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Analysis Methods

An experimentalist’'s view
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Outline &

* Probability and Statistics, basic concepts
 Monte Carlo techniques

* Event classification

 Parameter estimation

* Limits, confideneerintervals, significance
* Closing remarks
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Outline

* Probablility and Statistics, basic concepts

* Axioms, Frequentist vs Bayesian approaches
 Mean, variance, covariance
* (Some) Basic distributions

Central Limit.Theorem & error propagation
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Data Analysis &

» Particle Physics Is all about matching experiment
and theory

 What Theory describes the Data ?
e How Data can discreminate between Model X and Y ?

* Due to the Intrinsic nature of the processes
studied, the proper question is often:

Are theory and experiment statistically compatible ?

—— Probability and statistics are very hot topics, constantly improved.
In four hours, we will only scrape the surface !
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Probability and statistics &
* Probabillity: from theory to data

* For a given model, what are the possible outcomes for
experiments ? => predictions

o Statistics: from data to theory

* This is ,solving the inverseproblem” : from a set of

measurementsiinfer the right model => experimental
data analysis

 There are various ways to interpret probabillities.

e Axiomatic 7
. x C¢
» Frequentist - opoY
. . il A\
« Objective probability Q‘oba“\\

e Bayesian probability
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Axiomatic approach &

» Kolmogorov axioms n.b. : other sets of axioms exist

* The probability of any event E in the event space F,
P(E) Is a non-negative real number:

0<P(E)<1 vE e F
* The probability that some elementary event in the entire
sample space will oecur is'1.
P(Q2) = 1and P({) = 0.
- Any countable sequence of pairwise disjoint events E
satisfies:

P(EyUE,U---) = Z P(E;).

While perfectly valid, that approach doesn't tell anything about

what probability is.
More than a mathematical tool, we want to
interpret the probabilities of physical quantities.
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The Frequentist approach (&

Natural definition of probability via the frequency of the
corresponding event:

» Let perform N times (identical trials) the same experlment
P(E) = Jm &

Pro: intuitive interpretation
In particle physies.

e Con:

* One cannot consider the event independently of the
collective.

 One cannot mathematically prove the convergence.

* Not all measurement can be repeated under identical
conditions.

— ? probability that the top mass is in [171.2,174.0]GeV/c?
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The Bayesian approach &

Probability is seen as a degree of belief.

« Credibility of a statement -> taking into account the past

Bayesian approach is all about the probability of an hypothesis or theory.

P(E) = P(E|l) is the state of our knowledge and depends on the information
we have.

This is in opposition to the frequentist:approach of probability P(E) as a
state of nature.

* Physicists often claim ,| am frequentist” -> well suited to describe quantum
phenomena.

« Bayesian approach more suited to the analysis of experimental outcome or
prediction.

- What is the ,probability to reject a Higgs boson of 500GeV” ?

Bayesian probability includes a PRIOR knowledge about the theory and
tells us the influence of a new measurement.

e Subjective probability ?

C. Delaere - Analysis Methods 8
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The Bayes theorem

P(A|B) P(B) = P(AN B) = P(B|A) P(A).
P(B|A) P(A)
P(A|B) =
(A1B) = =5

This is the Bayes' Theorem:
it gives the probability for Ato be true if B is true.

Rev. T. BAYEs
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Bayes theorem

P(A) = P(B) =

P(AIB) =
AT T
S
E;Dggoirs.ai‘nws:n:nd L.Lista Q :r—_-_\' Q
o
P(A|B) P(B) = —_— = ———— =P(AN D)
T
h
. C
P(B|A) P(M) = X ——————— = ———————— =Pp(LNB)

= P(B|A) =P(A|B) x P(B) | P(A)

‘ From a drawing by B.Cousins
i 10
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Bayes - Interpretation &

Likelihood Prior

Probability to observe data independent of the measurement
according to the theory

™~ .

P (dataltheory ) x P (theory)

P (theory|data)=
P(data)
Posteriori probability
probability of the theory to be true Evidence:

probability of data, assuming a model M.

 To prove a theory, better have P(data|theory) large and P(data) small (,strong evidence”)
» P(dataltheory) = 0 -> P(theory|data)=0 : data allows then to reject the theory

» P(data) can be expressed as sum{P(data|theory i) x P(theory_i)} -> normalization factor.
 Learning interpretation: description of the evolution of P(theory) with new data.

C. Delaere - Analysis Methods 11
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Measurement
from ,flat prior” :

Given previous
measurement,
excluded region
put as prior :

0.1F
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0.6

0.2

Note that we could use

a more complex prior:
* Smoothed step function
« Gaussian to reflect existing measurement

.4. .

e, I Ll U -
2 0 2 4 6 8 10

0.15F

0.25¢

\

.-3‘..\-2 .-1 ] |\;|\|\‘|\ 7 bHI

Posterior belief...

"

\

\

0.05F

Measurement: likelhood from fit.

We will come back on this later.

C. Delaere - Analysis Methods
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How to describe data ?

Quantitative measurements

\

e

E F

200

I ! I f I f I ! I f I ! I
| = Main Contributor

- [zses. oo, — quo Tl Ditrbuton
4 4888: 48888: e ‘_6 300
2 P A
T FooE. & ((\ea FEHREEE .
,,n-tuples” ,histograms”
(unbinned data) (binned data)
| o 1 ZN:
X =W Aver X=—
3 ; 1 erage N &
Spread V(x)=1— > (x,—x) The Variance has the dimentions
N of x squared. On the contrary,
W= (x> 2x 3+ the Standard Deviation has the
N same dimension as Xx.

=1ﬁzl: Xl.z—]lVZ)?Zi: Xi—l-lﬁ)_(zN

V(x)=>;2—)_<2
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value x in the interval (x, x+dx) Is given by
the probability density function f(x).

 Thisis NOT a probability !

 Definition: the cumulative distribution
function F(x) is the probability that we get

How to describe theory ?

» Definition: the probability to measure a fx) »

Random Variable X

&

*Normalized to 1
Dimensions 1/x

a measurement smaller than x.

F(a)=P(X<=a)

* The expectation value of a variable x is
noted E[x] or <x>. For a given pdf, it is

*F(-00)=0
'F(+oo):1
Dimensionless

given by:

.
L

X

C. Delaere - Analysis Methods
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+= i) Estimation of mean and variance (&

* In general, the mean and variance of the ,parent”
pdf are unknown and have to be estimated.

* The law of large numbers relates the arithmetic
mean of a data sample tothe expectation
value of the ,parent” pdf:

X~(X)

* For n data points, we estimate the variance 62 by

. variance s2”

* If the mean <x> :=pu is known : o o 1 Z (x _“)2

* If the true mean N5
IS unknown

, sample variance s2”

=yt 2 (xR = (R (X )

C. Delaere - Analysis Methods 15
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lllustration

/ Entries

Small popul¢

-
pa—

N

10
0.2045
0.7833

Mean
RMS

g1

Entries

0.4 “”?
0.35— 06—
0.3 f_ /'04__
0.25— 0.2:—
0.2 :— 05
0.15:—

0.1 \9
- 8=
0.05— 76
- | ha

% 4 6 5=
4

3

2

var £

50 Entries 1000 0;

Mean 0.9314 10

Clear h 0 RM 7182

Fill h with 10 e

Compute rms

1000x

Large population

1000

1.004

Mean  0.01123
RMS

PRI I s R Y
0.2 04

o L I he
1.2 14 16 1.8 2

P IR EEI
06 08 1

Remember:
ROOT ,RMS” is NOT
the sample variance !

C. Delaere - Analysis Methods
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Correlation, covariance &

* Glven two variables x,y, a dataset consists of pairs
of numbers:

WXy y1)s (X5 y5) 0 Xy, V)

e The mean and variance‘for.each variable are
defined as usual.

* The covariance describes the dependence

between x and'y: cov (x,y)=2- 3. (x~ %)y~ )

cov(x,y)=(x—x)(y—y)
cov(x,y)=Xy—XYy

e The dimensionless correlation coefficient is then
dEfIﬂEd as. _cov(x,y)

p =

07

C. Delaere - Analysis Methods 17



Correlation, covariance &

* If the two variables are uncorrelated, p=0. The
contrary Is not true !

ReﬂeCtS the ] ':I 1}5 U-I {.“:I _E]-I _'l:' E - ID
direction of a / ,- : " it ; "
linear relation. | F @ - ﬁ % ™
Does NOT 1.0 1.0 1.0 0.0 ~-1.0 -1.0 | -1.0
reflect the - : :
slope.
Does NOT 0.0 0.0 0.0 0.0 0.0 0.0 0.0
reflect other 3 i X ] o, .
. . R AL i s L - o -
non-linear &r LR *‘x ';ff;c_:-.n;-‘_?f.-’ ﬁ{ f‘h }*‘ L
relations Eii & F oy M L IR

C. Delaere - Analysis Methods 18
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Generalization &

2
One defines the covariance matrix, oy (x y)= O x Vixy|
often called ,error matrix” : ’ V{xy] Ui

One can then generalize the discussion to more than two variables.
Lets denote n variables x, 1=1,...,n

()’
The covariance matrix is -_COV X O—{x. X, .
n X N symmetric: V < ) < (J>> < <1)>< (J)>
Define the correlation matrix (6(0)7 (X(i) , X<J-)>
> p i —
0.0 [
Redefine the error matrix v

C. Delaere - Analysis Methods 19



Some useful pdfs &

e Uniform
 Binomial

e Gaussian

* Exponential
* Chi-square
* Breit-Wigner
e Landau

C. Delaere - Analysis Methods 20
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Uniform distribution

parameters: —oo<a<b<oo
Probability density function support: = [EI- b]
R ——  for z € [a, b]
| 0 otherwise
b-a | ? .
| : cdf: 0 forx <a
-2 forx € [a, b]
: i 1 forx > b
| : mean: %(a + b)
i E e y(a+b) Resolution of
i A mode: any value in [a,b] discrete
2 b : . 2
— o variance: (b —a) < measurements
siNg maximum convention
Cumulative distribution function
Lo 4z N
: Example: phi distribution of muons
OBl in Drell-Yan production.
E].I.'&-—

0.0 3 ; 1000 _— l,l.
I ¢ [rad] .
\ %

C. Delaere - Analysis Methods 21
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Binomial distribution

=] * p=05 andn=20 N trials (independent processes) that can
- | R either succeed or fail.
- B(n,p) represents the probability to have k
=2 ' successes among n.
o e . notation: B(n,p)
=y - parameters:n € Ng — number of trials
- . p € [0.1]1 — success probability in each
= . . trial
. ., support: ke {0,...n}
S [:]i-illn__pun.-illl:j 2:3 Shanta-tt-t;:; pmf: (::)ph(]_—p)ﬂ_&
cdf: L__P(ﬂ —k, 1+ ff:}
]
— o - o mean: np
. median: lnp] or [np]
g - . ._._ mode: [in+llplorin+1llp] -1
- o variance: |np(l — p)
©
o = . - n\_n!
- N Reminder: (k “kIn—k)!
o
a - D _ e ~
° - D07 aman—z0 | Example at LHC:
S | ereetnacsiasr” - P05 andN=40 1 1 8 colliding bunches in the machine
0 10 20 30 40 p(interaction)=0.75
? probability to have k collisions in the same ,,orbit” ?
\_ /
C. Delaere - Analysis Methods 22
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Poisson distribution

Probability mass function

Poisson distribution describes cases of sharp events

0.40 . . .
035 @9 o \_1 occuring in a continuum.
00l o Nod | » The #trials is unknown
oosl °© A=10 | * The rate is known
2 T .
1020 Lea It corresponds to B(n—e0,p—0) with np=A
“o1s| ¢ ®
o1ol /| . G/’—*O %a_ notation: PﬂfS(/‘\)
0.05} » .;:;. /O}"! v\U\,\J ] parameters: A > 0 (real)
I ! ,\U.:'];ﬁ ~ :! V:"m.; support: ke {0,1,2 3 ..}
0.00%5 5 10 15 20 pmf: M s
k =€
The horizontal axis is the index k. The function is only k!
defined at integer values of k. The connecting lines are cdf: F( |_k + IJ 1 /‘\)
. forf = (or
only guides for the eye. LkJ ! =
Cumulative distribution function F )\
E_l =
1.0 T T WW ; I-F
@ ..‘ o— 1= :
0.8 o O_D_ (where 1_'(;]::_1 y) is the Incomplete
o " gamma function and |_JECJ is the floor
= 0.6 s o function)
;"r:l o mean: A
& L .
0.4 . e )1 median: = |_/‘\—|— 1/3 = DDQ/)\J
. mode: L/\J and A — 1if A is aninteger
0.2f o ® A=4
. ° o A—=10 variance: A - AN~\VN
0.0l 8=anl : :
0 5 10 15 20 .
K Examples:

The horizontal axis is the index k. The CDF is
discontinuous at the integers of k and flat everywhere
else because a variable that is Poisson distributed only

takes on integer values.

e Radioactive decays
« Observation of rare processes (Higgs decays ?)

C. Delaere - Analysis Methods 23
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Probability density function

p=0, o=02,—
E=0, =10, m—
08 p=0, a=50, — ]
p=-2,0=05, —
— UG
=
b
o 04
a2 —
0.0 |—— ! —
-5 - —3 -2 -1 [] 1 2 3 4 B
X
The red line is the standard normal distribution
Cumulative distribution function
[ [
10 — —
E=0, @02, — ,-"'rﬂ_ / =]
=1
E=0, Tzl — / y |~
¥} E=n, g'.-=5_[|.
#:—2.0"’:05.— //
— 06 /
HFoa
0z st
,f’/
01} |—f— |
-5 -4 -3 -2 -1 ] 1 2 3 4 B

Colors match the image above

Gaussian distribution

Gaussian p.d.f., or Normal p.d.f.
For u=0, 6=1, one obtains the Standard distribution.

Properties:

* Symmetricaround u

* o characterises the width

e FWHM =2c:5qrt(2 In2)=2.355 ¢

The error function
being defined as:

erf (x) = \/;J{etz dt

one has:

D(x) = 1[1+ erf( \/_0' J

notation:

parameters:

support:

pdf:

cdf:

mean:
median:
mode:

variance:

N, o)

[ = R — mean {location)
o’ = 0 — variance (squared
scale)

XER ifat=0
x=p if o’ =0

]. _ I:EQ_ #:_'2
e o
vV 2mo®

1+ erf(:z/%)]

9F | F ]

C. Delaere - Analysis Methods
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1 pd oy 9 3
l — = N .[;f._(:‘ (-f_('!'_'”'} 1207 do = erf (\5 )

of2

(x-u)/o

1/3 of the measurements /

lie out of the 10 band !

If we do 200 measurements, the probability
to observe a 3o effect is : 1—0.9987°"=0.23

Beware of the Look Elsewhere Effect!

Gaussian properties

Two conventions can be adopted:
e One sided

» Double sided

The difference is a factor 2

-> always precise the convention !

Double-sided convention:

(v 0
0.3173 lo
4.55 <102 20
2.7 x1073 30
6.3x107° 1o
5.7%10°7 50
2.0x10~9 Go

v ]
0.2 1.28c
0.1 1.64c
0.05 1.960
0.01 2.58¢c
0.001 3.29¢
10—4 3.800

&

When quoting the magnitude of an excess,
f(x; u,0) deviation or probability, it is usual to use
Gaussian quantiles.

C. Delaere - Analysis Methods

25



Exponential distribution &

 Describes the lifetime of non-

- Prcbabilityuldensityfluncticn aging particles
2 s * No history, no aging.

3’2-2\ : » Decay probability = constant
oal ¥ |« Appliesto particles physics

%12 s s (quantum physics)

parameters: ) — ()rate orinverse scale (real)
support: [[]_, DCI)
pdf: re — X
cdf: 1] — e M
mean: 1

A
median: In (2)

5 A

5 mode:

variance: 1

A2

C. Delaere - Analysis Methods 26



Probability density function

Chi-square distribution

Degrees of freedom
1

—k=2

Probability
=
nomou
L

&

e Arises in the context of the method of
least-squares

. If x,..x are nindependent, Gaussian
distributed variables, then quantity

K=Z (Xi_zui)
IS distribud accordinlg to a chi?
distribution.

notation: XE(JIC) or Xf;

p parameters: k & N1 — degrees of freedom

support: x € [0, +=)
pdf: 1 k/2—1 —x/2
kT (k/2) © °
cdf: 1
p mean: K
median: 2 \2
~kl]l—-—
(1-5)
- mode: max{k — 2,0}
variance: 2k

C. Delaere - Analysis Methods 27
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Probability density function

ag =0, y=0.5
-y =0, y=1

0.5} -z =0, y=2

—z,=-2, y=1 |
= 0.4}

The purple curve is the standard Cauchy distribution

Cumulative distribution function

Breit-Wigner distribution &

* Arises naturally from the
propagator of a massive particle

In QFT.
e Few unusua

W undefined

e o undefinec

properties

- use median/mode X,

: use HWHM=y

ALEPH
. DELPHI

30T 3

OPAL

20 -

t average measurements,
error bars increased
by factor 10

Opag [MD]

10

1

support:
pdf:

cdf:

mean:

median:

l) lllllllllllll (l i P—

mode:

variance:

parameters: I location (real)

~ = () scale (real)
T € (—00;40)
1

Ty {1 + (@ﬂ

1 (:1: — :-::,;.) 1
— arctan + =
T ¥ 2

not defined
X0
X0

not defined

C. Delaere - Analysis Methods
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Landau distribution &

* The Landau distribution is used to describe the
distribution of energy loss of a charged particle
passing through a thin layer of matter.

Thickness
0.18f- A/
0.162— 1 o 1o o
0_14;— p(rj —_— _.\/\ E:S ES+IS’ d.s,l
02E- 271 C— 100
oosf- \ Energy loss
"”i_ L% rogt—at
== 9% "2 7 % 8 10 12 14 F{I} — _/ E,— ogi—=r Sll].l::ﬂ_f) df.
g0

Valid for thin sensors (t->0)
with X = R ( E-Ep)

L Most probable Eloss

C. Delaere - Analysis Methods 29
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Central limit theorem &

‘ Binomial I N—oow Np=4 Poisson'

\ A —> 0
N—Vv

Gaussmn

C. Delaere - Analysis Methods 30



Errors @

* Repeated measurements -> slightly different
results each time

- (changing conditions, resolution, quantum fluctuations, ... )
o Statistical errors

* From frequentist definition.of probability: repeated
measurementsigive a distribution of probability for the
result.

* Quote the ,spread”in addition to the central value.
» Systematic errors (aka systematics)

o Uncertainty In estimating effects from systematic
mistakes or from neglecting systematic mistakes.

 Wrong method, instrument, formulae, calibration, ...

C. Delaere - Analysis Methods 31
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« Statistical and systematic errors will evolve differently when
more data is accumulated

e Have to be quoted separately

« Still, can be added in quadrature, but systematics often introduce
correlations among variables:

c, CA},JE( o paxo'yj
c,) \poo, o,

¥

error matrix
squared

C. Delaere - Analysis Methods 32



Evaluating systematics &

 There is nothing to be gained repeating your mistakes.

* An experiment with large systematics can look perfectly
healthy, and the result is rubish.

e Often, there are checks you can doto satisfy yourself there are
no systematics

 Be ingenuous
 Be mildly paranoid
« Ask a colleague talented for destructive criticism

« Evaluation of systematics may/may not be easy to evaluate.
E.Q.:

e calibration uncertainty,

* theory error,
e Or even unknown cause !

C. Delaere - Analysis Methods 33



Sanity checks &

Sanity checks are the key to evaluate systematics

A sucessful check will NOT lead to systematics

A sanity check is not an evaluation of systematics (should be
decided beforehand)

e A sanity check fails only ing€ases of mistakes

 |f the outcome ISylegitimately different from zero, it is a systematic
uncertainty evaluation.

If the alternate approach is better, don't use it to estimate
uncertainties... just use it !

e e.g.: If you find out there should be a 1.05 calibration factor,
don't quote 5% uncertainty but use the calibration factor.

More generally: when an effect is observed, first try to
suppress/mitigate it, add a systematic only in last resort.

C. Delaere - Analysis Methods 34



Incompatible measurements (&

* What to do when two measurements are incompatible ?
* Taking the weighted mean + rms would not make sense.
* Need special treatment.

 PDG recipe:

» Calculate theweightedimean weHTED avERAGE
of measurements

 Compute the global 2
w.r.t. that mean.

2

X
- AUBERT.B 04N BABR 6.6
- BAI 04H BES 6.0
] 3 3 - BAl 04H BES 11.4
Cases " - - BAl 96D BES 5.8

- - COFFMAN 88 MRK3 2.0
|+ FRANKLIN 83 MRKZ2 1.7
-\~ - ALEXANDER 78 PLUT 0.1
- - BRANDELIK 78B DASP 3.0

- x?/(n-1) ~1: use weighted mean

n— . | SEANMARE 76 MRKI 19
v?/(n-1) >>1. see case by case 7
| | \ | (Colnfidence Level < 0,06}01}
- %?/(n-1) >1: rescale errors o o , r—
by Sqrt(le(n'l))- F(;m);"l’mta, (units 1072)

C. Delaere - Analysis Methods 35



Université % g."![’ f
cathollque '@5
de Louv:

Error propagation &

CLT -> errors can be treated as Gaussian in most of the cases.

Let's consider f(x) = ax+b
How do we compute V(f) from V(x) ?

V(F)=(F)—{f)’=((ax+b)")—{ax+b)’

2/.2 2 2 2 . \e
V(f)=a’(x*)+2ab(x)+b’—a(x)’=Bab( x)—b e\
V(f)=a’V(x) =0,=a0, M

More generally, if f is locally linear, V(f)= Zi V(x)

Let's consider f(x,y) = ax+by+c

How do we compute V(f) ? (\a\o\es
V(F)=a3 ()~ (020 ((y5)—(y )+ 2ab ((xy)— (x)(y)) 2\'/

V(f)=a’V(x)+b*¥(y)+2abcov(x, y)

More generally, if f is locally linear, V(f)= Zi Vi(x)+ Z; V(y)+2 % % cov(x,y)
o (dE ) o [dE ) oy odE | (dE
oF= dx ot dy o,+2 dx |\ dy pO,O,

Addition of errors in quadrature, valid if uncorrelated (p=0).
C. Delaere - Analysis Methods 36
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 For an arbitrary number of variables, the previous result can
be generalised as:

2
» N[ of » vy 9 of
O, = — | O, + +COV(X., X.
’( ; OX. A ,21:; OX, OX; (%)
\ > J g _

Normal errors (for

Additional terms accountin
uncorrelated variables). ! ] unting

for correlations

This can be even further expended to m functions of n variables,
Introducing the (symmetri€) covariance matrix for functions, U.

Ukl ~ COU(fk, fl) i Zz]: (giﬁ gxf;)xzucov(xiaxj)
’ 8 .
By defining the nxm matrix of derivatives A, Aij = (af)
one can write shortly U = AVAT. Li/ w=p

C. Delaere - Analysis Methods 37



Error propagation (3) &

e Few more useful formulas:

Let's consider f(x) = xy
How do we compute V(f) ?

V(f)=<y>2V(X)+<x>2V(y)+V(x)V(y) (x, y uncorrelated)

2 2 2

» Add relative errors in quadrature,
If X,y are uncorrelated and
relative errors are small

Other useful formulas:

O_llx r Ux

— O-lnx=_
1" x X

C. Delaere - Analysis Methods 38



Outline

Monte Carlo techniques

Types of Monte Carlo generators

Flat
The

The

Random number generators
nverse Method

Rejection Method

General purpose MC

C. Delaere - Analysis Methods
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Monte Carlo Technigues &

* Monte Carlo techniques play a central role In
particle physics

» Often the only practical way to evaluate difficult
Integrals or to sample complicated p.d.f.

* Used to evaluate the signature of a model

» Used to evaluatesthe hadronization (non-perturbative
QCD)

* Used to evalutate the detector response

» Often the key to evaluate p.d.f. of physu:s
guantities

C. Delaere - Analysis Methods 40



Fixed order Monte Carlo &

Partons

4

e 2 Ccases

* Weighted events:
 the weight is the matrix element squared
* Unweighted events:
 events are distributed according to the matrix element squared.

* Technical diffieulty: avoid singularities (colinear and
soft regions) at LO + and implement numerically
the cancellation between N and N+1 partons
contributions at N"LO.

C. Delaere - Analysis Methods 41
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=) All-orders Monte Carlo &

* Aim: produce not just partons but a full set of
hadrons in the final state.

 Complex system to simulate utterly complex

reactions.

DGLAP
>

* + underlying event

showers

E————

* + decay unstable particles
e PYTHIA, ARIADNE, HERWIG, ISAJET, ...

C. Delaere - Analysis Methods 42
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e Geant4

» Geant4 (for GEometry ANd Tracking) is a platform for
"the simulation of the passage of particles through
matter," using Monte Carlo.methods.

 [ts areas of application include high energy, nuclear and
accelerator physics,.as well as studies in medical and
space science.” e

 Why a Monte Carlo ?
- Draw an energy deposit from a Landau
- Decay particles in flight s
- Generate showers in calorimeters

C. Delaere - Analysis Methods 43



Other examples (II) &

» Detector simulations
* Purpose: to go from energy deposits to ,detector

response”
- Acceptance Why a MC ?
— Resolution Use the response as p.d.f.
Add noise
» Detector-specific.simulation :
* Generic detector response (skips G4 too) Tracker

orward

.08 DelpheS Calorimeters

* Toy Monte Carlo

- Muon system

* MC integration

Calorimeter

 Coverage studies --
Delphes: http://arxiv.org/abs/0903.2225

* Pseudo-experiments

C. Delaere - Analysis Methods 44
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* Arandom number generator that follows a U[0,1] is
the basic ingredient to any Monte Carlo

 Various options are available:

» Hardware true random generators
- Uses radioactive decays or thermal noise @

— Truly random
- Slow and requires dedicated hardware
This is what we want

* (Pseudo-)random generators <: to use in practice

(good ones)

- Many algorithms available. Some better.
* Quasi-random generators
- _Uses a recurence relation to compute x,, from x

- May have good coverage properties, but produces always the
same sequence. If you know any x, you know the sequence.

C. Delaere - Analysis Methods 45




What

does NR say ? &

* Ban (multiplicative) linear congruential generators

 Never use a gener

ator with a period

T< ~2% ~10* or any genegatar with undisclosed T.

 Never use a gener

ator that warns against using Iits

low-order bits.-> sign-of obsolete generator.

» Never use built-in G/C#% generators.

* Avoid generators t

nat take > ~25 operations.

» Avoid generators C

esigned for cryptographic uses.

* Avoid generators with T>10'°... you don't need 1it.

e Generators should

combine at least 2 well-

understood methods.

C. Delaere - Analysis Methods 46
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Linear Congruential Generator (%
Xpy1 = (aX, +¢) mod m

» Any seed iIs as good as the others
» From there, the sequence with evolve ,random”.

Upper bound on the period.

Many problems/limitations«of the LCG.

Most well known (Marsaglia theorem) : If the LCG is used to k times
to obtain a point in a.k-dimentiopal space, points will be located on
max m** (k-1)-hyperplanes, much less if the constants m and a are

badly chosen.
Also, if m is a power of 2, least-significant bits are not random but

have periods of maximum 2". | \\

Bad example: RANDU (1960's): a=65539, m =23
Better choice (NR) : m=23?, a=3935559000370003845, c= 2691343689449507681
and keep only 32 most-significant bis out of 64.
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Xorshift method &

Let X be a non-zero 64-bits integer.

x—xA(x>a,) x—xA(x>a,)
x—xA(x<a,) or  x—xA(x<a,) With well chosen (al, a2, a3), for
Xxe—xA(x>a,) Xxe—xA(x>a,) example: (21, 35, 4) or (20, 41, 5).
1 01 0 .. 0O
0101 .. 0O
0 01 01 0 O
000 -~ 0 - O
0 00 1 0 1
Principle: PO
We use bit algebra: * is the bit'addition.in base 2.

Each of the 3 steps can therefore represent the action of a matrix S . on a vector x.

-> one iteration : T=S§,.S.S, ,

Max petiod: M=(2%-1). Will be achieved if: TV=1 and T" != 1 for each of the 7 prime
factors of M: N=3,5,17,257,641,65537, 6700417.
This can be found by brute-force, powers of T being computed by successive squaring.

Limitations/flaws:
Only a small subset of (a) triplets have good randomness properties.

It's easy to design a test tath the Xorshift will fail:
every bit of step i+1 depends on max 8 bits of step i.

Very useful when combined with other methods !
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This method is easy to understand, and to implement on 64 bits architectures:

R = | w2: bits 33-64 wl: bits 1-32 » X = wil: bits 1-32

Lo

R.,,=w2+awl
w2: bits 33-64 wl: bits 1-32 > X = wl: bits 1-32

Period: (2%2a-2)/2. ( a prime)

Improvements:
. r-lag MWC generators: use wl from R . This requires r+1 seeds.

* The max period goes like (a.b™-1) with b=232but cannot be saturated
o Complementary multiply with carry
e R . =(2°*1)-(w,+a.w,) : do a XOR with OxFFFFFFFF (revert all first 32 bits)

 The max period (a.b™-1) with b=232can be obtained for the right a.
« Mother-of-all” generator: do a linear combination of >1 wl.

Example: a=3636507990, r=1359 : p~10*3'*

C. Delaere - Analysis Methods 49
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==@®  Test of random generators (&

_ _ int getRundmNumberO
How to test the quality of a given return U/ chosen by fair dice roll

random number generator ? // quaranteed to be random.

Test on equal distribution: ¥= W ilk) must be a y?2

i=1

Test on correlations: large number of hyperplanes

Gap test: P(only last-of nin [a,b]) = p(1-p)™* with p=b-a

Random walk test: for 0O<a<<1, P(x<a) is binomial

DILBERT By Scott Apams

TOUR OF ACCOUNTING |§ | ARE
F NINE NINE ;| vyou THAT'S THE
_— ’ OVER HERE ? NINE NINE 3| SURE PROBLEM
-> |f needed, use existing test suites WE HAVE OUR |3 NINENINE:  Jrfquare BRI BOL
. “ / RANDOM NUMBER |§ 1 RANDOM? gg:\cﬁ?
(e.g. Diehard by Marsaglia) s SSHERATOR: : (pry  NEVER B
LLEJ ) /,_,,dg % ! SURE.
12
Good generators: NR's ran, CMWC, 1?2’ j - f? ,rﬁ’
L‘f /£ HE Ji

Mersene twister, ...
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° TRandom Intel(R) Core(TM)2 Duo CPU  P8700 @ 2.53GHz:
e LCG ! T~109 CMWC4096 -13.5 B tme (ns)
TRandom3 -18
T R an d O m 1 TRandom2 -17.8
e RANLUX” T~10'"* e (T - -
o) TRandomz e -/ _
» Tausworthe generator” T~10%°
> Recommended
TRandom3 Y BOOE

* Mersene Twister T~10°
» Default in python, Ruby, Matlab, ...

,not very elegant and is overly complex to implement”.
A simple complementary multiply-with-carry generator can have a period 10%°° times
as long, be significantly faster, and maintain better or equal randomness.
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The inverse transform method (&

» Consider a probability density function f(x) on the range
—o0 < X < 00, and its cumulative distribution function F(x).

 |f aI1s chosen with probability density f(a), then the
iIntegrated probability up to poeint a, F(a), Is itself a uniform
random variable on [0, 1].

@ Continuous
F( ) F distribution
u=>r(x oo |
'CU o F—l(u) D ° ﬁﬁ -1 X
1 — x=F~1(u)
* Requires an explicit form for F. (b) Discrete
« May not be the fastest Fog o distribution
e Can be applied to histograms - Ik
(implemented in ROQOT) . f—h o
% o g

-> exp(x), (1 —x)", and 1/(1 + x?)
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Von Neumann's method &

e This is a rejection method.

« Generate a random number r,
according to h(x).

- Generate a r, uniformly in [0,1]
o If r<f(x)/Ch(x) , keep,.
Otherwise, try again:

* With f and h normalized to'1,1/C -
Is the efficiency of the method. |

e C must be
close to 1.

—

Difficulties for narrow peaks !

\ pdf

efficiency here - 30%
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lllustration: MC integration

Simple example of MC integration

p(z) = (14 2)%20(1 — 2)8(1 + 2)

We know R = [ p(z)dz = 8/3 = 2.6666.... Nevertheless, we calculate it with help of the MC method.

Generate uniformly z € [—1,41]. Define MC weight w = p(2).

R~ (w) = %Z;‘_l w(zr).

Generate N = 10* MC events.

| Integral R of 10' wt-ed events |

Hist3
Nent = 1000

90

80

70

60

50

40

30

20

10

Mean = 2.666
RMS =0.02411

25 255 26 265 27 275 28 285 2.9

Repeat the calculation 1000 times!

MC weightw | Histd

Nent = 1e+07

Mean = 2.666
RMS = 2.385

1 2 3 4 5 6 T 8 9 10
w

S. Jadach

C. Delaere - Analysis Methods
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General purpose MC

VEGAS
« Few examples of General Purpose Monte [ 7 [T

Carlo Simulators, that is programs which
work (in principle) for arbitrary integrand

 Need of much CPU power and memory
- only recently available/affordable.
 Examples: VEGAS & FOAM

 VEGAS assumes the'function can be factorized FOAM
In terms that depends on onevariable. For each —
variable, find the ,best binning” e

* Approximation, can be pathological !

« FOAM works by dividing the integration domain
In cells, where the rejection method can be

&

efficiently used (<=> small variance of weights).

* |n both cases, the core of the method is about
finding the best ,grid”.

C. Delaere - Analysis Methods
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Outline &

* Probabllity and Statistics, basic concepts
 Monte Carla techniques

 Event classification
e |Introductio

|

C. Delaere - Analysis Methods 57
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 Data/Physics analysis tasks are inherently multivariate

e Event selection
- Triggering, real time filtering, data streaming
e Event reconstruction |

Consrafuiafion, o
it only took you |,
65299 5econd§

- Higgs & Susy searches, ...

* Functional apprexirﬁo

‘s data exploration, data-mining

— Data-driven extraction of information
— pattern recognition, clustering

C. Delaere - Analysis Methods 58
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Event classification &

 Data/Physics analysis tasks are inherently multivariate

e Eventselg~——
— Triggerir
Event rec(

— Tracking
Signal/Bay

k You p oY
pconds,

- Higgs &
Functiona

- Jet enel

, have very powerfull magnets !
— HIQYS M  (and cMs has the biggest)

\ data explc

— Data-driven extraction of information

— pattern recognition, clustering

C. Delaere - Analysis Methods 59
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Introduction
« Common task in HEP: separate  _ oo S
,signal” from ,background”. o = o s i (20

* Atypical analysis will conside
many variables as levers
to study data.

Box diagram

| y+jets (1 prompt y + 1 fake)
B y+jets (2 prompt y)
B Born diagram

|HI\‘I\I\‘\HI‘I\H'HIJ'

 Number of jets & leptons,.energy,

‘POS 110 115 120 125 130 135 140 145 150 155

M, (GeV)

angular distribution, invariant mass, isolation, missing
(transverse) energy and momentum, ...

* Multi-variate analysis Is therefore omnipresent in science

» Event classification is performed in a N-dimentional space
- Problem: human mind is limited to 3D (at best)
» \arious approaches:

- Simple (consecutive) cuts
- Compatification
— Global approach with help of analytical or MC description.

C. Delaere - Analysis Methods
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Introduction (2)

» Using cuts sequencially

e Generally easy
 Little flexibility

 Loss of information

 Compactification (,MVA techniques”)

005'\(\9

P\
e "9
‘\(\\‘(\3 S

S’

g, O

« Combine several observables into one test statistic.

« Computically intense (potentially)

Rectangular cuts?

™
»
'::.t-: H,
° 0l et .
- e 8 --“ -I-.
® & & _ & e "®
."‘".. L1
- .o
a® "o ‘.i
L ]
.,-"."‘i.".‘
ss s s
H, *s o Soe

A linear boundary?

A nonlinear one?

L] L]
.'.:l - l-: H‘I ‘..:- L] ': H‘I
L] 'll..- - @ . L '... * @ .
L o LR . LN ]
P g o o %.e st 0 o o e
® & & % oo ® s 8 5 & ona ®
L] - .l'... .8 L] - ....'. -e
- .o ® - e ®
a? T '. ') e ® 0 '. [
L] L]
see s %% t::. e e ™ .::.
ss s o8 ss s se
Hﬂ a0 g L Hu e g ‘--"
¢ s = L - e B L ]
e . S
r o r
X4 Xy
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Selecting by cuts &

Applying cuts consecutively is often the simplest approach

e But not optimal (does not take correlations into account)
* With correlations, cut optimization is not direct.

* The situation can be greatly improved by clever choice of the
observables considered

* Never forget to be clever !
 Observables must be motivated!

Example:
g 107 g 10% ST
5 8 2
E g " Kaon, proton
K 0, and deuteron
G > i signals easy to
4 3 107 |
3 Combine momentum separate !
f and de/dx using 1oE
. Bethe-Bloch :

0051152253354455
ss [GeV/cd]
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Choice of the best cuts &

The value of the cut is free a priori.

?ugf— « It depends on the efficiency

L F one wants to achieve

= 085 e |t depends on the fraction of

ot | 5 5 | background one is ready to
0.6- accept.

5eharatmn. Oc Useful plot:
% efficiency vs background fraction

u 2 0.4 0.8 1
Background fraction

Excellent cut

Useless cut.
No discriminating power

That plot doesn't tell which is the best value.
It is usefull to compare the cuts on various guantities.
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Choice of the best cuts &

JUY/A To decide which cut to apply, one needs a
3 figure of merit.
5 ‘m Common choices are:
% e S N O 3 N
10° |- — =
Vb vVs+b
discovery measurement
- 4 A\ 4
They a not (well) statistically motivated.
separatlon 2 Could use other merit functions :

2II I3IIII'4IIII5‘IIIIE ? a 9 10

Yy

R T i D Se12 = 2(V/s+b — Vb)

Sosh 31/ ///

L”o.-.vf// oL Ser, = /2(s + b)log(1 + s/b) — 2s
o] 08 | Significance
ol // separation=0c CLS
N W
i/
0.15/
00% 0z 04 06 08 1

Background fraction

Note: if several cuts are applied consecutively, the working point choice should be an iterative
process, to take into account correlations.

May be automatized (e.g. GARCON: Genetic Algorithm for Rectangular Cuts OptimizatioN).
C. Delaere - Analysis Methods 64




Fisher's discriminant &

» Simplest: linear combination of variables

» Cut defined by hyperplane in the space of observables
« ? Optimal plane to separate 2 classes of ,events”

D(z) = a; 3
e Most common.choiee: Fisher's discriminant
F(Z) Nl ) VT

A
X .
\ 2 ees _* * o H
e s ® e 1
LN .
.

Difference of Inverse of the Jove T %0 s
the means variance matrix . .

+ Can be computed directly from the s & b distributions
-  Does not consider different variances for s and b
-  Linear...
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Non-linear approaches

&

* More In general, any cut in a n-dimensional space
can be expressed as a cut on test statistic.

 |n that context: the test statistic Is just a way to go
from N observables -> 1.quantity, and then

e Cutonit

e Use Is as a likelthood

e Non-linear cut
<-> non-linear

. /
This lecture

test statistic.

e Neural networks
e Decision trees

e Support vector machines

e Likelihood ratio

X3

C. Delaere - Analysis Methods
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* Build a quantity N such that
 N=1 in the signal region
 N=0 in the background region
* Goes smoothly from one to the‘other.

 The isocurve N~0.5 is the beundary between the signal and™
background regions

A 1
Neuron: transfer function ~
e uses the sum of inputs
* One ,weight: constant term .
U

Synapse: more or less strong link between neurons
e One multiplicative ,weight” from input to output

N(QZ’) = S(CLO + ZGZQZ’Z)

Common choice: (t) o 1
,Sigmoid function” 1l det

C. Delaere - Analysis Methods 67
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e Training/learning :
procedure by which we get the weights ,right”.

Define the error function:

2 = / (N(Z) = T5 (7)) Po(7)dz A j (N(7) — Ts(7))*Ps(#)dz

Target y/

Same for the signal...

NN value Background pdf

————— > Evaluated on the error function on the sample (approximation/limitation)

o _ Y (V(E) — Tu(#))’

é \; . —— Training sample
] F
= - Test sample

Difficult bit: minimization !
Most common teefAnique: error back propagation
“=» Follow the gradiant of de/dw. and iterate

Learning plot: error vs time during training. «———

C. Delaere - Analysis Methods 68
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Visualization

The structure of the network can be visualized.
Here, 3 input variables, 5+3 hidden neurons,

one output (0 or 1).

Weights are visualized by the thickness of the
links... at the end it often provides little information.

N
‘ %'l'x
ave

NN output

% Background {WW)

S22 signal Higgs)

500

400

SIIIII IS

AT
SRR

300

A
AT

200

AT
AT

100

A
atately

» \We have a single (compactified)
N e e | variable on which we can optimize a
04 02 0 02 04 06 08 1 1.2 14 .
cut as discussed before.

ke A
bttty
it
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Words of caution &

« Approximation of knowledge of true
signal and background distributions o T
with sample of signal and background  «
events ot

« Finite statistics limit precision«(in itself -\ [ndependent test 5‘”'*"”"E'\E
usually not a problem) "L N, Jraining sample N
Training iteration

T

e Risks of overtraining

« Always control with. an independant x,
sample

* Never train on data (or use a control
sample)

* The result cannot be more accurate
than the MC knowledge. Features not
reproduced by MC will not be taken Overtraining !!
Into account.
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Simple Example

« Consider this example with two clear s and b regions,

with some defined overlap. \ .

* In principle, 85% of bkg and 66% of signal can be 0.8
unambiguously isolated. 07
e One builds and train a network with a simple structure o

Structure: x,y:5:3:signal 0.4
0.3
0.2
0.1

0

B

1 0.2

« The NN function reproduces the input structure B Y
09 %
A cutonthe NN output can produce a very pure\ 05
(cut at ~0.9) or very efficient (cut at ~0.4) set of events. 072
=
« Performances will degrade if 05
0.4 =

&

03 04 05 06 07 08 09 1

U

- Network structure is too simple to accomodate the shape of

: X 03[

signal and background regions i

- The dataset is too small to give information about the shape of a.1§—
the two regions N

0
» Opvertraining, ...

1 B
01 02 03

C. Delaere - Analysis Methods
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Simple Example &

« Consider this example with two clear s and b regions,

with some defined overlap. \ .1

e In principle, 81 . S
unambiguousl

e One builds and t

Meural net output (neuron 0

% Background
o h s Bignal
- b T
"_
¥
¥

N\

65% of Signal 03 04 05 06 07 08 09 1

e The NN functi 500

« AcutontheN ‘ i
(cutat ~0.9) o 82% of background AN

e Performances

Mixed region

- Network str

signal and background regions i —0-2
— The dataset is too small to give information about the shape of 01 ’ ﬁn
the two I‘egIOI’lS por bbb bbb bbb

0 01 02 03 04 05 06 07 08 09 1
» Opvertraining, ...
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Simple Example &

« Consider this example with two clear s and b regions,

e The NN func

A cuton the
(cut at ~0.9) 0.15

with some defined overlap. \ ~
* In principle, | - 5
. _ :
unambiguot S 0.35T
* Onebuilds anc j | —— Training sample
0.3 — —— Test sample

0 255 Training performed with too few \%4 e ohs i)

T events (10) in the dataset. )
0.2

T—I L1 | L1 11 | | I | Ll 1 1 | Ll 11 | Ll 1 1 | L1 1 | L1 1l
* Performanct 0 50 100 150 200 250 300 350
- Network ¢ EPOCh
Signal aNu vacryrounu reyivis 02 —0-2
- The dataset Is too small to give information about the shape of 0.1 ’ ﬁn
the two regions 0

0 01 02 03 04 05 06 07 08 09 1
» Opvertraining, ...
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Aside note: using NN to fit functions @

Original

* For some application with a cylindrical
symmetry, a magnetic field simulation
gives as output the radial component of
the B field on a grid.

« One want to fit those distributions with a
function in order to plug them into a
Geant simulation code.

* One could try polynemialfits, but it
seems difficult to reach the desired
precision over the full range. Neural Net

* One could also use a spline interpolation
between known points. In all cases, the
resulting field would not be C-infinite.

NN takes time to be trained (once) but
then provides a C-infinite function well
suited for many applications. There is no
need for an a priori knowledge of the
form of the function.

Lm0 a N W B
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Improvements &

e Clever choice of inputs

» Use well-understood observables

« Don't put useless inputs

« Prefer inputs in [0,1], or normalize them

« Avoid highly correlated inputs ( -> decorrelation )

» Avoid strongly peaked. distribution ( -> gaussianization )

» Clever choice of the netweoerk structure

* No rule
— People sometimes try first N. /2 + N.___ /4 hidden neurons, without

inputs inputs
motivation

- Network structure should match the complexity of the phase space, not
the number of inputs.

« Generally, try to start simple, and extend if needed
* This will also make the training faster

C. Delaere - Analysis Methods 75
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e Removal of linear correlations by rotating input variables

®» Cholesky decomposition: determine square-root C' of covariance
matrix C, i.e., C = C'C’

» Transform orig (x) into decorrelated variable space (x') by: x' = C'"x

e Principal component analysis
1) Compute variance matrix Cov(X)
2) Compute eigenvalues A; and eigenvectors v,

3) Construct rotation matrix T = Col(v,)T

4) Finally calculate u, = Tx, k;

W. Verkerke
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Gaussianization &

e Decorrelation can be improved by applying a
transformation to each observable that results in a

Gaussian distribution

— Can Gaussianize either signal or background sample (not both...)

e Two-step transformation

— First apply rarity transform - Creates uniform distribution

x.'-. |Il.'llﬁ".'.—'. nt }

X" (lovert) = .x;{\m {variables|
Measured value PDF of variable k

Rarity transform of variable k
- Second: make Gaussian via inverse error function: erf( je“ dt

X (I ) =2 erf(2x0% (i, ) ~1) , VK e {variables]

k

W. Verkerke
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Study of network performances (%

The Neural Network should not be used blindly. You have to assess its
performances and stability.

e _ -y
!1&'1,“'4';"ﬂ."i"'&"'&"'.‘"'J"'."';u 8 RISky case !
Xﬁ 1mé
- Study the stability: dN/dx / E
» Sensible inputs ,_
» Risks of large systematics: control R R

Remove one variable

x; @

Maximally uncorrelated to the rest

Maybe the most discriminating variable * @

After the NN selection, in principle, the signal appears clearly, and the
remaining background.can be measured.

No cut on N(x) After cut N(x)>a

,Side-band” background measurement.

| differences (impact of variables on ANN) |
E 0= —X

C. Delaere - Analysis Methods 78



Additional comment &

* We discussed here a simple use case of NN with
only one output neuron... one can go beyond that

 OCR (1 neuron per character, take the best and
estimate ,risk of mistake” or ,second choice”

* Distinguish between N«Categories using N-1 output
neurons (anditake.the closest type)

OzA

A
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Decision trees &

» Decision trees Is another approach that became
popular in 2005 with MiniBooNe & Tevatron Run Il.

* Basic idea: sequential rectangular cuts

» At each step: split data ingZ2.using the ,best” single cut

- Requires a metric to decide (s/sgrt(s+b), s/sqrt(b), ,,Gini”, ...)
- Choice mac\léxlnﬂepéndantly for each outcome of the previous

step.
* Repeat splitting ungj,le-~féome stopping criteria is fulfilled.
~ Purity is high enough sis7a-00

- N different cuts applied

« Theoreticaly well motivated

Breiman, et al (1984), Classification and regression trees, Monterey, CA: Wadsworth & Brooks/Cole Advanced
Books & Software, ISBN 978-0412048418
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Decision trees &

* This Is an extension of the simple cut-based
analysis
* Do not (automatically) reject an event that fails only one

of the criterias.
eg ies, or assign a probability
S+b)/n the corresponding leaf.

e Either classi
tobe Aor B
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* Decision tree advantages

« Simple to understand and interpret.

* Requires little data preparation (ne normalization,
gaussianization, ...)

* Able to handle equaly real, integer and boolean inputs
» Perform well with large data in a short time.
* Limitations

* Practical decision-tree learning algorithms cannot
guarantee to return the globally optimal decision tree.
- Genetic algorithms could be a good solution
e Unstable w.r.t training sample.

e Overtraining. Mechanisms such as pruning are necessary.

Pros and cons &

C. Delaere - Analysis Methods
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Boosting &

* Principle:

p=0.08

-'_"_.
 Build a first decision tree @ (e

 Look at misclassified events
and increase their weight

* Build a new degision tree and iterate
* As output, take the (wel d) mgéin of all N trees.
e Boosting is a generic method tlat can be applied to any classifier.

* Firstidea in 1990 by Sch
« Variation in 1995 by Freund using >3 trees

re (majority vote among 3 decision trees)

* Both joined their effort and developed adaboost in 1996.
e Advantages:

* |Increased discrimination power
* Increased stability (w.r.t. training sample)
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a
2107
1500 — N =1 .. 3 tial D@ oot | 3 [ (b) DO 090 «
e MiniBoone - PID = 6ol - th+tgh
. 4 =T = 20| tim
i £ T H, = 175 GeV S Wjats
1000 — " W anl esjets T Multijets W
) L .
. " zljf;; wl H, » 300 GeV
W a0l ] e+jets
500 — |: + 4 jets
II : | 1 tag
y Uh 02 04 0.6 0.8 1 b2 o4 0.6 08 1
] | I e e e ey th+tgb Decision Tree Qutput tb+ighk Decision Tree Output
2 g 0 1 2 - .
uz -l L —~1
10000 — 2t (e DR ose"| 3 : (d) DO 0.9 b
8000 Niee = 100 E .o en| BT Opr » 0.65
] w 24jels| W )
] i 1-2 -4 jers
6000 3 =as -2 tags
4000 -
2000 3 0.7 08 68 1 200 2
- . tb+tgb Decision Tree Qutput M{W.b) [GeV]
[} . I I
20 20 FIG. 2: Boosted decision tree output distributions for (a) a
W +jets-dominated control sample, (b) a #t-dominated control
. sample, and (¢) the high-discriminant region of the sum of
10000 — all 12 th+tgh DTs. For (a) and (b), Hr = Ep + Fr +
7500 ] ZE.:;.“-“‘“. Plot (d) shows the invariant mass of the recon-
4 structed W boson and highest-pr b-tagged jet for events with
0000 — (e = 0,65, The hatched bands show the £1 standard devi-
. T ation uncertainty on the background. The expected signal is
2300 ] shown using the measured cross section.
[} --I 1 | 1 I 1 | 1 1 1 |
=20 0 20
arXiv:physics/0508045v1 arXiv:hep-ex/0612052v2
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:= () Typical policy for Boosted trees (&

» Split criteria:

z F
catholique 'w@e“s“

Define P 25 W as the purit
efine P = uri
E:g Vv% +_§E:b[16) p y
n
Gini = (Y _W;)P(1L - P)
=1
Criterion = GiNifather — GiNison, — GiNison, IS Maximized at each step

* Boosting method:
» Adaboost (adaptative boost)

For each tree: err = Zevent‘gadly Clc;;fzfzed ~ a=81n((1—err)/err)
events 't

w; — w;e” for badly assigned events, and renormalize the weights.

Event score: a-weighted average over the trees
* g-boost (shrinkage)

w; — w;e2¢ for badly assigned events, and renormalize the weights.

Event score: renormalized but unweighted sum over the trees
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EnY

B(x,y) =2 aiT,(x, )

BNEE 0.5
s ETE T

T,(x,y)

LY

S/(5+8)=0.500

T Sgha cve Byl |

f:-';,’- Backgrowrd [test pemals)

L. slgral iialingl sampla

mamphe ]

Wk

T.(x,y)

W=100000000
B8 +B)=0 355

Wouter Verkerke, NIKHEF

C. Delaere - Analysis Methods
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Comparing — Figure of merit (&

* The compactified output of a MVA Is a single
number on which we cut. We can use the same
approach as for the evalutation of simple cuts.

 Efficiency vs rejection plot

* Figure of merit

Comparison of metheds =

Y AR B P s

CE MLP NUAACE
osb BDT. o\
ot : . : 0.3 - LLIKQERG A v s st g Sl D AR

| testing | L —— LikelihoodPCA
: ! : 5 T 02— Fisher
............... .............. .............. .............. .............. .............. 01 ;_ HMEtnX :

» Comparison of training/test samples

Background rejection

" ______________ . Single tree on testing sample 0 01 02 03 04 05 06 07 08 028 1
R ; 5 / Signal efficlency

038 ... AT SO L] Boosted trees on testing sample

0.2 v e :; .............. ® Sjng|e tree on training Samp]e

018 - """"""" L Boosted trees on training sample

Background Fraction
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Outline &

* Probability and Statistics, basic concepts

 Monte Carla techniques

e Event classification
e Parameter estimation

 ¥2and ML es
* Understandi -> Do a proper fit with ROOT

 Fit validation
Limits, confid

€ Intervals, significance
arks

C. Delaere - Analysis Methods 88



Parameter estimation

CMS, | CMS Experiment at LHC, CERN
Data recorded: Sun Jul 18 1133892010 CEST
Run/Event: 140379 | 136550885
#E=C | Lumi soction: 160
Br =57 GeV/c, p =22 l;‘
’
b-tagged jet . -
pr=45 GeV/c, n=-1.2,9 = 0.9 Mg
'+ +
I
al AT
-
g i 7 . : 4 ; 0,
Probabilit 0 Statistics ¥ - ey
AN b-tagged jet - h
(' pr= 56 GeV/c, n =07, p = 0.0 - - A
W pr=57Gevie,n=-14,¢=-21 / / Y
/ fu'p.:u GeV/e, N =-2.0,¢=-1.9
/ﬂlmuun mass 26 GeV/c

 Parameter

estimation
e Fit

Theory

Experiment

* VVery commonitask.determine the underlying
distribution for a measurement.

* Determine the parameters of a pdf. -> parameter
estimation

 Common technique: fit

« %2 fit Is well-known. Why does it work ?
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Definitions &

* Definition: estimation is a procedure that leads to a
result with a known imprecision

 an ESTIMATION is NOT anapproximation

e Parameter estimation Is.a test statistic and hence a
random variable.

* Choice of an estimator.requires judgement for
particular application; there is no such thing as an
“Ideal estimator”

* Think of the estimator of the mean (see later):
- 1/N * X(X) for normally distributed measurements

- % (Max+Min) for uniformly distributed measurements
- Truncated mean for energy loss measurements
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Estimator properties &

» A perfect estimator Is

e Consistent Nlim a=a
—inf

- It approaches asymptotically.the true value for large number
of measurements.

- Convergence in the sense of probability: Ve, Afliglan(ld —a|>¢€) —0
 Unbiased < a4 >=a

- The expectation value of the estimator is the true value.

- An estimator that doesn't fulfill that criteria is said biased (or
asymptotically unbiased).

o Efficient

- The variance is as small as possible.
= Meets the ,minimal variance bound” (see later)
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Estimator properties &

» A perfect estimator Is

e Robust

- The estimator Is insensitive against wrong data or wrong
assumptions.

o Sufficient
- dp(x|a)/da=.0

- Intuitively: it contains all'information in the data concerning
the parameter of interest.

* There is no perfect estimator...
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=1 Example: mean and variance (&
. The arithmetic mean of a sample

e |S an unbiased estimator of the mean. < i >=u N

. . A -
e Has variance given by V(a)= N“2 &

e Other estimators are better iIn some cases:

* Central value for unifermly dlstrlbuted measurements
are more efficient: 7 g ST

e Truncated mean are
more robust for dEfdx
measurements

| | Standard CMS 1
dE/dx estimators:

012345678 012345678
or [Me

. Beware variance vs sample variance: both are
consistent but only sample variance is unbiased.

C. Delaere - Analysis Methods



Likelihood & ML estimators (&

* The likelihood is the value of the pdf evaluated at
the measured value.

* For a dataset made of multiple points, the likelihood Is
the product of the individual likelihoods (joint pdf).

* |t Is not a probability (that's why it is called likelihood).
Probability ="l LlaX.

* |t Is a test statistics that depends on the measurements.

 Measures the probability to obtain exactly these data
points x for a given parameter A (assuming a known

pdf).
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Likelihood & ML estimators (&

e One defines the maximum

Ikelihood (ML) estimate to be I IR
harameter value for which the N
Ikelihood 1S maximum

* Might not be unique.

-
>
-
-
-
-

« Gives the value.ofithe parameter for E ST
which the data is the most likely (not ]

the OppOSite) - - - leg L=41.0 {true parameters)
- Bayesian interpretation is different. :
* No goodness-of-fit.

- The absolute value of L doesn't tell
anything. If no value of p describes the
data, the best value is still defined. h .

e
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or practical reasons, one often considers the (negative)
natural logarithm of the likelihood function.

Definions:

L=]]f(@ ) is the likelihood function
\ The prebability: dP = | | f(2*,\)dz = Ldz™
Il =InL=">) Inf(@%X) isthe log-likelihood

L» v =N %lnf(xi,/\) % f7 SOIICRY
: ’L Witri ¢ the logarithmic derivative of f wrt A
* Maximizing L is equivalent to minimizing -In L = -|
- Sum over the measurements of the In f(X'|A)

e Sometimes, -2 In L is considered, so that 1 standard
deviation corresponds to an increase by 1 of that quantity
(see In few slides).

Some more definitions &

C. Delaere - Analysis Methods
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Information inequality &

* |nformation inequality: connection between bias and variance.

* |It's easy to achieve ¢3(S) = 0O : take a constant value for S.

 Let's consider an estimator S from N measurements xN.
E(S) = B(A)+A=/5Hf(xi,A)dx

derive
wrth E'(S) = /szf A qu; \)dz' = E(SU)
Cauchy- @ 1+ B'(A) ="E(S)=E(SI') — E(S)E(l") = E[(S — E(5))!']
Schwarz (1+B'(V)?. < __E[(S - B(S))°]E(")
1 Bl 2
I(A)
Where we defined the Fisher Information (M), having noticed that it is indep. of the dataset:
IMNw=_EW)==E(l")=E(_¢@E"N))*)=EQ ¢ ) +ED o' N(a?, X))
i#J
= NE((];/((Z ;‘;)2) =0 (E(¢)=0)
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Minimum variance estimators (&

* The information inequality is also called the Cramer-Rao
bound.

e |tis saturated when the likelihood has the form:
"= AN)(S = E(S)) e/ L=dexp{BANS+C\}

— Minimum variance” estimators,

_Efficient” estimators
1

| A(V)]

e In which case, @(S) =
e ML estimators
 Are as efficient as It can be

- |If there is an efficient estimator, it will be found in most cases.
- The variance of the estimator is then minimal.

* Are consistent.
e Are often asymptotically unbiased.
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Note on errors &

e ML iIs well suited to error estimate

* As a first approximation, the information inequality gives
a lower bound.

» Alternatively, note that the'likelihood function is
Gaussian near the maximum

- Taylor expension.oef -In L with
1% derivative equal to O

- The variance Is the inverse of the
second derivative estimated
at the maximum.

In(L)

i@+ n.oc)=1(a) — —
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Note on errors &

* Graphical method is thus very useful in practice

Best estimates for
error of a are :
o,.and o,

R : Asymmetric errors obtained by taking
| | the points at In L = max - Y%

Can be easily extended to
multi-dimensional cases
—» Error elipses or L iso-contours.

a+o,,

 However, be careful in interpreting such intervals
as 68% confidence intervals as coverage Is not
guaranteed. (see later discussion on intervals)

C. Delaere - Analysis Methods 100



UCL ‘éog
Sa
Sl %

Université
catholique =%
deLouvain  ®e®

lllustration: top mass

Results

From the observed 290 data events we fit a signal fraction P_ = 0.21 + 0.07

It corresponds to 61 = 20 signal events
Compatible with the all hadronic cross section measurement and the
purity fitted using Monte Carlo

CDF Run Il Preliminary (310 pb")

2 0.45F 2250 T T T 1 T T 1
é 04 =
0355
03f Uy »
028 AN f‘.-,\...
02f
015 ;-':
01f _J_,-'; .
n_u::_.... Bt : .............
o '"-L'l1'.ru e IHQ:D[G;;H:%E ok T I 17 A T T T ;::ime".ré:?;
The measured mass value amount to
2
M,=177.1+4.9(stat)+4.7(syst) GeV/c
Break down of systematics will follow
Nordic LHC workshop 26.10.2006 Petteri Mehtala 11
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Combining measurements (&

° The use of the likelihood function makes the
combination of iIndependent measurments easy:
e 2 or more experiments do independent measurements

« Can be different quantites«{different likelihood functions)
as long as they depend.on the same parameter(s)

 Combine them by multiplying the likelihood functions

- Alternatively sum the log-likelihoods.
- |If measurements are compatible, the error will be obwously

reduced. Tt a0rs 204
K 180.1+ 3.9+ 3.6
. _ -i-
COF-I ) 1721+ 09+ 1.3
D@ Run lIb Prelimi , L=2.6 fb" : . e
o D Treaminany DOl I+ 1737+ 0.8+ 1.6
W 106 lepton+jets with prior o
E E CDF-l all-j
105 3 all 186.0£10.0+ 5.7
108 2 CDF-l allj 1748+ 1.7+19
1.03 E ‘ s
: COF-l ik 175.3+6.2+3.0
1.02— E A
1.015 E Tevatron March'09 —1 73 ) 1 - 06 + 1 .1
E - hep-ex/0903.2503 (stat.) + (syst.
i = ¥idof = 6.3/10.0 (79%)
0.991 e — AInL)=-45 | | | . | |
E. Y S P T P P P B IR 150 160 170 180 190 200
0.9f:5 169 170 171 172 173 174 175 16

176 178 180 167 168 .
M, (GeV) m, (GeVIcz) My, (GEVIC?)
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Extended ML method &

e Maximum Likelihood method does not consider the
normalization of the function.

* The likelihood is made of normalized pdfs.

 For cases where the normalization matters, 1.e. when the mean
total number of .events itself is"a parameter, the Extended

Likelihood function is heeded:
L(v,a) = ﬁe_”Hf e, a) = n' Huf (zi,a

2 2

InL = —v(a) + Z In(v(a)f(x;,a)) v mightdependona!

e Data might also contain contributions from different sources
(signal, backgroeund, ...), in which case the total number of
events is described as a sum of individual contributions:

InL(p) = Z 1; + Z ln(z wifi(z)) ™ ;Zz;inggtajf:e yield of

103
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Binned ML method &

» Evaluating the likelihood on a large statistics can be
expensive -> Binned likelihood fit.

* Fill an histogram
* Consider each bin as an independent Poisson-distributed

measurement.
d; : o
LA H Vi o Vi with d. the data content of bin i and v,(0) the
L d;! expected bin content.
2
d;
—2InL =2 Z Vi —dytdiln —  Where we used In(d!) ~ dind —d
; Vi
1

» Benefits/properties:

« Goodness-of-fit test is possible
 Empty bins are properly handled
* Fitintegral is fixed: > v =»_d
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From the ML to the y2 estimator (&

 |n the limit of high statistics in each bin, we can do the
same using a Gaussian pdf:

_(di_ﬂi)z

207 ,with . = F(x,6)

1
L:H%e

2nL = - (i — 1)
—92ln —Zln(Qwaz)—l—Z =

Cte w.r.t.

* Minimizing the log-likelihood Is then equivalent to
minimizing the x? !

|t gives an input for the 2 validity: N> 5~10 in each bin.

* Practically, one will also compute the standard deviation
as. o; e L for unweighted entries.

) ijj:\/ﬁ
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Goodness of fit &

 The minimum value of the x2 is a test statistics that can be

used as a measure of the discrepancy between the data and
the model used for the fit.

* More precisely, one uses the Pearson's y? statistic:

Y

. 1f n>5~10, that statistics follows
the 2 distribution

n

o
=
o
=]

. ?
1
1 20\30 \ 50 A

p-value for test
a for confidence intervals

 |nterpretation: use the p-values
from the x2 ( TMath::Prob ).

 [f the condition do not hold, i
the pdf has to be determined SR T
(e.g. by toy-mc) before computing the p-value.
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Goodness of fit (2) &

e Too large %2 -> might be

 Wrong model
* Wrong estimate of the uncertainties (+ systematics)

- In this case, the parameters estimate might be fine.

* Too small y? -> overestimated uncertainties ?

 |t's a common mistake to guote
only x¥?/ndof as a measure of
the fit quality.

x2/n

« Quantiles of the normalized
v? still depend on ndof !

o
n

©
o

_I 111
0 10 20 30 40 50
Degrees of freedom n
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Fitting in ROOT

[« Y 5 ,r‘ Fit Panel N
File Edit Yiew Onptions Tools Help R
ala el | THI1F::ded A
S =
Entries 5000 —Fit Function
Mean  121.6 Type: [Preder-1D =] [landau =l
1["]__ RMS 35.32 Operation
L ’7 & Mop O Add 0 Cony
80— Selected:
: landaw et Parameters...
60— General I Minitnization |
: — Fit-Settings
| kAethod
40— | Chi-sguare | Uzer-Defined...
i [T Linear fit
B ReLEL I 110 :l [T Mo Chi-square
20__ Fit Options
B [ Integral [T Use range
- | [~ Best errors [ Improve fit results
O 50 ™ all weights = 1 ™ addto list
[T Empty hins, weights=1 [~ Use Gradient
Draw Qptions
. 5 [T SAME
Verbosity switch B
h|dden there. [T Do not storeddrass Zovanced.., |
= # | 0.00 %I:il: IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII ; m:
Optionnally do a more robust [ 000 e fo5s 03]
computation of the errors.
Fit |  Reset | Close |
Use Xz or binned ML fit [TH1F:deds | LIB Minuit | MIGRAD | Itr:D [Fm:DEF
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MIGRAD function: find minimum

Fit status: converged, failed or failed.
Error matrix: accurate or approximate
Estimated distance to minimum: small...

Minimized function.
Likelihood or chi?

FCN=- 14027 |FROM MIGRAD STATUS=CONVERGED 9 C E
EDM=1.07153e-09 STRATEGY= 1 ERROR MATRIX ACCURATE
X RN ' STEP FIRST
NO. NAME VALUE \ROR GI“E DERIVATIVE
1 Constant 5.31237e+02 .BB972e+0 -1. --459&-@?
2 MPV 1.00106e+02 - _ 30e- 0
3 Sigma 1.01814e+01

-1. ]_,.—-+|||| L a452e-072
PARAMETER CORRELATION IHEFFIIIEHTJ
NO . hLHEHL 1
1 0.72436 1.000 -0.473
2 0. y  -0.473 1.000
3 0.80860 -0.724 0.659

Parameter values, plus their error.
Also shown is the error definition.
Here: 0.5 for a likelihood fit.
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MIGRAD function: find minimum (&

FCN=- 14027 FROM MIGRAD STATUS=CONVERGED 49 CALLS 50 TOTAL

EDM=1.07153e-09 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER = FIRST
NO.  NAME VALUE ERROR GI“E DERIVATIVE
1 Constant 5.31237e+02 .08972e+0C - L. --459&-6?
2 MPV 1.00106e+02 - _ 30e- 0
3 Sigma 1.01814e+01

-1. l|H+HH 3 128 - 07
PARAMETER CORRELATION IHEFFIIIEHTJ
NO . hLHEHL 1

1 0.72436 1.000 -0.473

2 0. y  -0.473 1.000
3 0.80860 -0.724 0.659

Approximate error matrix.
Approximate covariance matrix.
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FCN=- 14027 FROM HESSE

HESSE function

Error computed from the second derivative of -In L or y?2

STATUS=0K

EDM=5.

EXT PARAMETER
MNO . NAME

1 Constant
MPV
Sigma

”QLHE

EXTERNAL ERROR MATRIX
1.187e+02 -1.¢ lEH+HH
-1.615e+00 Ll
-1.316e+00 3,

3
—mm o e
Loge -0.,.472

e 4 —x=3
r
&£ a roas

724 0.

Covariance matrix computed from

d*(—InL)

— 1

Vs
’ dp;dp;

1.000

659

- QUadratic approximation...

60 TOTAL
ERROR MATRIX ACCURATE
INTERMNAL
”aLHE

16 CALLS
STRATEGY= 1
INTERNAL

STEP 5IZE

-12

- L. ;;;J2E+GB

3504e-06

ERR DEF=0.5

l.ﬂﬁﬁ

Symmetric errors from the second
derivative of -In(L) or 2
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MINOS function &

 MINOS errors are calculated by ‘hill climbing algorithm’.

e In one dimension find points where AL=+0.5.

e In >1 dimension find contour with AL=+0.5. Errors are defined by bounding
box of contour.

* In >>1 dimension very time consuming, but more in general more robust.
* Optional — activated by option “E”

FCN=-14027 FROM HIHH' 'T;TH'—'UE[ESSFUL 40 CALLS 160 TOTAL
- 12 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER PhHABDLIE MINOS ERRORS
NO, NAME VALL ERROR NEGATIVE POSITIVE
1 Constant 3. 31237e+02 .08945e+0 -1.07972e+0 1. 0997 4H+ul
2 MPV AC [2 3. -0 3. -0 3. t
3 Sigma 1.01814e+01 .557 -0 l 65031e-01 1. rnfr4H o1

PARAMETER CORRELATION IHEFFIIIEHT
NO. HLHEHL 1 2z 3
1.000 -0.472 -0,724
-0.472 1.000 0.659
B.724 0.659 1.000

Parabolic errors Asymmetric errors
repeated from HESSE computed by hill climbing the -In(L)
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Fit validation &

* In general, you will have to prove/show that:

* The fit is not biased
* The error is properly evaluated.

* This Is especially true for low statistics...

* Natural tool: tey MC:

* Perform many (O(100-1000)) pseudo experiments

* Fit and compare tothe simulated value

- Measure the difference between fit and true -> bias
- Measure the spread -> error

e Usual plot used to convey that information: Pull
— (fit-true)/error ... should be a normal distribution.
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What should | use ?

X? fit, fastest & easiest

Gives absolute goodness-of-fit indication
Makes (incorrect) Gaussian error assumption on low statistics bins

Misses information with feature size < bin size

Maximum Likelihood estimators, moSt robust

Valid at low statistics

No information lost due.to.binning

Gives best error of all methods (especially at low statistics)
No intrinsic goodness-of-fit measure

Can be computationally expensive for large N

Binned Maximum Likelihood, in between

Much faster than full Maximum Likihood
Correct Poisson treatment of low statistics bins

Misses information with feature size < bin size

E

)3

(S

© e (¢

(S

¢

)3

&
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Outline &

* Limits, confidencedntervals, significance

* Confidence. Definition'and simple example.
* Frequentist approache(s)

» Bayesian intervals

 Likelihood intervals

The ,,CLs” method
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The problem... &

For a given ,measurement”,
determine a confidence interval or a limit

3 A

W-Boson Mass [GeV] : 4

m —1‘_ LEP N

TEVATRON 80.420 + 0.031 3 ki ]

LEP2 80.376 + 0.033 w0’k ' §

Average 80.399 +0.023 Ak i

+*/DoF: 0.3/ 1 10 _ — Ohserved =

E -——- Expected for 3

NuTeV A 80.136 + 0.084 ak background i

10 =

LEP1/SLD —A 80.363 + 0.032 -

LEP1/SLD/m, -« 80.364 + 0.020 When to go forone ;L <

- . or the other ? g , | ]

50 502 604 508 -ﬁ_||||||||||||||||||||| |'IT||||||||_
m,, [GeV] st 2009 10 100 102 104 106 108 110 112 114 116 118 120

-~ m(GeV /ch

ow do we DEFINE the interval/limit ?
How to INTERPRET the result ?
What are the limitations of the various approaches ?

» Very lively field of research !
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1.0

0.8

0.6

0.4

probability density

0.2

0.0

The difficulty... &

As a simple example we imagine an observation x of a variate (random variable)

X and a probability distribution function (pdf) f (X|8) depending on an unknown
parameter 6 which we estimate from x. How should we select the range of parameters
which we consider compatible with data ?

The likelihood of 6, is higher
than the one of 0, -> favor 0,.

observatio

This will naturally lead to very
different confidence intervals,
depending on the chosen approach.

The measurement x iIs more than
26 appart in the 6, hypothesis.

-> favor 62.
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Calculating significance &

 We are interested by the
,probability to be wrong”

» p-value is the probability to sit in the tail. =

« EXpressed as quantiles of a normal i
distribution (sometimes known a Z- oot
value). A / L v
p= [ ——e 24y = f_ ®(Z)  TMath::Prob
Z 27

This defines single-sided
significance.

Note: for a measurement where deviations are possible on each side,
consider double-sided significance (factor 2).

HEP tradition... very subjective.
A y J

Z=o"1(1 —p) TMath: :NormQuantile .

i Rr= 2485 104
Disecovery ? i

T — Might be too much for known processes.
&+ CMS ,saw” the jj with few std deviations.
Might be too low for totaly unexpected effects

« SETI signal ? Telepathy ?
C. Delaere - Analysis Methods 118




w== @ Simple example: Pearson's test (&

 Pearson's 2 test

&
L l__
.I.

=9

B
il

I

« Calculate %2 of data w.r.t. null
hypothesis (s=0)

. fnull)\2
X2:Z(nZ fz )

null _..5:
E— fZ n. e :

 The P-value'is given.by 4

=
L)
T T
I

Events / { 1.33333)

=
=

T
I

P(XQQN) = /2 p(x2/; N)dx2/ i -.91-3‘[,;;..
X

By -

Computed with TMath::Prob()

* That P(x?) probability interpretation is only valid for normal
sampling. This is not valid if the CLT does not hold.

- Ifthe n are not Gaussian distributed, p will not follow a 2
pdif.
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P-value &

The p-value calculation made before assumes a 2 pdf.

c
Booo- i P(y*;N =20) =
‘?ﬁnm:— éﬂ.! .

- E 21, £ 2y
ao00- 5 06 jp(z ; N =20)dy
e.l:m;— gfﬂ e
2000— o

- 0.2
"IU'UU:— -

ﬂ: ﬂF""I""I""Pd*I_I_AJ_I_I_A_AJ_I_I.I_IJ""ll"'|llll

10 20 40 0 o 10 20 40 50 63 70 80 90 100

If it's not the case, you will get'a wrong value ! —— MC calibration possible.

tbution

Events /(1)

ventg /(1]
g

Us000

4000

3000

2000

1000
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Will usually get worse in the tails !!!

e Result of calibration applied to exa
— In p-values 0.073 - 0.11
- In Z-values 1.456 2> 1.22¢

e Why was this particular example so bad?

- %2 test assumes Gaussian errors.

- Poisson errors on bins with N<10 deviate
quite strongly from Gaussian assumption

e How much MC do you need to calibrate?

- You need roughly 100/p-value experiments to get reasonable accuracy in
calibration at that p-value

- In this example p=0.1 = About 1000 toy experiments (generated data + fit
data) are sufficient, quite doable

e How about Z=57

— P=2.10"7 = You need O(500 million) experiments! At 1 second per
expt and 100 dedicated CPUs this still takes 2 months!
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Significance at high Z &

e Calibrating any method at high Z can be very expensive at high Z

« Excludes practical application of the method.

* In the recent years, lots of significance calculations on MC (Higgs,
susy, LEDS, ..))

e Calculation depends on the preblem. Cannot be done once for all.
» Other approaches often used, e.g. Sideband substraction.

e Example:
e Signal region: Nobs = s+b.= 11 A .
« Sideband region: N'obs™= t.b = 25 (tzlS/Z\:- -~ Sxpcipd Eqagmand
» Less sensitivity, but can be applied to high \\:‘;:s:g
significance. T
» There, b is a nuisance parameter | —[]. I
g | J_‘ -l
- Random variable correlated with the ; . (11, 1]

signal, but of no peculiar interest.
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Profile likelihood (1) &

Profile likelihood ratio is one possible way to cope with nuisance
parameters. It is constructed from the likelihood function as:

— ~— Minimum of L for a
)\(s) = L(‘S’ b(AS)) “ given value of s.
L(3,b) ~

' Global minimum of L

» Easy tofigure out in the case of adit with signal and background shapes

<Wf/<’%‘

Parameters of the shape
functions are additional
nuisance parameters !

model, data

L DL B R R | RN RS

=
U

(1.33333)
=
IIII
|

i
[
T

”.:i*“""“"'ﬁegular fit

(iog(2)=0
by definitign)

Events /
=~
=
T 'I—II
L
T
|

L AG-InL)

Fit with N_;, =0 "f....
(geformation of pdf o ,
that best fits the data with N
...~ the given constraint s=0) sig
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Profile Likelihood (2) &

Calculate significance assuming normal sampling
distributions

AlogL =17’

Profile Likelihood works very well for example with
shapes, but is not proven to be well calibrated at Z=5

Can also apply technique to counting exp with sideband

L = Poisson(x_, | s+b)-Poisson(x’, |7-b)

obs obs

- Parameter of interest = s
— Nuisance parameter = b (1 is assumed to be known exactly)

- Advantage: standard form that can be tested / calibrated
independent of experimental details up to high Z

Example result
N,,.=178 (s+b), N_,.’=100 (b) > Z= 5.0

This is one example of a whole class of methods... let's be more general...
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Coverage: In statistics, the coverage probability of a confidence interval is the
proportion of the time that the interval contains the true value of interest.

If a large number n of experiments perform
:

measurements of a parameter with confidence SAMLARRARRARRARRY - SRads
level a, In the limit n = o, the fraction a of the 6 |- B
limits has to contain the true value of the b | = -
parameter inside the confidence limits: b | = :
- : EE .
3 B = ]
For each possible value of the parameter - ,?§'= 3
0, we fix a probability interval [X;(6),X,(6)] ' = ]
such that: L = E
O -I | | I IE 1 I IEI 1 I L1 1 I L1 1 I L1 I-
Xa 0 1 2 3 4 5 6 7
P(X, <X < X,|f) = / f(X|0)dX = a T

For an observation x, one then finds Olow,Ghigh
such that x,(8,,,)=X,(6,,,,)=X

This is called ,Neyman's construction”.
Whatever the values of the parameters realized in nature are, measurements will

produce with probability a a confidence contour which contains these parameters.
125
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Each point measurement x
a MC dataset generated with X

Toy MC construction

 The confidence belt can be constructed from toy Monte Carlo
events, for cases where no analytical calculation is possible.

from

obs

true

Intervals that contains 68%

of values of x_,. for each X

true

10— 10
Xtrue BE— T Xtrue
o[ 6
o : )
of E 0
2 R 2
-4% - 4
-6l & 6
-8 - . /H

|
o

IllllllllllllllllllEllll

.4:|.||.||||||||||||||'f
6 4 -2 0 2 4«1;—XL|¢1

-

A{]bi

=_II|II|III|III|IIIIIII|III|III|III|III

=
-8

6 4 -2 0 2 4 6/8 10

‘Confidence Belt’

W. Verkerke
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Classical confidence limits (&

For each possible value of the parameter 6, we fix a
probability interval [X,(8),X,(0)] such that:

Xa
P(X, < X < X,|0) = [ F(X|0)dX = a

J

For an observation x, one then finds 6,8, such that xl(elow):xz(ehigh):x

central interval PIX <X,|0)=P(X =2 Xs|0)=(1—a)/2
There are many ways to equal probability densities | f(X,|#) = f(Xs|f)
deﬂne the interval_ minimum size Brigh — Biow 15 mMinimum

3 . symmetric Origh — bt = 6 — Blow
Some pOpUIar ChOICeS are . likelihood ratio ordering FXGN0)/ F( X1 Onese) = F(X2|0) (X2 Opesr)

one-sided Blow = —00 OF Bpipn = O

___ observed value

i RN
Which one is the best ? \
No single response. It might depend on the 3 | \
application. g f AN
= | ' central

That's why one should always precise how
the interval has been constructed. -

' likelihood ratio ordering

Let's look at the options in more details...
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Central intervals &

e This Is the standard choice  rpx<xi10)=pPxzx:160=1-a)2

» For long, adviced by the PDG *“}

e Invariant against parameter |
changes

0.03}

0.02f-

 Restricted to the case of one .«
variate and one parameter -

=]

01f

* The obvious choice for the parameter estimate Is
the median of theflikelihood distribution

 This is the limit «—0 of the interval, which often doesn't
coincide with the maximum likelihood value.

* Note that it often differs from the maximum likelihood
estimate (mode of the distribution)
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Equal probability density intervals are
obtained by taking points of same pdf
on each side of the measurement,

such that the integral in between is o

Often shorter and less biased.
|s applicable to multidimensional cases.
Coincide to the central intervals for symmetric

distributions.

NOT Invariant under variate transformations

0.05

0.04F
0.03F
0.02|-
0.01f

C. Delaere - Analysis Methods
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Min size & symmetric intervals (&

e Minimal size intervals

0.04

Minimal size

e Attractive at first.

0.03

* Very difficult to compute, if
possible at all.

0.02|-

0.01F

« Depends onithe parameter
choice. L -

o Symmetric intervals

» Easy to handle (symmetric
errors)

0.05[—

0.04f Symmetric

0.03-

 Difficult to compute.

0.02:

* Depends on the parameter
choice.

0.01f
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Additional motivation: try to minimize
the probability to contain wrong
parameter values.

\Cﬂass of Interval:

Most Selective unbiased (MSU)

J(X]6)

Define: R(X|f) = —— :
( | . .Jl[(-’l|ﬁbr-:.'J

G : Maximum likelihood estimate

for a fictious observation X.

Likelihood ratio ordering

-

Exemple:

1
F(X) = ——exq
v 2melt

1.0
likelihood ratig
0.8 -

0.6 -

04 -

__ pdf

mean = 1

i -
0.2 -
an 1

68.3 %

2 1 )

/

The interval is then defined by R(X,|6) = R(X,|0). It requires a significant
programming effort and large CPU, and in some pathological cases can

lead to non-continuous intervals.

» Usually shorter than the central intervals
» Usually close the likelihood intervals

C. Delaere - Analysis Methods
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Upper and lower limits &

* The classical approach to upper and lower limits is to
guote the value such that

P(X>X,|0)= 1-0u or P(X<X_|6)= 1-o

* The physicist has to decide, preferably before looking at
the data, wether to produce a econfidence interval or a
limit.

 Most common case: Poisson distributed signals in the
presence of background.

0.30 -

* Discrete pdf -> overcoverage mean =2.3

0.25 -

cannot be avoided o0l

015

e Common case for searches: .
no observation -> 90%CL limit on W ‘
the mean In this case Is 2.3 events, | | .
- 0 1 2 3 4 5 6 7 8
In the absence of background. bserved number

probability
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® Upper limit for the Poisson case (&

Assuming the background expectation b is precisely known the probability to find k
events (background plus signal) is

k
W(k) =3 Piln)Q(k— ilb)

If the background follows a Poisson distribution tao,

k
W(k) = _ PP ilb) = P(klp+b)

Then the probability to find less than or.equal to.n events is

y Coverage is NOT
—_— — Zp(km +b) what you could think !
k=0

Solving the last equation for y, we get the upper limit with confidence a.

Problem: b » implies that the limit \, this contradicts the intuition. Still, this
Is correct from the frequentist point of view. Also, background fluctuations
might lead to negative or zero-length limits.

Q(k[b)

Possible solution: renormalization of the background ——»Q'(k|b) = =5 o for k<mn
(,Zech's modified frequentist approach”) 2 im0 Qi]b)
2 k=0 P(K[D)
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 External constraints

e Classical interval & limits do not behave properly in the presence
of constraints on the parameter space.

 Example 1. measurement in « Example 2: low resolution
a non-physical region measurement in a
constrained narrow region.

non-physical x=-1 non-physical x=-1
S S 0.3
. ._-_".... ;‘“C_ fei=d ¢ allowed region
| b - Xow K
. |—— o — A . igh
1 cu 5 % :
|~ b . .

0.0
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:= @1 Classical approach: problem 2 (&

 When to go for a limit? When to go for a confidence interval ?

* No problem when decided a priori
* |n practice, driven by data (is there a visible signal?)
- In that case the coverage is not granted !
« Example: Flip-flopping:

« Consider a physical pesitive guantity (mass?) measured with a

Gaussian resolution.
P(x|p) =

exp(—(z — 1)?/2).

v 2

* Policy: If the result x.iIs less than 3,
state a limit. Otherwise, state a central
confidence interval. If one measure
negative values, we will pretend O when
guoting the confidence interval.

For u=2.0, the acceptance interval 2|||| ........ ]
contains only 85% of P(x|u) Measured Mean x

>
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() The Unified approach &

- (Feldman & Cousins)

« Build a classical interval using the likelihood ratio ordering,
with the additional constrain that 6,__ sits in the physically

allowed domain.

Whenever one of the bounds issunphysical, go for a upper or
lower limit.

classical unified
15 15
14 |- Y O
13 |- 13 foie
12 12 e
11 f 11 froie
=10 |- 310 i
&b 6 B 6 pi

S =

0 l 2 3 4 5 6 78 9101112131415
Measured n

01 2 3 4 5 6 78 9101112131415
Measured n

» Removes the undercoverage problem due to the interval<->limit choice
» Reduces the unpleasant behavior for downwards fluctuations of background
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@Problems of the unified approach (%
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%
%,
oad

 Two-sided constraints

e Can produce at the same
time upper & lower limits.
Leads to complete
coverage.

External constraint &

distribution with tails

Does not change the
situation for upper Poisson
limits in the presence of
background.

« Correct from a frequentist
point of view.

 Wrong from a bayesian
point of view.

-2 gaussians
2 | N
@ non-physical /)
D \
T L -
o T
a — e
_'__'_'__,-——"/f"f)
el | L ]
! | ' |
° _-2 gaussians
© non-physical
©
o -
e L -
L
é} | fﬁﬂ T
— |
-2 -1 X 1 2
o [Breit-Wigner
® [ non-physical region
O
Q
Q
L
[
—
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Bayesian intervals &

Bayesians treat parameters as random variables. The combined probability
density f(X, 0) of the variate X and the parameter 8 can be conditioned on the

outcome of one of the two variates using Bayes theorem:

, % NG )me(H)
fo(0]X) = : {T.||[ifflﬂf | > falf|x) oc L{x, 8)my(0)

The prior density 1t, has to guarantee that'the normalization integral is finite.
Otherwise it's free.

—» Prior: uniform,2.->dependency on parameter choice
——» Fisher information ? (depends on the measurement resolution, ...)

mean / r.m.s.
Definition of the Bayesian limit: ~Same freedom as in &

the frequentist case. m 68.3 % confidence

* quote the mean and the variance of the parameter
decay constant

likelihood

« compute intervals of a given probability (central,
symmetric, ...)

> |ack of standardization
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Bayes near unphysical regions (&

» Simple prescription:

Given previous N
measurement, i X oz
excluded region
put as prior :
9 6 4 - 9 =
unphysical region ® Easy to Compute

* Requires the
renormalized likelihood IIkeIIhOOd & ROI-

original likelincod _ - - | complement o ® G |VeS rObUSt
o A || confidence level Confldence
' intervals/limits.
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* Motivation 1: ,Likelihood principle”. says that all the
iInformation is contained in the likelihood function.

» ~ Bayes with flat prior

"I:’miL:~'.,-"'II"]I‘I'[.Ilr:'l."rh'.":l| - Ll]L}L};.-"IrL[Hn'.'.'_r;J'.':II — f'_ll

Preserption: 1 7 (0.u) = In Luax — A = In L(Bhion)

Difficulties: s

 Digital measurements have constant likelihood 3 /\
functions and cannot be handled. 2 st dev

» The error limits for functions with long tails (like the @ L/ e'”
Breit-Wigner pdf) are misleading. =

* When the likelihood function has its mathematical
maximum outside the physical region (Lmax is then at 2 st. dev L /e
the edge of the physical region), the resulting one-
sided likelihood ratio interval for A = 0.5 may be ~
unreasonably short. decay constant
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« Equivalent method of constructing confidence intervals:
consider a test of the hypothesis that the parameter’s true
value is 0. One then excludes all values of 8 where the
hypothesis would be rejected at a significance level <a.

* One such method is the CLs method, used by the LEP Higgs
group to assess limits on the Higgs boson mass.

* One defines the teststatistics'as -2InQ with Q = L(s+b)/L(b)

0.14 o Expected for background
L _—— = I-..-|.||.. H

=

= =2 -

] — ]
I I I
| | |

Probability density
= = =
= = :
E =
[ [
x
| |

[ Ofhservi , - S .
= R Expected backpround B —
[ Expected signal = background .0~ 7]
meee—ee- Test sigmal + backgrouncd y

11 I L1 I L1 III-I L1 I L1 I% L1l I L 11 I 11 I 11 I L1l

=10
100 102 1od oG 108 100 112 114 101G 118 1240
m GeV/e™)

=
=
=
I
|

=
i
—
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The CLs method for limits

T e e e e CLb tells you about the excess
10" e o ] w.r.t. Background-only hypothesis.
A —3%0 Here a 2c effect.
10 I - 1 , w5 -
S _ J1g To obtain the limit,
i e e ¥ T CLs=CLs+b/CLDb is used as an extension
S xpeche | sigma +h: rouril H = ' . gn .
o CET Erbeciod o backgroundl 3 of Zech's modified frequentist approach.
10 L. :_ :[ ~.p|.|.|.|.|1 I |‘ |.:q.| @uu.l-rgu-\.]mbn u:nd _:_ ? 4 /
- f f f f f : —a A '
st ] o g 1 LEP] LI T T AT EPH
|.'[:|- WE EETE AN FEEE NS NS FErs S P P .  signal (m,=115.6 GeVic’) ] [}.25:— """ I_\ E
100 102 104 106 108 110 112 114 116 118 120 / 20" 2 | : ]
m][[Gt‘-.-"ff.'E} g o 2
=~ 0.08 el
: v ! ! ! ! ;g 0.06 :E
][]'l [ LEP :% 0.04 , E
af 002 ¢ .
10 F R T R T
af -2 In(Q)
.._,]-.'][] - — (bservesd _ -
o B T bak g b "DELPHI |

10 — :
: Z o2k ] Favors

Favors Signa|

0k
: no signal

IIIIIIIIIIIIIIIIIIIII IIl-IIIIIIIIIII-

U 100102 104 106 108 110 112 114 116 118 120 . ] The use of
m,(GeVie) i likelihood makes

P(m, <114.1)<5%. B T R B T the combination
. g -2 In( (N
No information about P(m >114.1) ! easy.
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Comparing methods: coverage (&

° COverage IS a pure :: ||'I|”\' _| F+C b=0
frequentist concept. Y L N s

o Still usefull to compare ) N L S -
methOdS. ;{nm : b=3

« Here we see the TN
comparison of coverage’ | e -
for a counting experiment ~ © @ ¢, ¢ * =©
(Poisson pdf) with and ]
without background, for = | FIC (00 —
Feldmann-Cousins and = oy (o3
for the Bayesian £
ap p roaC h . obse N:—'_:I; events 1I5 ”
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== ) Classical, Bayesian, Likelihood... (&

* Frequentist confidence intervals

* Provide ‘summary of information content’ of measurement

* Problems and misunderstandings for low stat / near unphysical
regions

« Bayesian intervals
e Support physical interpretatiomof result.
* Priors, interpretation are mixed blessing
 Likelihood intervals

e (Good coverage properties for simple cases

» Really considered as a 3rd way in recent days. Popular in HEP
statistics.
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* Which definition to prefer ?

 No definitive answer...

e Classical approach definitively has deficiencies and should be
avoided in potentially dangerous cases (low statistics,
measurement near allowed range, etc.).

« Unified (Feldman-Cousins) approach solves most of the
problems of theclassieal approach. This is why it is often
recommended (and used by most collaborations).

- Still it has deficiencies that must not be forgotten

e Bayesian approach is‘elegant and simple to interpret, but suffers
from the freedom in the definition of the prior. Flat prior is often

not justified and the method might induce undercoverage.

» 1.Check with your collaboration.
2.Be convinced yourself, and be able to explain your approach
3.It's good practice to verify the sensitivity on the method.

> One may choose to comunicate an interval with good
frequentist properties, and then to draw conclusions using
Bayesian statistics. The two part should then be clearly separated.
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Outline &

bncepts

 Monte Carl@ techniques

e Event classlication

e Parameter egtimation

* Limits, co BIS/ significance

Closing re
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Closing remarks &

As announced, we only scratched the surface.

Despite what we could think, Probability and statistics is a lively field.

Many improvements in the last years

Feldman-Cousins
Increased consideration for Bayesian techniques
Better random number generators

Boosted decision trees

Good tools are now available for the physicist (TMVA, RooStat, RooFit, ...)

Things change quickly: stay tuned, follow the progress on preprint servers
and journals, get in touch with the experts in your experiment.

Before all, convince yourself (and others) that you are using the best
approach!
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