}} \omega(\vec{p})\left(a^{\dagger}(\vec{p}) a(\vec{p})+\frac{1}{2}\left[a(\vec{p}), a^{\dagger}(\vec{p})\right]\right)
$$

- Acting with the Hamiltonian operator H on a state gives the energy of the state,

$$
H\left|\phi_{1}\right\rangle=E_{1}\left|\phi_{1}\right\rangle
$$

- Operators that commute with the Hamiltonian correspond to conserved quantities.

Creation \& Destruction

Operators

- With the rewritten form of the Hamiltonian we can then show,

$$
\left[H, a^{\dagger}(\vec{p})\right]=\omega(\vec{p}) a^{\dagger}(\vec{p}) \quad[H, a(\vec{p})]=-\omega(\vec{p}) a(\vec{p})
$$

- This means that

$$
a^{\dagger}(p)|0\rangle=\omega(p)|p\rangle \quad\langle 0| a(p)=\langle p| \omega(p)
$$

- Which we can interpret to mean that the $a^{\dot{f}}(p)$ operators are creating particles of energy ω while the $a(p)$ destroy them, with energy

$$
\omega(p)=\sqrt{p^{2}+m^{2}}
$$

Constructing States

- The ground state, with energy zero, is defined to be

$$
a(p)|0\rangle=0
$$

- We build up the set of all states by acting on this ground state with creation, $a^{\dot{\eta}}(p)$, operators.
- Multi particle states can be built up by applying multiple creation operators,

$$
\begin{aligned}
& a^{\dagger}\left(p_{1}\right) a^{\dagger}\left(p_{2}\right) \ldots a^{\dagger}\left(p_{n}\right)|0\rangle \\
& =\omega\left(p_{1}\right)+\omega\left(p_{2}\right)+\ldots+\omega\left(p_{n}\right)\left|p_{1}, p_{2}, \ldots, p_{n}\right\rangle
\end{aligned}
$$

The Fock Space

- These states obey Bose-Einstein statistics as

$$
a(p)^{\dagger} a(q)^{\dagger}|0\rangle \equiv a(q)^{\dagger} a(p)^{\dagger}|0\rangle
$$

- The spectrum of all particles is the Hilbert space of our theory.
- By acting with all possible combinations of we span the entire space.
- This type of space is known as a Fock space.

The Number Operator

- We can count the number of states in a particular state using the number operator,

$$
N=\int \frac{d^{3} p}{(2 \pi)^{3}} a^{\dagger}(\vec{p}) a(\vec{p})
$$

- So for example

$$
N\left|p_{1}, \ldots, p_{n}\right\rangle=n\left|p_{1}, \ldots, p_{n}\right\rangle
$$

- As this commutes with the Hamiltonian then particle number is conserved. This will change when we consider interacting theories.

Normalisation

- The vacuum state is normalised so that

$$
\langle 0 \mid 0\rangle=1
$$

- We normalise the states in a Lorentz invariant way,

$$
\langle\vec{p} \mid \vec{q}\rangle 2 \omega(\vec{p})(2 \pi)^{3} \delta^{(3)}(\vec{p}-\vec{q})
$$

- Also useful will be the Lorentz invariant integral measure, $\int \frac{d^{3} p}{(2 \pi)^{3} 2 \omega(\vec{p})}$

Creating States

- To create a state of the field φ we act on the ground state with the operator $\varphi(x)$,

$$
\phi(\vec{x})|0\rangle=\int \frac{d^{3} p}{(2 \pi)^{3}} \frac{1}{2 \omega(\vec{p})} e^{-i \vec{p} \cdot \vec{x}}|\vec{p}\rangle
$$

- This creates a linear superposition of well-defined singlemomentum states.
- This is not a "particle" which is localised in space because $\varphi(x)$ is not a good operator on the Fock space of states, its normalisation is proportional to a delta function,

$$
\langle 0| \phi(\vec{x}) \phi(\vec{x})|0\rangle=\langle\vec{x} \mid \vec{x}\rangle=\delta^{(3)}(0)
$$

Dual Interpretation

- Dual interpretation of a quantum field,
- Wave:The field is a linear combination of solutions of the KG equation.
- Particle:The ladder operators a and a^{\dagger} are Hilbert space operators which annihilate and create particles.

Summary

- We now know why we need quantum field theory.
- We understand the basics of a quantum field theory through the study of the simplest example, the Klein-Gordon Field.
- Quantised this field by using the simple harmonic oscillator and ladder operators.

Lecture 2

- The time evolution of states and fields
- The Schrodinger Picture.
- The Heisenberg Picture.
- Causality.
- Propagators.
- Spinors.

Schrodinger Picture

- All the operators and states we have discussed so far have been in the Schrodinger Picture.
- The operators are independent of time and we have applied equal time commutation relations.
- The states evolve in time, via the Schrodinger equation,

$$
i \frac{d|\vec{p}(t)\rangle}{d t}=H|\vec{p}(t)\rangle \Rightarrow|\vec{p}(t)\rangle=e^{-i \omega(\vec{p}) t}|\vec{p}\rangle
$$

Heisenberg Picture

- We want a more Lorentz Covariant framework.
- Let us now make our operators depend upon time by switching to the Heisenberg picture,

$$
\phi(x)=e^{i H t} \phi(\vec{x}) e^{-i H t}
$$

- The evolution of an operator in time is given by,

$$
\frac{d \mathcal{O}_{H}}{d t}=-\left[H, \mathcal{O}_{H}\right]
$$

- The states no longer evolve in time.

Ladder operators \& the Heisenberg Picture

- We note that the Hamiltonian H acting on the ladder operator a gives,

$$
H a(\vec{p})=a(\vec{p})(H-\omega(\vec{p}))
$$

- So that for n applications of H we have

$$
H^{n} a(\vec{p})=a(\vec{p})(H-\omega(\vec{p}))^{n}
$$

- So we can commute the $\exp (i H t)$ through the ladder operator, $e^{i H t} a(\vec{x}) e^{-i H t}=a(\vec{p}) e^{-i \omega(\vec{p}) t}, e^{i H t} a^{\dagger}(\vec{x}) e^{-i H t}=a^{\dagger}(\vec{p}) e^{i \omega(\vec{p}) t}$

The Field operator in

the Heisenberg Picture

- We can now shift from the Schrodinger picture for the field,

$$
\phi(\vec{x})=\int \frac{d^{3} p}{(2 \pi)^{3}} \frac{1}{\sqrt{2 \omega(\vec{p})}}\left(a(\vec{p}) e^{i \vec{p} \cdot \vec{x}}+a^{\dagger}(\vec{p}) e^{-i \vec{p} \cdot \vec{x}}\right)
$$

- To the Heisenberg picture,

$$
\phi(x)=\int \frac{d^{3} p}{(2 \pi)^{3}} \frac{1}{\sqrt{2 \omega(\vec{p})}}\left(a(\vec{p}) e^{-i p \cdot x}+a^{\dagger}(\vec{p}) e^{i p \cdot x}\right)
$$

- Where the 4 -vector $p=(\omega(\vec{p}), \vec{p})$.

Causality

- One question we can ask about our quantised theory is if a two space-like separated measurements can effect each other.
- Restated we are asking if space-like operators commute outside the light cone.
- So far we have only ensured that the commutation relations hold for equal time

$$
[\phi(x), \phi(y)]=0 \quad x^{0}=y^{0}
$$

- What we want to show

$$
[\phi(x), \phi(y)]=0 \quad \forall(x-y)^{2}<0
$$

Commutators

- Let us compute this commutator,

$$
[\phi(x), \phi(y)]=\int \frac{d^{3} p}{(2 \pi)^{3}} \frac{1}{2 \omega(\vec{p})}\left(e^{-i p \cdot(x-y)}-e^{i p \cdot(x-y)}\right)
$$

- We have two Lorentz invariant terms.
- Furthermore we can rotate $p \rightarrow-p$ in the second term when $(x-y)^{2}<0$.
- The two terms then cancel.

Interpretation

- The vanishing commutator tells us that causality is preserved.
- We can interpret the two separate exponentials as a particle propagating from x to y and an antiparticle propagating from y to x. The particle and the anti-particle cancel each other.

$$
[\phi(x), \phi(y)]=\int \frac{d^{3} p}{(2 \pi)^{3}} \frac{1}{2 \omega(\vec{p})}\left(e^{-i p \cdot(x-y)}-e^{i p \cdot(x-y)}\right)
$$

- Fortunately this cancellation cannot occur when $(x-y)^{2}>0$.

Complex Fields

- This becomes clearer when we look at a complex scalar field, the field operators now look like,

$$
\begin{aligned}
& \phi(\vec{x})=\int \frac{d^{3} p}{(2 \pi)^{3}} \frac{1}{\sqrt{2 \omega(\vec{p})}}\left(a(\vec{p}) e^{i \vec{p} \cdot \vec{x}}+b^{\dagger}(\vec{p}) e^{-i \vec{p} \cdot \vec{x}}\right) \\
& \phi^{\dagger}(\vec{x})=\int \frac{d^{3} p}{(2 \pi)^{3}} \frac{1}{\sqrt{2 \omega(\vec{p})}}\left(b(\vec{p}) e^{i \vec{p} \cdot \vec{x}}+a^{\dagger}(\vec{p}) e^{-i \vec{p} \cdot \vec{x}}\right)
\end{aligned}
$$

- There are two types of ladder operators, we can interpret one as creating a "particle" of the field and the other as creating the "anti-particle".

Propagators

- We have seen that the commutator of the fields tells us about how the fields propagate through space-time,
$[\phi(x), \phi(y)]=\int \frac{d^{3} p}{(2 \pi)^{3}} \frac{1}{2 \omega(\vec{p})}\left(e^{-i p \cdot(x-y)}-e^{i p \cdot(x-y)}\right)$
- Each exponential term represents the propagation of the particle from x to y, we label this $D(x-y)$,

$$
D(x-y)=\langle 0| \phi(x) \phi(y)|0\rangle=\int \frac{d^{3} p}{(2 \pi)^{3}} \frac{1}{2 \omega(\vec{p})} e^{-i p \cdot(x-y)}
$$

Propagators Properties

- Write the commutator as,

$$
\Delta(x)=-i[D(x)-D(-x)]
$$

- This object and hence the propagator has the following properties,
- i) A solution of the KG eq. $\left(\partial_{\mu} \partial^{\mu}+m^{2}\right) \Delta(x)=0$
- ii) Is Lorentz Invariant.
- iii) Preserves causality, $\Delta(x)=0$ if $x^{2}<0$.

Propagators

- We would like to write the propagator in a more obviously Lorentz invariant form.
- This is given by $\int \frac{d^{4} p}{(2 \pi)^{4}} \frac{1}{p^{2}-m^{2}} e^{-i p \cdot(x-y)}$
- To connect these two expressions let us consider the integral over p_{0} as a contour integral,

$$
\begin{aligned}
& \int \frac{d p_{0}}{2 \pi} \frac{1}{p^{2}-m^{2}} e^{-i p \cdot(x-y)}=\int \frac{d p_{0}}{2 \pi} \frac{1}{p_{0}^{2}-\omega(\vec{p})^{2}} e^{-i p \cdot(x-y)} \\
& \quad=\int \frac{d p_{0}}{2 \pi} \frac{1}{\left(p_{0}-\omega(\vec{p})\right)\left(p_{0}+\omega(\vec{p})\right)} e^{-i p_{0} \cdot\left(x^{0}-y^{0}\right)+i \vec{p} \cdot(\vec{x}-\vec{y})}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Choosing a Contour } \\
& \int \frac{d p_{0}}{2 \pi} \frac{1}{\left(p_{0}-\omega(\vec{p})\left(p_{0}+\omega(\vec{p})\right)^{-i p_{0}} \cdot\left(x^{0}-v_{0}\right)^{0}\right)+\bar{p}(\vec{x}-\bar{y})}
\end{aligned}
$$

- There are two poles $p_{0}= \pm \omega(\vec{p})$ and so the complex plane for the two particle correlation function looks like

- How do we choose the contour to integrate over?

$$
\begin{aligned}
& \text { Choosing a Contour } \\
& \int \frac{d p_{0}}{2 \pi} \frac{1}{\left(p_{0}-\omega(\vec{p})\left(p_{0}+\omega(\vec{p})\right)^{-i p_{0}}\left(x^{0}-y^{0}\right)+i \bar{p}(\vec{x}-\bar{y})\right.}
\end{aligned}
$$

- There are two poles $p_{0}= \pm \omega(\vec{p})$ and so the complex plane for the two particle correlation function looks like

- How do we choose the contour to integrate over?

Retarded Propagator

- When $x_{0}<y_{0}$ then we will want to close the contour at $-\infty$ and we get

- When $x_{0}<y_{0}$ then we will want to close the contour at $+\infty$ and we miss both poles and get zero.
- This gives the expression for the retarded propagator,

$$
\Delta_{\mathrm{ret}}(x)=\Theta\left(x_{0}\right) \Delta(x)
$$

- This uses the state in the infinite past as its initial condition.

Advanced Propagator

- When $x_{0}>y_{0}$ then we will want to close the contour at $+\infty$ and we get

- When $x_{0}<y_{0}$ then we will want to close the contour at $-\infty$ and we miss both poles and get zero.
- This gives the expression for the advanced propagator,

$$
\Delta_{\mathrm{adv}}(x)=\Theta\left(-x_{0}\right) \Delta(x)
$$

- This uses the state in the infinite future as its initial condition.

Feynman Contour

- The contour we will want to use the most is the Feynman propagator.
- When $x_{0}>y_{0}$ we close the contour above and enclose the $-\omega_{p}$ pole.
- When $x_{0}<y_{0}$ we close the contour below and enclose the $+\omega_{p}$ pole.

Feynman Propagator

- This choice of contour then means we get contributions for both time orderings of the field,

$$
\begin{aligned}
D_{F}(x-y) & =\Theta\left(x_{0}-y_{0}\right) D(x-y)+\Theta\left(y_{0}-x_{0}\right) D(y-x) \\
D_{F}(x-y) & =\Theta\left(x_{0}-y_{0}\right)\langle 0| \phi(x) \phi(y)|0\rangle+\Theta\left(y_{0}-x_{0}\right)\langle 0| \phi(y) \phi(x)|0\rangle
\end{aligned}
$$

- This can be written in a more compact notation using the Time Ordering operation,

$$
D_{F}(x-y)=\langle 0| T\{\phi(x) \phi(y)\}|0\rangle
$$

Feynman Propagator

- Alternatively we can generate the same effect by shifting the poles $\omega(\vec{p}) \rightarrow \omega(\vec{p})+i \epsilon$

- The final form for the Feynman propagator in a non-interacting real scalar field is

$$
D_{F}(x-y)=\langle 0| T\{\psi(x) \psi(y)\}|0\rangle=\int \frac{d^{4} p}{(2 \pi)^{4}} \frac{1}{p^{2}-m^{2}+i \epsilon} e^{-i p \cdot(x-y)}
$$

Feynman Propagator

$$
D_{F}(x-y)=\langle 0| T\{\phi(x) \phi(y)\}|0\rangle=\int \frac{d^{4} p}{(2 \pi)^{4}} \frac{1}{p^{2}-m^{2}+i \epsilon} e^{-i p \cdot(x-y)}
$$

- This form of the propagator will be the foundation upon which we set up our computational framework.
- As preview of what is to come we will see that this will become the internal lines in a diagrammatic representation of the field computations.

Summary

- We have seen the time evolution of states and fields
- The Schrodinger Picture.
- The Heisenberg Picture.
- Have Shown that our quantised real scalar field theory preserves causality.
- Propagators: Retarded, Advanced and the Feynman propagator.

