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Overview

• Aim of these lectures is to explain the basics of 
how computations are performed in quantum 
field theories.

• We will restrict ourselves to:

• Perturbative computations.

• Re-normalisable theories such as QED and 
QCD.

• This is still leaves a large amount to cover.
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Lecture 1

• Why we need quantum field theory?

• The basics of a quantum field theory.

• The simplest example; the Klein-Gordon 
Field.

• The simple harmonic oscillator and ladder 
operators.

• The Hilbert and Fock spaces of a theory.
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The Standard Model

• The Standard Model (SM) encompasses our 
Knowledge of particle physics.

• There are the fundamental particles, 

• Those related to QCD we never see unconfined 
in Nature.
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QCD
• Different quarks are bound together

• Mesons - quark and anti-quark doublet.

• Baryons - quark, quark, quark triplet.

• There is a whole spectrum of particles with 
different charges and spin depending upon which 
quarks are bound. 

• For example,

• Mesons - π, K, ρ, ...

• Baryons - p, n, Λ, Δ, ...
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Relativistic QM
• To understand the SM we need to understand 

Quantum Field Theory. 

• Why is it needed? we want to combine Special 
Relativity (SR) and Quantum Mechanics (QM).

• Try to create a relativistic Schrodinger Eq. Create 
using the correspondence principle,
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Negative Energy Solutions

• The solution to the KG eq can be written as 
a plane-wave,

• Inserting this into the KG equation we get,

• Which means that              and so we have 
a negative energy, 
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Causality
• The Hamiltonian for a single relativistic particle is 

given by,

• Compute the amplitude for a particle to travel 
between x and x’ in time t.

• We see that this does not vanish outside the light 
cone for space-like separations,

8

A(x, x�, t) = �x�|e−iHt|x�

H =
�

�p2 + m
2
0

= e−m
√

(x�−x)2−t2

(x� − x)2 − t2 < 0



Conclusions

• Particles would have to travel faster than the 
speed of light!

• This along with negative energy states tells us that 
quantising a relativistic particle is not the solution.

• We need something else, Quantum Field Theory.
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Quantum Field Theory
• The quantisation of dynamical systems of fields. 

• All of modern particle physics is based upon this. 

• Need comes from the difficulties of trying to 
quantise relativistic particles (i.e. negative energy 
states, multiple particles, difficulties with causality.) 

• We will be interested in the dynamics of fields        
φ(x, t), x is a momentum 3-vector,

• Unlike in quantum mechanics both x and t will be 
labels (in QM x is a dynamical variable). 
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• Like classical field theory QFT is described 
via a Lagrangian L, of one or more fields    φ
(x) and their derivatives ∂µφ. 

• The action S is given by,

• The equation of motion of the field is 
derived using the Euler-Lagrange equation,

Lagrangians

S =
�

d4�xL(φ, ∂µφ),

∂µ

�
∂L

∂(∂µφ)

�
− ∂L

∂φ
= 0
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• The simplest starting point is to consider the 
quantisation of the Klein-Gordon field,

• With an equation of motion (using the Euler-
Lagrange equation) for the field ϕ,

• To quantise this we will proceed in analogy with 
the quantisation of a simple harmonic oscillator.

The Klein-Gordon Field

LKG =
1
2

(∂µφ)2 − 1
2
m2φ2

�
∂µ∂µ + m2

�
φ = 0.
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• The Hamiltonian formalism is best suited to performing 
this quantisation. 

• The Hamiltonian, H, of a system can be defined with 
respect to the Lagrangian via,

• We also define the conjugate momentum to be,

•     is the differential of the field, ϕ, with respect to time, t. 

The Hamiltonian

H =
�

d
3
x

�
π(�x)φ̇(�x)− L

�

π(�x) =
∂L

∂φ̇(�x)

φ̇
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The Klein-Gordon field

• The Hamiltonian for the Klein-Gordon field 
is given by, 

• We no longer have a manifestly Lorentz 
invariant expression. 

H =
�

d
3
x

�
1
2
π2 +

1
2

(∇φ)2 +
1
2
m

2φ2

�
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• In quantum mechanics quantisation of a discrete 
system is performed by imposing commutation 
relations between the position qi and 
momentum pi of one or more particles,

• To quantise the Klein-Gordon field we will 
proceed in a similar way by promoting ϕ, and π 
to operators and imposing equivalent equal time 
commutation relations,

Canonical Quantisation

[qi, pj ] = iδij , [qi, qj ] = [pi, pj ] = 0

[φ(�x), π(�y)] = iδ(3)(�x− �y), [φ(�x), φ(�y)] = [π(�x), π(�y)] = 0
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The simple harmonic 
oscillator (SHO)

• When quantising the KG field we will need 
to find the spectrum of the system.

• To do this we will draw an analogy with the 
SHO.

• The equation of motion for a SHO with 
frequency,                         , is given by,
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• We want to promote the ϕ and p to 
operators and impose our commutation 
relations.

• Write ϕ and p in terms of “ladder” 
operators, a, and a†,

• If a, and a† satisfy              then we satisfy 
the commutation relation,            .

Ladder operators
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• We can now investigate the spectrum of the 
Hamiltonian,

• Starting from the zero-point energy state    , with 
eigenvalue ω/2, (which is defined via               ), 
we can use,

• To define the full spectrum of states, with 
eigenvalues                  ,

SHO Spectrum
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Quantising the Klein-
Gordon Field

• To relate the Klein-Gordon field to the SHO 
consider the Fourier transform of the Klein-
Gordon field,

• At each point x we have an SHO ϕ(p,t) with 
equation of motion,

• The KG field is a continuum of SHO’s.
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Solutions of the Klein-
Gordon field

• A solution to the KG field can be written 
as a plane-wave solution,

• The more general solution can be written 
as, 
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φ(�x, t) = ae−i(ω(�p)t−�p·�x)
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�
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(2π)3
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�
aei(ω(�p)t−�p·�x) + a∗e−i(ω(�p)t−�p·�x)

�



ϕ and π Operators

• In analogy to the SHO we write down the 
field operators as,

• There is a continuum of SHO states and so 
we label the corresponding ladder operator 
by the momentum p, i.e. a(p) and a†(p). 
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φ(�x) =
�

d3p

(2π)3
1�

2ω(�p)

�
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π(�x) =
�
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(2π)3
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�
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2
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Commutation Relations

• There is a separate commutation relation 
for each a(p) which we write as,

• These can then be used to show that the 
expected equal time commutation relations 
are satisfied,
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�
a(�p), a†(�p�)

�
= (2π)3δ(3)(�p− �p�)
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The KG Hamiltonian
• We want to compute the spectrum of states of the 

system. 

• The Hamiltonian can be written in terms of the ladder 
operators as,

• The second term is the sum over all zero-point 
energies and is divergent, it is proportional to δ(0).

• In experiments we only measure relative differences to 
the ground state so it can be dropped. 
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The Energy of the 
system

• Acting with the Hamiltonian operator H on 
a state gives the energy of the state,

• Operators that commute with the 
Hamiltonian correspond to conserved 
quantities.
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H =
�

d
3
p

(2π)3
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a
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• With the rewritten form of the Hamiltonian 
we can then show,

• This means that

• Which we can interpret to mean that the a†(p) 
operators are creating particles of energy ω                                     
while the a(p) destroy them, with energy 

�
H, a

†(�p)
�

= ω(�p)a†(�p)

Creation & Destruction 
Operators
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[H, a(�p)] = −ω(�p)a(�p)

a†(p)|0� = ω(p)|p�

ω(p) =
�

p2 + m2

�0|a(p) = �p|ω(p)



Constructing States

• The ground state, with energy zero, is defined 
to be

• We build up the set of all states by acting on 
this ground state with creation, a†(p), 
operators.

• Multi particle states can be built up by applying 
multiple creation operators,
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a†(p1)a†(p2) . . . a†(pn)|0�
= ω(p1) + ω(p2) + . . . + ω(pn)|p1, p2, . . . , pn�

a(p)|0� = 0



• These states obey Bose-Einstein statistics as

• The spectrum of all particles is the Hilbert 
space of our theory. 

• By acting with all possible combinations of 
we span the entire space. 

• This type of space is known as a Fock space. 

The Fock Space
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a(p)†a(q)†|0� ≡ a(q)†a(p)†|0�



• We can count the number of states in a 
particular state using the number operator,

• So for example

• As this commutes with the Hamiltonian then 
particle number is conserved. This will change 
when we consider interacting theories.

The Number Operator
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N =
�

d3p

(2π)3
a†(�p)a(�p)

N |p1, . . . , pn� = n|p1, . . . , pn�



• The vacuum state is normalised so that

• We normalise the states in a Lorentz 
invariant way,

• Also useful will be the Lorentz invariant 
integral measure,

Normalisation
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�0|0� = 1

��p|�q�2ω(�p)(2π)3δ(3)(�p − �q)

�
d3p

(2π)32ω(�p)



• To create a state of the field ϕ we act on the ground 
state with the operator ϕ(x),

• This creates a linear superposition of well-defined single-
momentum states.

• This is not a “particle” which is localised in space  
because ϕ(x) is not a good operator on the Fock space 
of states, its normalisation is proportional to a delta 
function,

Creating States
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φ(�x)|0� =
�

d3p

(2π)3
1

2ω(�p)
e−i�p·�x|�p�

�0|φ(�x)φ(�x)|0� = ��x|�x� = δ(3)(0)



• Dual interpretation of a quantum field,

• Wave: The field is a linear combination of 
solutions of the KG equation.

• Particle: The ladder operators a and a† are 
Hilbert space operators which annihilate 
and create particles.

Dual Interpretation
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Summary

• We now know why we need quantum field 
theory.

• We understand the basics of a quantum 
field theory through the study of the 
simplest example, the Klein-Gordon Field.

• Quantised this field by using the simple 
harmonic oscillator and ladder operators.
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Lecture 2

• The time evolution of states and fields

• The Schrodinger Picture.

• The Heisenberg Picture.

• Causality.

• Propagators.

• Spinors.
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Schrodinger Picture

• All the operators and states we have 
discussed so far have been in the 
Schrodinger Picture.

• The operators are independent of time and 
we have applied equal time commutation 
relations.

• The states evolve in time, via the 
Schrodinger equation,
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i
d|�p(t)�

dt
= H|�p(t)� ⇒ |�p(t)� = e

−iω(�p)t|�p�



• We want a more Lorentz Covariant framework.

• Let us now make our operators depend upon 
time by switching to the Heisenberg picture,

• The evolution of an operator in time is given by,

• The states no longer evolve in time.

Heisenberg Picture
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dOH

dt
= − [H,OH ]

φ(x) = eiHtφ(�x)e−iHt



• We note that the Hamiltonian H acting on 
the ladder operator a gives,

• So that for n applications of H we have

• So we can commute the exp(iHt) through 
the ladder operator,

Ladder operators & the 
Heisenberg Picture

36

Ha(�p) = a(�p)(H − ω(�p))

H
n
a(�p) = a(�p)(H − ω(�p))n

eiHta(�x)e−iHt = a(�p)e−iω(�p)t, eiHta†(�x)e−iHt = a†(�p)eiω(�p)t



• We can now shift from the Schrodinger 
picture for the field,

• To the Heisenberg picture,

• Where the 4-vector                  . 

The Field operator in 
the Heisenberg Picture
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φ(x) =
�

d3p

(2π)3
1�

2ω(�p)

�
a(�p)e−ip·x + a†(�p)eip·x�

φ(�x) =
�

d3p

(2π)3
1�

2ω(�p)

�
a(�p)ei�p·�x + a†(�p)e−i�p·�x�

p = (ω(�p), �p)



• One question we can ask about our quantised 
theory is if a two space-like separated 
measurements can effect each other.

• Restated we are asking if space-like operators 
commute outside the light cone.

• So far we have only ensured that the commutation 
relations hold for equal time

• What we want to show

Causality
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[φ(x), φ(y)] = 0 ∀ (x− y)2 < 0

[φ(x), φ(y)] = 0 x0 = y0

01

02



• Let us compute this commutator,

• We have two Lorentz invariant terms. 

• Furthermore we can rotate            in the 
second term when                 .

• The two terms then cancel.   

Commutators
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[φ(x), φ(y)] =
�

d3p

(2π)3
1

2ω(�p)

�
e−ip·(x−y) − eip·(x−y)

�

p→ −p

(x− y)2 < 0

01

02

Can perform a Lorentz 
transform



• The vanishing commutator tells us that causality 
is preserved.

• We can interpret the two separate exponentials 
as a particle propagating from x to y and an anti-
particle propagating from y to x. The particle and 
the anti-particle cancel each other.

• Fortunately this cancellation cannot occur   
when                   .

Interpretation
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(x− y)2 > 0

[φ(x), φ(y)] =
�

d3p

(2π)3
1

2ω(�p)

�
e−ip·(x−y) − eip·(x−y)

�



• This becomes clearer when we look at a 
complex scalar field, the field operators now 
look like,

• There are two types of ladder operators, we can 
interpret one as creating a “particle” of the field 
and the other as creating the “anti-particle”.

Complex Fields
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φ(�x) =
�

d3p

(2π)3
1�

2ω(�p)

�
a(�p)ei�p·�x + b†(�p)e−i�p·�x�

φ†(�x) =
�

d3p

(2π)3
1�

2ω(�p)

�
b(�p)ei�p·�x + a†(�p)e−i�p·�x�



• We have seen that the commutator of the fields 
tells us about how the fields propagate through 
space-time,

• Each exponential term represents the propagation 
of the particle from x to y, we label this D(x-y),

Propagators
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[φ(x), φ(y)] =
�

d3p

(2π)3
1

2ω(�p)

�
e−ip·(x−y) − eip·(x−y)

�

D(x − y) = �0|φ(x)φ(y)|0� =
�

d3p

(2π)3
1

2ω(�p)
e−ip·(x−y)



• Write the commutator as, 

• This object and hence the propagator has 
the following properties,

• i) A solution of the KG eq.

• ii) Is Lorentz Invariant.

• iii) Preserves causality,                           .

Propagators Properties
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∆(x) = −i[D(x)−D(−x)]

(∂µ∂µ + m2)∆(x) = 0

∆(x) = 0 if x2 < 0



• We would like to write the propagator in a more 
obviously Lorentz invariant form.

• This is given by

• To connect these two expressions let us consider 
the integral over p0 as a contour integral,

Propagators
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�
dp0

2π

1
p2 −m2

e−ip·(x−y) =
�

dp0

2π

1
p2
0 − ω(�p)2

e−ip·(x−y)

=
�

dp0

2π

1
(p0 − ω(�p))(p0 + ω(�p))

e−ip0·(x0−y0)+i�p·(�x−�y)

�
d4p

(2π)4
1

p2 −m2
e−ip·(x−y)



• There are two poles                   and so the 
complex plane for the two particle correlation 
function looks like

• How do we choose the contour to integrate 
over?

Choosing a Contour
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p0 = ±ω(�p)

=
�

dp0

2π

1
(p0 − ω(�p))(p0 + ω(�p))

e−ip0·(x0−y0)+i�p·(�x−�y)



• There are two poles                   and so the 
complex plane for the two particle correlation 
function looks like

• How do we choose the contour to integrate 
over?

Choosing a Contour
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p0 = ±ω(�p)

=
�

dp0

2π

1
(p0 − ω(�p))(p0 + ω(�p))

e−ip0·(x0−y0)+i�p·(�x−�y)



• When x0<y0 then we will want to close the contour at -∞ 
and we get

• When x0<y0 then we will want to close the contour at +∞ 
and we miss both poles and get zero.

• This gives the expression for the retarded propagator, 

• This uses the state in the infinite past as its initial condition.

Retarded Propagator
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Re(p0)

Im(p0)

+ωp-ωp

∆ret(x) = Θ(x0)∆(x)



• When x0>y0 then we will want to close the contour at +∞ 
and we get

• When x0<y0 then we will want to close the contour at -∞ 
and we miss both poles and get zero.

• This gives the expression for the advanced propagator,

• This uses the state in the infinite future as its initial condition.

Advanced Propagator
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-ωp Re(p0)

Im(p0)

+ωp

∆adv(x) = Θ(−x0)∆(x)



• The contour we will want to use the most is the 
Feynman propagator. 

• When x0>y0 we close the contour above and 
enclose the -ωp pole.

• When x0<y0 we close the contour below and 
enclose the +ωp pole.

Feynman Contour
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Im(p0)

Re(p0)-ωp

+ωp



• This choice of contour then means we get 
contributions for both time orderings of the 
field,

• This can be written in a more compact 
notation using the Time Ordering operation,

Feynman Propagator
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DF (x − y) = Θ(x0 − y0)�0|φ(x)φ(y)|0� + Θ(y0 − x0)�0|φ(y)φ(x)|0�

DF (x − y) = �0|T{φ(x)φ(y)}|0�

DF (x− y) = Θ(x0 − y0)D(x− y) + Θ(y0 − x0)D(y − x)



• Alternatively we can generate the same 
effect by shifting the poles 

• The final form for the Feynman propagator 
in a non-interacting real scalar field is

Feynman Propagator

50

ω(�p)→ ω(�p) + i�

DF (x − y) = �0|T{ψ(x)ψ(y)}|0� =
�

d4p

(2π)4
1

p2 − m2 + i�
e−ip·(x−y)

Im(p0)

Re(p0)+iε

-iε



• This form of the propagator will be the foundation 
upon which we set up our computational 
framework.

• As preview of what is to come we will see that this 
will become the internal lines in a diagrammatic 
representation of the field computations.

Feynman Propagator
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DF (x − y) = �0|T{φ(x)φ(y)}|0� =
�

d4p

(2π)4
1

p2 − m2 + i�
e−ip·(x−y)



Summary

• We have seen the time evolution of states and 
fields

• The Schrodinger Picture.

• The Heisenberg Picture.

• Have Shown that our quantised real scalar field 
theory preserves causality.

• Propagators: Retarded, Advanced and the 
Feynman propagator.
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