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Analysis Methods
-

An experimentalist's view

C. Delaere
UCLouvain – CP3 
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Outline
● Probability and Statistics, basic concepts
● Monte Carlo techniques
● Event classification
● Parameter estimation
● Limits, confidence intervals, significance
● Closing remarks
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Outline
● Probability and Statistics, basic concepts

● Axioms, Frequentist vs Bayesian approaches
● Mean, variance, covariance
● (Some) Basic distributions
● Central Limit Theorem & error propagation

● Monte Carlo techniques
● Event classification
● Parameter estimation
● Limits, confidence intervals, significance
● Closing remarks
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Data Analysis
● Particle Physics is all about matching experiment 

and theory
● What Theory describes the Data ?
● How Data can discreminate between Model X and Y ?

● Due to the intrinsic nature of the processes 
studied, the proper question is often:

Are theory and experiment statistically compatible ?Are theory and experiment statistically compatible ?

Probability and statistics are very hot topics, constantly improved.
In four hours, we will only scrape the surface !
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Probability and statistics
● Probability: from theory to data

● For a given model, what are the possible outcomes for 
experiments ? => predictions

● Statistics: from data to theory
● This is „solving the inverse problem” :  from a set of 

measurements infer the right model => experimental 
data analysis

● There are various ways to interpret probabilities.
● Axiomatic
● Frequentist
● Objective probability
● Bayesian probability What probability

 is about ???

What probability
 is about ???
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Axiomatic approach
● Kolmogorov axioms

● The probability of any event E in the event space F, 
P(E) is a non-negative real number: 

● The probability that some elementary event in the entire 
sample space will occur is 1.

● Any countable sequence of pairwise disjoint events E
i
 

satisfies:

While perfectly valid, that approach doesn't tell anything about 
what probability is. 

More than a mathematical tool, we want to 
interpret the probabilities of physical quantities.

n.b. : other sets of axioms exist
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The Frequentist approach
● Natural definition of probability via the frequency of the 

corresponding event:
● Let perform N times (identical trials) the same experiment
●

● Pro: intuitive interpretation 
in particle physics.

● Con: 
● One cannot consider the event independently of the 

collective.
● One cannot mathematically prove the convergence.
● Not all measurement can be repeated under identical 

conditions.
– ? probability that the top mass is in [171.2,174.0]GeV/c²
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The Bayesian approach
● Probability is seen as a degree of belief.

● Credibility of a statement -> taking into account the past

● Bayesian approach is all about the probability of an hypothesis or theory.

● P(E) = P(E|I) is the state of our knowledge and depends on the information 
we have.

● This is in opposition to the frequentist approach of probability P(E) as a 
state of nature.

● Physicists often claim „I am frequentist” -> well suited to describe quantum 
phenomena.

● Bayesian approach more suited to the analysis of experimental outcome or 
prediction.

– What is the „probability to reject a Higgs boson of 500GeV” ?

● Bayesian probability includes a PRIOR knowledge about the theory and 
tells us the influence of a new measurement.

● Subjective probability ?
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The Bayes theorem

This is the Bayes' Theorem: 
it gives the probability for A to be true if B is true.
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Bayes theorem
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Bayes - Interpretation

P theory∣data=
P data∣theory  x P theory 

Pdata

Posteriori probability
probability of the theory to be true

Likelihood
Probability to observe data 
according to the theory

Prior
independent of the measurement

Evidence:
probability of data, assuming a model M.

● To prove a theory, better have P(data|theory) large and P(data) small („strong evidence”)
● P(data|theory) = 0 -> P(theory|data)=0 : data allows then to reject the theory
● P(data) can be expressed as sum{P(data|theory_i) x P(theory_i)} -> normalization factor.
● Learning interpretation: description of the evolution of P(theory) with new data.
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Example

We will come back on this later.

Measurement 
from „flat prior” :

Given previous 
measurement, 
excluded region
put as prior :

Measurement: likelhood from fit.

Posterior belief...

X

X

Note that we could use
a more complex prior:

● Smoothed step function
● Gaussian to reflect existing measurement
● ...
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How to describe data ?
Quantitative measurements

„histograms”
(binned data)

„n-tuples”
(unbinned data)

Average

Spread
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The Variance has the dimentions
of x squared. On the contrary, 
the Standard Deviation has the 
same dimension as x.
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How to describe theory ?
● Definition: the probability to measure a 

value x in the interval (x, x+dx) is given by 
the probability density function f(x).

● This is NOT a probability !

● Definition: the cumulative distribution 
function F(x) is the probability that we get 
a measurement smaller than x.

● The expectation value of a variable x is 
noted E[x] or <x>.  For a given pdf, it is 
given by:

E [ x ]=∫ x ' f x ' dx '=〈 x 〉

●Normalized to 1
●Dimensions 1/x

●F(-)=0
●F(+)=1
●Dimensionless

P  x1wx2=∫
x1

x2

f x ' dx '=F x2−F x1
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Estimation of mean and variance
● In general, the mean and variance of the „parent” 

pdf are unknown and have to be estimated.
● The law of large numbers relates the arithmetic 

mean of a data sample to the expectation 
value of the „parent” pdf:

● For n data points, we estimate the variance ² by

● If the mean <x> :=  is known :

● If the true mean  
is unknown :

x≈〈 x 〉


2
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

„ sample variance s² ”



C. Delaere - Analysis Methods 16

Illustration
Small population

Large population

p.d.f.

Clear h
Fill h with 10 e
Compute rms Remember:

ROOT „RMS” is NOT 
the sample variance !

1000x
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Correlation, covariance
● Given two variables x,y, a dataset consists of pairs 

of numbers:

● The mean and variance for each variable are 
defined as usual.

● The covariance describes the dependence 
between x and y:

● The dimensionless correlation coefficient is then 
defined as:

{x1, y1 ,x2, y2 ,⋯,xN , yN }

cov x , y =
1
N
∑

i

x i−x  yi−y 

cov x , y = x−x  y−y 
cov x , y = xy−x y

=
cov x , y 
 x y
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Correlation, covariance
● If the two variables are uncorrelated, =0. The 

contrary is not true !

Reflects the
direction of a 
linear relation.

Does NOT 
reflect the 
slope.

Does NOT
reflect other
non-linear 
relations
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Generalization

V ij=cov xi , x j=〈xi x j〉−〈 xi〉 〈x j〉

 ij=
cov x i , x j

 i j

V ij= ij i j

cov x , y = x
2 V [xy ]

V [xy ]  y
2 One defines the covariance matrix, 

often called „error matrix” :

One can then generalize the discussion to more than two variables. 
Lets denote n variables x

(i)
, i=1,...,n

The covariance matrix is 
n x n symmetric:

Define the correlation matrix

Redefine the error matrix
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Some useful pdfs

● Uniform

● Binomial

● Gaussian

● Exponential

● Chi-square

● Breit-Wigner

● Landau
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Uniform distribution

Example: phi distribution of muons
in Drell-Yan production.

Resolution of 
discrete 
measurements



C. Delaere - Analysis Methods 22

Binomial distribution

N trials (independent processes) that can 
either succeed or fail.
B(n,p) represents the probability to have k 
successes among n.

Example at LHC: 
8 colliding bunches in the machine
p(interaction)=0.75
? probability to have k collisions in the same „orbit” ?

Reminder: nk =
n !
k ! n−k !
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Poisson distribution

N~N

Poisson distribution describes cases of sharp events 
occuring in a continuum.

● The #trials is unknown
● The rate is known

It corresponds to B(n,p0) with np= 

Examples: 
● Radioactive decays
● Observation of rare processes (Higgs decays ?)
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Gaussian distribution
Gaussian p.d.f., or Normal p.d.f. 
For =0, =1, one obtains the Standard distribution.

Properties:
● Symmetric around 
●  characterises the width
● FWHM = 2 sqrt(2 ln2)=2.355 

The error function 
being defined as:

one has:
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Gaussian properties

Two conventions can be adopted:
● One sided
● Double sided

The difference is a factor 2 
-> always precise the convention !

1/3 of the measurements 
lie out of the 1 band !

Beware of the Look Elsewhere Effect !Beware of the Look Elsewhere Effect !

If we do 200 measurements, the probability 
to observe a 3 effect is : 1−0.9987200=0.23

When quoting the magnitude of an excess, 
deviation or probability, it is usual to use 
Gaussian quantiles.

Double-sided convention:
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Exponential distribution
● Describes the lifetime of non-

aging particles
● No history, no aging.
● Decay probability = constant

● Applies to particles physics 
(quantum physics)
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Chi-square distribution
● Arises in the context of the method of 

least-squares

● If x
1
..x

n
 are n independent, Gaussian 

distributed variables, then quantity 

is distribud according to a chi2 
distribution.

K=∑
i

x i−i 
 i

2
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Breit-Wigner distribution
● Arises naturally from the 

propagator of a massive particle 
in QFT.

● Few unusual properties

●  undefined : use median/mode x
0

●  undefined : use HWHM=
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Landau distribution
● The Landau distribution is used to describe the 

distribution of energy loss of a charged particle 
passing through a thin layer of matter.

Thickness

Energy loss

with x = R ( E-E
p
 )

Most probable ElossConstant depending on
the absrober

Valid for thin sensors (t->0) 
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Central limit theorem
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Errors
● Repeated measurements -> slightly different 

results each time 
– (changing conditions, resolution, quantum fluctuations, ... ) 

● Statistical errors
● From frequentist definition of probability: repeated 

measurements give a distribution of probability for the 
result. 

● Quote the „spread” in addition to the central value. 

● Systematic errors (aka systematics)
● Uncertainty in estimating effects from systematic 

mistakes or from neglecting systematic mistakes.
● Wrong method, instrument, formulae, calibration, ...
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Errors
● Statistical and systematic errors will evolve differently when 

more data is accumulated

● Have to be quoted separately
● Still, can be added in quadrature, but systematics often introduce 

correlations among variables.
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Evaluating systematics
● There is nothing to be gained repeating your mistakes.

● An experiment with large systematics can look perfectly 
healthy, and the result is rubish.

● Often, there are checks you can do to satisfy yourself there are 
no systematics

● Be ingenuous
● Be mildly paranoid
● Ask a colleague talented for destructive criticism

● Evaluation of systematics may/may not be easy to evaluate. 
E.g. : 

● calibration uncertainty, 
● theory error, 
● or even unknown cause !
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Sanity checks
● Sanity checks are the key to evaluate systematics

● A sucessful check will NOT lead to systematics

● A sanity check is not an evaluation of systematics (should be 
decided beforehand)

● A sanity check fails only in cases of mistakes
● If the outcome is legitimately different from zero, it is a systematic 

uncertainty evaluation.

● If the alternate approach is better, don't use it to estimate 
uncertainties... just use it !

● e.g. : If you find out there should be a 1.05 calibration factor, 
don't quote 5% uncertainty but use the calibration factor.

● More generally: when an effect is observed, first try to 
suppress/mitigate it, add a systematic only in last resort.
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Incompatible measurements
● What to do when two measurements are incompatible ?

● Taking the weighted mean + rms would not make sense.
● Need special treatment.

● PDG recipe:
● Calculate the weighted mean 

of measurements

● Compute the global ² 
w.r.t. that mean.

● 3 cases:
– ²/(n-1) ~1: use weighted mean

– ²/(n-1) >>1: see case by case

– ²/(n-1) >1: rescale errors
by sqrt(²/(n-1)).
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Error propagation
CLT -> errors can be treated as Gaussian in most of the cases.

Let's consider f(x) = ax+b
How do we compute V(f) from V(x) ?

V  f =〈 f 2〉−〈 f 〉2=〈axb2〉−〈axb 〉2

V  f =a2 〈x2〉2ab 〈x 〉b2−a 〈 x〉2−2ab〈 x〉−b2

V  f =a2V  x  ⇒ f=a x

More generally, if f is locally linear, V  f =dfdx 
2

V  x 

1 variable

Let's consider f(x,y) = ax+by+c
How do we compute V(f) ?

2 variables
V  f =a2

〈x2
〉−〈x 〉2b2

〈 y2
〉−〈 y 〉22ab 〈xy 〉−〈x〉 〈 y 〉

V  f =a2V  x b2V  y 2abcov x , y 

More generally, if f is locally linear, V  f =dfdx 
2

V  x dfdy 
2

V  y 2dfdx dfdy cov x , y 

 f
2
=dfdx 

2

 x
2
dfdy 

2

 y
2
2dfdx dfdy  x y

Addition of errors in quadrature, valid if uncorrelated (=0).
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Error propagation (2)
● For an arbitrary number of variables, the previous result can 

be generalised as:

This can be even further expended to m functions of n variables, 
introducing the (symmetric) covariance matrix for functions, U. 

By defining the nxm matrix of derivatives A, 
one can write shortly U = AVAT.
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Error propagation (3)

Let's consider f(x) = xy
How do we compute V(f) ?

Other useful formulas :

V  f =〈 y 〉2V x 〈x 〉2V  y V xV  y 

 f

f 
2

≃ x

x 
2

 y

y 
2

1 /x

1/ x
=
x

x
 ln x=

 x

x

Add relative errors in quadrature, 
if x,y are uncorrelated and 
relative errors are small

(x, y uncorrelated)

● Few more useful formulas:
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Outline
● Probability and Statistics, basic concepts
● Monte Carlo techniques

● Types of Monte Carlo generators
● Flat Random number generators
● The Inverse Method
● The Rejection Method
● General purpose MC 

● Event classification
● Parameter estimation
● Limits, confidence intervals, significance
● Closing remarks
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Monte Carlo Techniques
● Monte Carlo techniques play a central role in 

particle physics
● Often the only practical way to evaluate difficult 

integrals or to sample complicated p.d.f.
● Used to evaluate the signature of a model
● Used to evaluate the  hadronization (non-perturbative 

QCD)
● Used to evalutate the detector response

● Often the key to evaluate p.d.f. of physics 
quantities
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Fixed order Monte Carlo
● Most straightforward approach:

● 2 cases
● Weighted events: 

● the weight is the matrix element squared

● Unweighted events: 
● events are distributed according to the matrix element squared.

● Technical difficulty: avoid singularities (colinear and 
soft regions) at LO + and implement numerically 
the cancellation between N and N+1 partons 
contributions at NnLO.

PartonsPerturbation
theory

Cross-section
@

order n
MC generator
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All-orders Monte Carlo
● Aim: produce not just partons but a full set of 

hadrons in the final state.
● Complex system to simulate utterly complex 

reactions.

● + underlying event
● + decay unstable particles

● PYTHIA, ARIADNE, HERWIG, ISAJET, ...

Partons DGLAP showers model hadrons
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Other examples (I)
● Geant4

● Geant4 (for GEometry ANd Tracking) is a platform for 
"the simulation of the passage of particles through 
matter," using Monte Carlo methods. 

● Its areas of application include high energy, nuclear and 
accelerator physics, as well as studies in medical and 
space science.”

● Why a Monte Carlo ?
– Draw an energy deposit from a Landau
– Decay particles in flight
– Generate showers in calorimeters 
– ...
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Other examples (II)

Why a MC ?
Use the response as p.d.f.
Add noise
...

Delphes: http://arxiv.org/abs/0903.2225

● Detector simulations
● Purpose: to go from energy deposits to „detector 

response”
– Acceptance
– Resolution

● Detector-specific simulation
● Generic detector response (skips G4 too)

– e.g. Delphes

● Toy Monte Carlo
● MC integration
● Coverage studies
● Pseudo-experiments
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Random number generators
● A random number generator that follows a U[0,1] is 

the basic ingredient to any Monte Carlo
● Various options are available:

● Hardware true random generators
– Uses radioactive decays or thermal noise
– Truly random
– Slow and requires dedicated hardware

● (Pseudo-)random generators 
– Many algorithms available. Some better.

● Quasi-random generators
– Uses a recurence relation to compute x

i+1
 from x

i

– May have good coverage properties, but produces always the 
same sequence. If you know any x

i
, you know the sequence.

This is what we want
to use in practice 
(good ones)
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What does NR say ?
● Ban (multiplicative) linear congruential generators
● Never use a generator with a period 

T< ~264 ~1019 or any generator with undisclosed T.
● Never use a generator that warns against using its 

low-order bits.-> sign of obsolete generator.
● Never use built-in C/C++ generators.
● Avoid generators that take > ~25 operations.
● Avoid generators designed for cryptographic uses.
● Avoid generators with T>10100... you don't need it.
● Generators should combine at least 2 well-

understood methods.
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Linear Congruential Generator

Upper bound on the period.

Any seed is as good as the others

From there, the sequence with evolve „random”.

Many problems/limitations of the LCG. 
Most well known (Marsaglia theorem) : If the LCG is used to k times 
to obtain a point in a k-dimentional space, points will be located on 
max m1/k  (k-1)-hyperplanes, much less if the constants m and a are 
badly chosen.
Also, if m is a power of 2, least-significant bits are not random but 
have periods of maximum 2n.

Bad example: RANDU (1960's): a=65539, m =231

Better choice (NR) :  m=232 , a=3935559000370003845, c=2691343689449507681
and keep only 32 most-significant bis out of 64.
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Xorshift method
Let x be a non-zero 64-bits integer.

x x∧ x≫a1

x x∧ x≪a2

x x∧ x≫a3

x x∧ x≫a1

x x∧ x≪a2

x x∧ x≫a3
or With well chosen (a1, a2, a3), for 

example: (21, 35, 4) or (20, 41, 5).

Principle:
We use bit algebra:  is the bit addition in base 2. 
Each of the 3 steps can therefore represent the action of a matrix S

ki
 on a vector x.

-> one iteration : T = S
k3

S
k2

S
k1

Max petiod: M=(264-1). Will be achieved if: TM=1 and TN != 1 for each of the 7 prime 
factors of M: N=3,5,17,257,641,65537, 6700417.
This can be found by brute-force, powers of T being computed by successive squaring.

Limitations/flaws:
Only a small subset of (a

i
) triplets have good randomness properties.

It's easy to design a test tath the Xorshift will fail: 
every bit of step i+1 depends on max 8 bits of step i.

Very useful when combined with other methods !


1 0 1 0 ... 0 0
0 1 0 1 ... 0 0
0 0 1 0 1 0 0
0 0 0 ⋱ 0 ⋱ 0
⋮ 0 0 0 1 0 1
⋮ 0 0 0 0 1 0
0 0 0 0 0 0 1


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Multiply with Carry
This method is easy to understand, and to implement on 64 bits architectures:

w2: bits 33-64 w1: bits 1-32R
n
 =

 . a

R
n+1

 = w2 + a.w1
w2: bits 33-64 w1: bits 1-32

X
n
 = 

X
n+1

 = 

Improvements: 
● r-lag MWC generators: use w1 from R

n-r
 . This requires r+1 seeds.

● The max period goes like (a.br-1) with b=232 but cannot be saturated
● Complementary multiply with carry

● R
n+1

 = (232-1)-(w
2
+a.w

1
) : do a XOR with 0xFFFFFFFF (revert all first 32 bits)

● The max period (a.br-1) with b=232 can be obtained for the right a.
● „Mother-of-all” generator: do a linear combination of >1 w1.

w1: bits 1-32

w1: bits 1-32

Example: a=3636507990, r=1359 : p~1013101

Period: (232a-2)/2. ( a prime)
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Test of random generators

● Test on equal distribution:                       must be a ²

● Test on correlations: large number of hyperplanes

● Gap test: P(only last of n in [a,b]) = p(1-p)n-1 with p=b-a

● Random walk test: for 0<a<<1, P(x<a) is binomial

● ...

How to test the quality of a given 
random number generator ?


2
=∑

i=1

k N k−N /k 2

N /k

-> If needed, use existing test suites 
(e.g. Diehard by Marsaglia)

Good generators: NR's ran, CMWC, 
  Mersene twister, ...
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ROOT generators
● TRandom 

● LCG ! T~109

● TRandom1 
● „RANLUX” T~10171

● TRandom2 
● „Tausworthe generator” T~1026

● TRandom3 
● Mersene Twister T~106000

● Default in python, Ruby, Matlab, ...

„not very elegant and is overly complex to implement”.
A simple complementary multiply-with-carry generator can have a period 1033000 times 
as long, be significantly faster, and maintain better or equal randomness.

Recommended
by ROOT

Intel(R) Core(TM)2 Duo CPU     P8700  @ 2.53GHz:

TRandom

TRandom1

TRandom2

TRandom3

CMWC4096

0 20 40 60 80 100 120

13.4

107.8

17.8

18

13.5
time (ns)
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Generating non-uniform distributions
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The inverse transform method
● Consider a probability density function f(x) on the range 

−∞ < x < ∞, and its cumulative distribution function F(x).

● If a is chosen with probability density f(a), then the 
integrated probability up to point a, F(a), is itself a uniform 
random variable on [0, 1]. 

● Requires an explicit form for F-1.
● May not be the fastest
● Can be applied to histograms 

(implemented in ROOT)

-> exp(x), (1 − x)n , and 1/(1 + x2 ) 
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Von Neumann's method
● This is a rejection method.

● Generate a random number r
1
 

according to h(x).

● Generate a r
2
 uniformly in [0,1]

● If r
2
<f(x)/Ch(x) , keep r

1
. 

Otherwise, try again.

● With f and h normalized to 1, 1/C 
is the efficiency of the method. 

● C must be 
close to 1.

Difficulties for narrow peaks !
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Illustration: MC integration

S. Jadach
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General purpose MC
● Few examples of General Purpose Monte 

Carlo Simulators, that is programs which 
work (in principle) for arbitrary integrand

● Need of much CPU power and memory
– only recently available/affordable.

● Examples: VEGAS & FOAM
● VEGAS assumes the function can be factorized 

in terms that depends on one variable. For each 
variable, find the „best binning”

● Approximation, can be pathological !
● FOAM works by dividing the integration domain 

in cells, where the rejection method can be 
efficiently used (<=> small variance of weights).

● In both cases, the core of the method is about 
finding the best „grid”.

VEGAS

FOAM
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Outline
● Probability and Statistics, basic concepts
● Monte Carlo techniques
● Event classification

● Introduction
● (Optimal) cut-based selection
● Multi-Variate Techniques (NN, BT, ...)

● Parameter estimation
● Limits, confidence intervals, significance
● Closing remarks
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Event classification
● Data/Physics analysis tasks are inherently multivariate

● Event selection
– Triggering, real time filtering, data streaming

● Event reconstruction
– Tracking/vertexing, particle Identfication

● Signal/Background discrimination
– Higgs & Susy searches, …

● Functional approximations
– Jet energy corrections, tagging efficiencies…

● Parameter estimations
– Higgs mass, top quark mass

● data exploration, data-mining
– Data-driven extraction of information

– pattern recognition, clustering
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Event classification
● Data/Physics analysis tasks are inherently multivariate

● Event selection
– Triggering, real time filtering, data streaming

● Event reconstruction
– Tracking/vertexing, particle Identfication

● Signal/Background discrimination
– Higgs & Susy searches, …

● Functional approximations
– Jet energy corrections, tagging efficiencies…

● Parameter estimations
– Higgs mass, top quark mass

● data exploration, data-mining
– Data-driven extraction of information

– pattern recognition, clustering

But you know, at LHC we 
have very powerfull magnets !
(and CMS has the biggest)
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Introduction
● Common task in HEP: separate 

„signal” from „background”.

● A typical analysis will consider 
many variables as levers 
to study data.

● Number of jets & leptons, energy, 
angular distribution, invariant mass, isolation, missing 
(transverse) energy and momentum, ...

● Multi-variate analysis is therefore omnipresent in science

● Event classification is performed in a N-dimentional space 
– Problem: human mind is limited to 3D (at best)

● Various approaches:
– Simple (consecutive) cuts

– Compatification

– Global approach with help of analytical or MC description.
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Introduction (2)
● Using cuts sequencially

● Generally easy
● Little flexibility
● Loss of information

● Compactification („MVA techniques”)
● Combine several observables into one test statistic.
● Computically intense (potentially)

Can be improved by choosing the right

combination of parameters, or the right basis. 
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Selecting by cuts
● Applying cuts consecutively is often the simplest approach

● But not optimal (does not take correlations into account)
● With correlations, cut optimization is not direct.

● The situation can be greatly improved by clever choice of the 
observables considered

● Never forget to be clever !
● Observables must be motivated!

Combine momentum 
and de/dx using 
Bethe-Bloch 

Kaon, proton
and deuteron 
signals easy to 
separate !

Example:
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Choice of the best cuts

Background fraction

E
ffi

ci
en

cy

The value of the cut is free a priori.
●  It depends on the efficiency 

one wants to achieve
●  It depends on the fraction of 

background one is ready to 
accept.

Useful plot: 
efficiency vs background fraction

Simple 
example:
upper cut

Useless cut.
No discriminating power

Excellent cut

Good performances

That plot doesn't tell which is the best value. 
It is usefull to compare the cuts on various quantities.
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Choice of the best cuts
To decide which cut to apply, one needs a 
figure of merit.
Common choices are:

measurementdiscovery

They a not (well) statistically motivated.
Could use other merit functions :

Note: if several cuts are applied consecutively, the working point choice should be an iterative
process, to take into account correlations. 
May be automatized (e.g. GARCON: Genetic Algorithm for Rectangular Cuts OptimizatioN).

Significance
CLs
...

Background fraction

E
ffi

ci
en

cy

!

separation=2
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Fisher's discriminant
● Simplest: linear combination of variables

● Cut defined by hyperplane in the space of observables
● ? Optimal plane to separate 2 classes of „events”

● Most common choice: Fisher's discriminant

Inverse of the 
variance matrix

Difference of
the means

+ Can be computed directly from the s & b distributions

- Does not consider different variances for s and b

- Linear...
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Non-linear approaches
● More in general, any cut in a n-dimensional space 

can be expressed as a cut on test statistic.
● In that context: the test statistic is just a way to go 

from N observables -> 1 quantity, and then 
● Cut on it
● Use is as a likelihood

● Non-linear cut 
<-> non-linear test statistic.

● Neural networks 
● Decision trees
● Support vector machines 
● Likelihood ratio
● ...

{
This lecture
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Neural networks
● Build a quantity N such that

● N=1 in the signal region
● N=0 in the background region
● Goes smoothly from one to the other. 

● The isocurve N~0.5 is the boundary between the signal and 
background regions

Neuron: transfer function ~
● uses the sum of inputs
● One „weight: constant term

0

1

Synapse: more or less strong link between neurons
● One multiplicative „weight” from input to output

Multi-layer perceptron

Common choice: 
„sigmoid function”
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Training
● Training/learning : 

procedure by which we get the weights „right”.
Define the error function:

Background pdfNN value

Target

Same for the signal...

Evaluated on the error function on the sample (approximation/limitation)

Difficult bit: minimization !
Most common technique: error back propagation

Follow the gradiant of d/dw
i
 and iterate

Learning plot: error vs time during training.
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Visualization

We have a single (compactified) 
variable on which we can optimize a 
cut as discussed before.

The structure of the network can be visualized.
Here, 3 input variables, 5+3 hidden neurons,
one output (0 or 1).
Weights are visualized by the thickness of the
links... at the end it often provides little information.
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Words of caution
● Approximation of knowledge of true 

signal and background distributions 
with sample of signal and background 
events

● Finite statistics limit precision (in itself 
usually not a problem)

● Risks of overtraining

● Always control with an independant 
sample

● Never train on data (or use a control 
sample)

● The result cannot be more accurate 
than the MC knowledge. Features not 
reproduced by MC will not be taken 
into account.

Overtraining !!
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Simple Example
● Consider this example with two clear s and b regions, 

with some defined overlap.

● In principle, 85% of bkg and 66% of signal can be 
unambiguously isolated.

● One builds and train a network with a simple structure

● The NN function reproduces the input structure

● A cut on the NN output can produce a very pure 
(cut at ~0.9) or very efficient (cut at ~0.4) set of events.

● Performances will degrade if 

– Network structure is too simple to accomodate the shape of 
signal and background regions

– The dataset is too small to give information about the shape of 
the two regions

● Overtraining, ...

Structure: x,y:5:3:signal
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Simple Example
● Consider this example with two clear s and b regions, 

with some defined overlap.

● In principle, 85% of bkg and 66% of signal can be 
unambiguously isolated.

● One builds and train a network with a simple structure

● The NN function reproduces the input structure

● A cut on the NN output can produce a very pure 
(cut at ~0.9) or very efficient (cut at ~0.4) set of events.

● Performances will degrade if 

– Network structure is too simple to accomodate the shape of 
signal and background regions

– The dataset is too small to give information about the shape of 
the two regions

● Overtraining, ...

Structure: x,y:5:3:signal

82% of background

65% of signal

Mixed region
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Simple Example
● Consider this example with two clear s and b regions, 

with some defined overlap.

● In principle, 85% of bkg and 66% of signal can be 
unambiguously isolated.

● One builds and train a network with a simple structure

● The NN function reproduces the input structure

● A cut on the NN output can produce a very pure 
(cut at ~0.9) or very efficient (cut at ~0.4) set of events.

● Performances will degrade if 

– Network structure is too simple to accomodate the shape of 
signal and background regions

– The dataset is too small to give information about the shape of 
the two regions

● Overtraining, ...

Structure: x,y:5:3:signal

Training performed with too few 
events (10) in the dataset.
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Aside note: using NN to fit functions
● For some application with a cylindrical 

symmetry, a magnetic field simulation 
gives as output the radial component of 
the B field on a grid.

● One want to fit those distributions with a 
function in order to plug them into a 
Geant simulation code. 

● One could try polynomial fits, but it 
seems difficult to reach the desired 
precision over the full range. 

● One could also use a spline interpolation 
between known points. In all cases, the 
resulting field would not be C-infinite.

● NN takes time to be trained (once) but 
then provides a C-infinite function well 
suited for many applications. There is no 
need for an a priori knowledge of the 
form of the function.
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Improvements
● Clever choice of inputs

● Use well-understood observables
● Don't put useless inputs
● Prefer inputs in [0,1], or normalize them
● Avoid highly correlated inputs ( -> decorrelation )
● Avoid strongly peaked distribution ( -> gaussianization )

● Clever choice of the network structure

● No rule

– People sometimes try first N
inputs

/2 + N
inputs

/4 hidden neurons, without 
motivation

– Network structure should match the complexity of the phase space, not 
the number of inputs.

● Generally, try to start simple, and extend if needed
● This will also make the training faster
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Decorrelation

W. Verkerke
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Gaussianization

W. Verkerke
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Study of network performances
The Neural Network should not be used blindly. You have to assess its 
performances and stability.

● Remove one variable

● Maximally uncorrelated to the rest

● Maybe the most discriminating variable

● After the NN selection, in principle, the signal appears clearly, and the 
remaining background can be measured.

● Study the stability: dN/dx
i
 

● Sensible inputs

● Risks of large systematics: control 

Risky case !

„side-band” background measurement.
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Additional comment
● We discussed here a simple use case of NN with 

only one output neuron... one can go beyond that
● OCR (1 neuron per character, take the best and 

estimate „risk of mistake” or „second choice”
● Distinguish between N categories using N-1 output 

neurons (and take the closest type)
● ...

C B

A

O
1

O
2
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Decision trees
● Decision trees is another approach that became 

popular in 2005 with MiniBooNe & Tevatron Run II.
● Basic idea: sequential rectangular cuts

● At each step: split data in 2 using the „best” single cut
– Requires a metric to decide (s/sqrt(s+b), s/sqrt(b), „Gini”, ...)
– Choice made independantly for each outcome of the previous 

step.
● Repeat splitting until some stopping criteria is fulfilled.

– Purity is high enough
– N different cuts applied
– ...

● Theoreticaly well motivated
● Breiman, et al (1984), Classification and regression trees, Monterey, CA: Wadsworth & Brooks/Cole Advanced 

Books & Software, ISBN 978-0412048418
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Decision trees
● This is an extension of the simple cut-based 

analysis
● Do not (automatically) reject an event that fails only one 

of the criterias.
● Either classify in two categories, or assign a probability 

to be A or B using s/(s+b) in the corresponding leaf.



C. Delaere - Analysis Methods 82

Pros and cons
● Decision tree advantages

● Simple to understand and interpret. 
● Requires little data preparation (no normalization, 

gaussianization, ...)
● Able to handle equaly real, integer and boolean inputs
● Perform well with large data in a short time.

● Limitations
● Practical decision-tree learning algorithms cannot 

guarantee to return the globally optimal decision tree.
– Genetic algorithms could be a good solution

● Unstable w.r.t training sample.
● Overtraining. Mechanisms such as pruning are necessary.
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Boosting
● Principle: 

● Build a first decision tree

● Look at misclassified events 
and increase their weight

● Build a new decision tree and iterate

● As output, take the (weighted) mean of all N trees.

● Boosting is a generic method that can be applied to any classifier.

● First idea in 1990 by Schapire (majority vote among 3 decision trees)

● Variation in 1995 by Freund using >3 trees

● Both joined their effort and developed adaboost in 1996.

● Advantages:

● Increased discrimination power

● Increased stability (w.r.t. training sample)
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Boosted trees

arXiv:hep-ex/0612052v2

MiniBoone - PID

arXiv:physics/0508045v1 

http://arxiv.org/abs/hep-ex/0612052v2
http://arxiv.org/abs/physics/0508045v1
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Typical policy for Boosted trees

● Boosting method:
● Adaboost (adaptative boost)

For each tree: 

for badly assigned events, and renormalize the weights.

Event score: -weighted average over the trees

for badly assigned events, and renormalize the weights.

Event score: renormalized but  unweighted sum over the trees

is maximized at each step

as the purityDefine

● Split criteria:

● -boost (shrinkage)



C. Delaere - Analysis Methods 86

Example
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Comparing – Figure of merit
● The compactified output of a MVA is a single 

number on which we cut. We can use the same 
approach as for the evalutation of simple cuts.
● Efficiency vs rejection plot
● Figure of merit

Comparison of methods

Comparison of training/test samples
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Outline
● Probability and Statistics, basic concepts
● Monte Carlo techniques
● Event classification
● Parameter estimation

● ² and ML estimators
● Understanding MINUIT -> Do a proper fit with ROOT
● Fit validation

● Limits, confidence intervals, significance
● Closing remarks
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Parameter estimation

● Very common task: determine the underlying 
distribution for a measurement.
● Determine the parameters of a pdf. -> parameter 

estimation
● Common technique: fit

● ² fit is well-known. Why does it work ?

Experiment

Probability Statistics

Theory Theory

● Parameter 
    estimation
● Fit
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Definitions
● Definition: estimation is a procedure that leads to a 

result with a known imprecision
● an ESTIMATION is NOT an approximation

● Parameter estimation is a test statistic and hence a 
random variable.

● Choice of an estimator requires judgement for 
particular application; there is no such thing as an 
“ideal estimator”
● Think of the estimator of the mean (see later):

– 1/N * (x
i
) for normally distributed measurements

– ½ (Max+Min) for uniformly distributed measurements
– Truncated mean for energy loss measurements
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Estimator properties
● A perfect estimator is

● Consistent
– It approaches asymptotically the true value for large number 

of measurements.
– Convergence in the sense of probability:

● Unbiased
– The expectation value of the estimator is the true value.
– An estimator that doesn't fulfill that criteria is said biased (or 

asymptotically unbiased).
● Efficient

– The variance is as small as possible.
– Meets the „minimal variance bound” (see later)
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Estimator properties
● A perfect estimator is

● Robust
– The estimator is insensitive against wrong data or wrong 

assumptions.
● Sufficient

–

– Intuitively: it contains all information in the data concerning 
the parameter of interest.

● There is no perfect estimator...
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Example: mean and variance
● The arithmetic mean of a sample 

● is an unbiased estimator of the mean. 
● Has variance given by

● Other estimators are better in some cases:
● Central value for uniformly distributed measurements 

are more efficient.
● Truncated mean are 

more robust for dE/dx 
measurements

● Beware variance vs sample variance: both are 
consistent but only sample variance is unbiased.

Che
ck

 @
 h

om
e 

!

Standard CMS 
dE/dx estimators:

Harmonic-2 Truncated-40
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Likelihood & ML estimators
● The likelihood is the value of the pdf evaluated at 

the measured value.
● For a dataset made of multiple points, the likelihood is 

the product of the individual likelihoods (joint pdf).
● It is not a probability (that's why it is called likelihood).

Probability = L * dx
i

● It is a test statistics that depends on the measurements.
● Measures the probability to obtain exactly these data 

points x
i
 for a given parameter  (assuming a known 

pdf).
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Likelihood & ML estimators
● One defines the maximum 

likelihood (ML) estimate to be 
parameter value for which the 
likelihood is maximum 
● Might not be unique.
● Gives the value of the parameter for 

which the data is the most likely (not 
the opposite)
– Bayesian interpretation is different.

● No goodness-of-fit.
– The absolute value of L doesn't tell 

anything. If no value of p describes the 
data, the best value is still defined.
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Some more definitions
● For practical reasons, one often considers the (negative) 

natural logarithm of the likelihood function.

● Definions:

● Maximizing L is equivalent to minimizing -ln L = -l
– Sum over the measurements of the ln f(xi|)

● Sometimes, -2 ln L is considered, so that 1 standard 
deviation corresponds to an increase by 1 of that quantity 
(see in few slides).

is the likelihood function

The probability: 

is the log-likelihood

With  the logarithmic derivative of f wrt 
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Information inequality
● Information inequality: connection between bias and variance.

● It's easy to achieve ²(S) = 0 : take a constant value for S. 

● Let's consider an estimator S from N measurements xN.

Cauchy-
Schwarz

Where we defined the Fisher Information I(), having noticed that it is indep. of the dataset:

derive 
w.r.t 

=0 (E()=0 )
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Minimum variance estimators
● The information inequality is also called the Cramer-Rao 

bound.
● It is saturated when the likelihood has the form:

● In which case,
● ML estimators

● Are as efficient as it can be
– If there is an efficient estimator, it will be found in most cases.
– The variance of the estimator is then minimal.

● Are consistent.
● Are often asymptotically unbiased.

i.e.

„Minimum variance” estimators,
„Efficient” estimators 
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Note on errors
● ML is well suited to error estimate

● As a first approximation, the information inequality gives 
a lower bound.

● Alternatively, note that the likelihood function is 
Gaussian near the maximum
– Taylor expension of -ln L with 

1st derivative equal to 0
– The variance is the inverse of the 

second derivative estimated 
at the maximum.
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Note on errors
● Graphical method is thus very useful in practice

● However, be careful in interpreting such intervals 
as 68% confidence intervals as coverage is not 
guaranteed. (see later discussion on intervals)

Asymmetric errors obtained by taking
the points at ln L = max - ½

Can be easily extended to 
multi-dimensional cases 

Error elipses or L iso-contours.
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Illustration: top mass
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Combining measurements
● The use of the likelihood function makes the 

combination of independent measurments easy:
● 2 or more experiments do independent measurements
● Can be different quantites (different likelihood functions) 

as long as they depend on the same parameter(s)
● Combine them by multiplying the likelihood functions

– Alternatively sum the log-likelihoods.
– If measurements are compatible, the error will be obviously 

reduced.
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Extended ML method
● Maximum Likelihood method does not consider the 

normalization of the function. 

● The likelihood is made of normalized pdfs.

● For cases where the normalization matters, i.e. when the mean 
total number of events itself is a parameter, the Extended 
Likelihood function is needed:

 might depend on a !

● Data might also contain contributions from different sources 
(signal, background, ...), in which case the total number of 
events is described as a sum of individual contributions:

Can fit the yield of
a signal !
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Binned ML method
● Evaluating the likelihood on a large statistics can be 

expensive -> Binned likelihood fit.
● Fill an histogram
● Consider each bin as an independent Poisson-distributed 

measurement.

● Benefits/properties: 
● Goodness-of-fit test is possible
● Empty bins are properly handled
● Fit integral is fixed: 

with d
i
 the data content of bin i and 

i
() the 

expected bin content.

Where we used 
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From the ML to the ² estimator
● In the limit of high statistics in each bin, we can do the 

same using a Gaussian pdf:

Cte w.r.t. 

, with 
i
 = F(x

i
,)

● Minimizing the log-likelihood is then equivalent to 
minimizing the ² !

● It gives an input for the ² validity: N> 5~10 in each bin.

● Practically, one will also compute the standard deviation 
as:
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Goodness of fit
● The minimum value of the ² is a test statistics that can be 

used as a measure of the discrepancy between the data and 
the model used for the fit.

● More precisely, one uses the Pearson's ² statistic:

● If n
i
>5~10, that statistics follows 

the ² distribution

● Interpretation: use the p-values 
from the ² ( TMath::Prob ). 

● If the condition do not hold, 
the pdf has to be determined 
(e.g. by toy-mc) before computing the p-value. 
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Goodness of fit (2)
● Too large ² -> might be 

● Wrong model
● Wrong estimate of the uncertainties (+ systematics)

– In this case, the parameters estimate might be fine.

● Too small ² -> overestimated uncertainties ?

● It's a common mistake to quote 
only ²/ndof as a measure of 
the fit quality.

● Quantiles of the normalized 
² still depend on ndof !
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Fitting in ROOT

Use ² or binned ML fit

Optionnally do a more robust 
computation of the errors.

Verbosity switch 
hidden there.
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MIGRAD function: find minimum
Minimized function.
Likelihood or chi²

Fit status: converged, failed or failed.
Error matrix: accurate or approximate
Estimated distance to minimum: small...

Parameter values, plus their error.
Also shown is the error definition.
Here: 0.5 for a likelihood fit.
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MIGRAD function: find minimum

Approximate error matrix.
Approximate covariance matrix.
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HESSE function

Symmetric errors from the second 
derivative of -ln(L) or ²

Error computed from the second derivative of -ln L or ²

Covariance matrix computed from 

Quadratic approximation...
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MINOS function
● MINOS errors are calculated by ‘hill climbing algorithm’.

● In one dimension find points where ΔL=+0.5.

● In >1 dimension find contour with ΔL=+0.5. Errors are defined by bounding 
box of contour.

● In >>1 dimension very time consuming, but more in general more robust.

●  Optional – activated by option “E” 

Parabolic errors 
repeated from HESSE

Asymmetric errors
computed by hill climbing the -ln(L)
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Fit validation
● In general, you will have to prove/show that:

● The fit is not biased
● The error is properly evaluated.

● This is especially true for low statistics...
● Natural tool: toy MC.

● Perform many (O(100-1000)) pseudo experiments
● Fit and compare to the simulated value

– Measure the difference between fit and true -> bias 
– Measure the spread -> error 

● Usual plot used to convey that information: Pull
– (fit-true)/error ... should be a normal distribution.
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What should I use ?
● χ² fit,  fastest & easiest

● Gives absolute goodness-of-fit indication

● Makes (incorrect) Gaussian error assumption on low statistics bins

● Misses information with feature size < bin size

● Maximum Likelihood estimators, most robust

● Valid at low statistics

● No information lost due to binning

● Gives best error of all methods (especially at low statistics)

● No intrinsic goodness-of-fit measure

● Can be computationally expensive for large N

● Binned Maximum Likelihood, in between

● Much faster than full Maximum Likihood

● Correct Poisson treatment of low statistics bins

● Misses information with feature size < bin size  
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Outline
● Probability and Statistics, basic concepts
● Monte Carlo techniques
● Event classification
● Parameter estimation
● Limits, confidence intervals, significance

● Confidence. Definition and simple example.
● Frequentist approache(s)
● Bayesian intervals
● Likelihood intervals
● The „CLs” method 

● Closing remarks
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The problem...
For a given „measurement”, 

determine a confidence interval or a limit

?

When to go for one
or the other ?

How do we DEFINE the interval/limit ?
How to INTERPRET the result ?
What are the limitations of the various approaches ?

Very lively field of research !
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The difficulty...

The likelihood of 
1
 is higher 

than the one of 
2
 -> favor 

1
.

The measurement x is more than
2 appart in the 

1
 hypothesis.

-> favor 
2
.

This will naturally lead to very 
different confidence intervals, 
depending on the chosen approach.

As a simple example we imagine an observation x of a variate (random variable)
X and a probability distribution function (pdf) f (X|θ) depending on an unknown
parameter θ which we estimate from x. How should we select the range of parameters 
which we consider compatible with data ?
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Calculating significance
● We are interested by the 

„probability to be wrong”

● p-value is the probability to sit in the tail.
● Expressed as quantiles of a normal 

distribution (sometimes known a Z-
value).

This defines single-sided 
significance.

Note: for a measurement where deviations are possible on each side, 
consider double-sided significance (factor 2).

Discovery ? 5!
HEP tradition... very subjective.

P = 2.87 10-7 

Might be too much for known processes.
● CMS „saw” the jj with few std deviations.

Might be too low for totaly unexpected effects
● SETI signal ? Telepathy ?
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Simple example: Pearson's test
● Pearson's ² test

● Calculate ² of data w.r.t. null 
hypothesis (s=0)

● The P-value is given by

● That P(²) probability interpretation is only valid for normal 
sampling. This is not valid if the CLT does not hold.

● If the n
i
 are not Gaussian distributed, p will not follow a ² 

pdf.

n
i

fnull

Computed with TMath::Prob()
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P-value
The p-value calculation made before assumes a ² pdf.

If it's not the case, you will get a wrong value !

Actual distribution

MC calibration possible.
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Calibration
Will usually get worse in the tails !!!
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Significance at high Z
● Calibrating any method at high Z can be very expensive at high Z

● Excludes practical application of the method.

● In the recent years, lots of significance calculations on MC (Higgs, 
susy, LEDS, ...) 

● Calculation depends on the problem. Cannot be done once for all.

● Other approaches often used, e.g. Sideband substraction.

● Example:

● Signal region: Nobs = s+b = 11

● Sideband region: N'obs = t.b = 25 (t=18/2)

● Less sensitivity, but can be applied to high 
significance.

● There, b is a nuisance parameter

– Random variable correlated with the 
signal, but of no peculiar interest.
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Profile likelihood (1)

Easy to figure out in the case of a fit with signal and background shapes

Profile likelihood ratio is one possible way to cope with nuisance 
parameters. It is constructed from the likelihood function as:

Minimum of L  for a 
given value of s.

Global minimum of L

Parameters of the shape
functions are additional 
nuisance parameters !
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Profile Likelihood (2)

This is one example of a whole class of methods... let's be more general...
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Confidence belt

For each possible value of the parameter 
, we fix a probability interval [X

1
(),X

2
()] 

such that:

For an observation x, one then finds 
low

,
high

 

such that x
1
(

low
)=x

2
(

high
)=x

Coverage: In statistics, the coverage probability of a confidence interval is the 
proportion of the time that the interval contains the true value of interest. 
If a large number n of experiments perform 
measurements of a parameter with confidence 
level α, in the limit n→∞, the fraction α of the 
limits has to contain the true value of the 
parameter inside the confidence limits.

This is called „Neyman's construction”.
Whatever the values of the parameters realized in nature are, measurements will 
produce with probability α a confidence contour which contains these parameters.
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Toy MC construction
● The confidence belt can be constructed from toy Monte Carlo 

events, for cases where no analytical calculation is possible.

W. Verkerke
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Classical confidence limits

There are many ways to 
define the interval.
Some popular choices are :

Which one is the best ?

No single response. It might depend on the
application.
That's why one should always precise how 
the interval has been constructed.

Let's look at the options in more details...

For each possible value of the parameter , we fix a 
probability interval [X

1
(),X

2
()] such that:

For an observation x, one then finds 
low

,
high

 such that x
1
(

low
)=x

2
(

high
)=x
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Central intervals
● This is the standard choice

● For long, adviced by the PDG

● Invariant against parameter 
changes

● Restricted to the case of one
variate and one parameter

● The obvious choice for the parameter estimate is 
the median of the likelihood distribution
●  This is the limit 0 of the interval, which often doesn't 

coïncide with the maximum likelihood value.
● Note that it often differs from the maximum likelihood 

estimate (mode of the distribution)
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Equal probability density intervals

● Often shorter and less biased.
● Is applicable to multidimensional cases.
● Coincide to the central intervals for symmetric 

distributions.
● NOT invariant under variate transformations

Equal probability density intervals are 
obtained by taking points of same pdf 
on each side of the measurement, 
such that the integral in between is .
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Min size & symmetric intervals

Minimal size

Symmetric

● Minimal size intervals
● Attractive at first.
● Very difficult to compute, if 

possible at all.
● Depends on the parameter 

choice.

● Symmetric intervals
● Easy to handle (symmetric 

errors)
● Difficult to compute.
● Depends on the parameter 

choice.



C. Delaere - Analysis Methods 131

Likelihood ratio ordering
Exemple:Additional motivation: try to minimize 

the probability to contain wrong 
parameter values.

Class of interval: 
Most Selective unbiased (MSU)

Define:


best

: Maximum likelihood estimate 
for a fictious observation X.

Usually shorter than the central intervals
Usually close the likelihood intervals

The interval is then defined by R(X
1
|) = R(X

2
|).  It requires a significant 

programming effort and large CPU, and in some pathological cases can 
lead to non-continuous intervals. 
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Upper and lower limits
● The classical approach to upper and lower limits is to 

quote the value such that 
P(X>X

1
|)= 1- or P(X<X

2
|)= 1-

● The physicist has to decide, preferably before looking at 
the data, wether to produce a confidence interval or a 
limit.

● Most common case: Poisson distributed signals in the 
presence of background.
● Discrete pdf -> overcoverage 

cannot be avoided
● Common case for searches: 

no observation -> 90%CL limit on 
the mean in this case is 2.3 events, 
in the absence of background.
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Upper limit for the Poisson case
Assuming the background expectation b is precisely known the probability to find k 
events (background plus signal) is

If the background follows a Poisson distribution too, 

Solving the last equation for µ, we get the upper limit with confidence α. 

Problem: b ↗ implies that the limit ↘, this contradicts the intuition. Still, this 
is correct from the frequentist point of view. Also, background fluctuations 
might lead to negative or zero-length limits.

Then the probability to find less than or equal to n events is

Possible solution: renormalization of the background
(„Zech's modified frequentist approach”)

Coverage is NOT
what you could think !
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Classical approach: problem 1
● External constraints

● Classical interval & limits do not behave properly in the presence 
of constraints on the parameter space.

● Example 2: low resolution 
measurement in a 
constrained narrow region.

● Example 1: measurement in 
a non-physical region
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Classical approach: problem 2
● When to go for a limit? When to go for a confidence interval ?

● No problem when decided a priori
● In practice, driven by data (is there a visible signal?)

– In that case the coverage is not granted !

● Example: Flip-flopping:

● Consider a physical positive quantity (mass?) measured with a 
Gaussian resolution.

● Policy: If the result x is less than 3, 
state a limit. Otherwise, state a central 
confidence interval. If one measure 
negative values, we will pretend 0 when 
quoting the confidence interval.

For =2.0, the acceptance interval
contains only 85% of P(x|)
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The Unified approach

classical unified

● Build a classical interval using the likelihood ratio ordering, 
with the additional constrain that 

best
 sits in the physically 

allowed domain.

● Whenever one of the bounds is unphysical, go for a upper or 
lower limit.

Removes the undercoverage problem due to the interval<->limit choice
Reduces the unpleasant behavior for downwards fluctuations of background

(Feldman & Cousins)
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Problems of the unified approach
● Two-sided constraints

● Can produce at the same 
time upper & lower limits. 
Leads to complete 
coverage.

● External constraint & 
distribution with tails

● Does not change the 
situation for upper Poisson 
limits in the presence of 
background.

● Correct from a frequentist 
point of view.

● Wrong from a bayesian 
point of view.

2 gaussians

2 gaussians

Breit-Wigner
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Bayesian intervals

The prior density π
θ
 has to guarantee that the normalization integral is finite. 

Otherwise it's free.

Bayesians treat parameters as random variables. The combined probability 
density f(X, θ) of the variate X and the parameter θ can be conditioned on the 
outcome of one of the two variates using Bayes theorem:

Definition of the Bayesian limit:  ~same freedom as in 
the frequentist case.

● quote the mean and the variance of the parameter
● compute intervals of a given probability (central, 

symmetric, ...)

Prior: uniform ? -> dependency on parameter choice
Fisher information ? (depends on the measurement resolution, ...)

lack of standardization
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Bayes near unphysical regions
● Simple prescription:

Given previous 
measurement, 
excluded region
put as prior :

X

● Easy to compute
● Requires the 

likelihood & ROI.

● Gives robust 
confidence 
intervals/limits.
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Likelihood intervals

Difficulties:
● Digital measurements have constant likelihood 

functions and cannot be handled.
● The error limits for functions with long tails (like the 

Breit-Wigner pdf) are misleading.
● When the likelihood function has its mathematical 

maximum outside the physical region (Lmax is then at 
the edge of the physical region), the resulting one-
sided likelihood ratio interval for ∆ = 0.5 may be 
unreasonably short.

● Motivation 1: „Likelihood principle”: says that all the 
information is contained in the likelihood function.

● ~ Bayes with flat prior

Prescription:
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The CLs method for limits
● Equivalent method of constructing confidence intervals: 

consider a test of the hypothesis that the parameter’s true 
value is θ. One then excludes all values of θ where the 
hypothesis would be rejected at a significance level <α. 

● One such method is the CLs method, used by the LEP Higgs 
group to assess limits on the Higgs boson mass.

● One defines the test statistics as -2lnQ with Q = L(s+b)/L(b)
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The CLs method for limits

The use of 
likelihood makes 
the combination 

easy.

Favors 
signalFavors 

no signal

CLb tells you about the excess
w.r.t. Background-only hypothesis.
Here a 2 effect.

To obtain the limit, 
CLs=CLs+b/CLb is used as an extension 
of Zech's modified frequentist approach.

P(m
H
<114.1)<5%.

No information about P(m
H
>114.1) !
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Comparing methods: coverage
● Coverage is a pure 

frequentist concept.
● Still usefull to compare 

methods.
● Here we see the 

comparison of coverage 
for a counting experiment 
(Poisson pdf) with and 
without background, for 
Feldmann-Cousins and 
for the Bayesian 
approach. 
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Classical, Bayesian, Likelihood...
● Frequentist confidence intervals

● Provide ‘summary of information content’ of measurement
● Problems and misunderstandings for low stat / near unphysical 

regions

● Bayesian intervals

● Support physical interpretation of result.
● Priors, interpretation are mixed blessing

● Likelihood intervals

● Good coverage properties for simple cases
● Really considered as a 3rd way in recent days. Popular in HEP 

statistics.
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Back to the beginning...
● Which definition to prefer ?

● No definitive answer...
● Classical approach definitively has deficiencies and should be 

avoided in potentially dangerous cases (low statistics, 
measurement near allowed range, etc.).

● Unified (Feldman-Cousins) approach solves most of the 
problems of the classical approach. This is why it is often 
recommended (and used by most collaborations).
– Still it has deficiencies that must not be forgotten

● Bayesian approach is elegant and simple to interpret, but suffers 
from the freedom in the definition of the prior. Flat prior is often 
not justified and the method might induce undercoverage. 

1.Check with your collaboration.
2.Be convinced yourself, and be able to explain your approach
3.It's good practice to verify the sensitivity on the method.
One may choose to comunicate an interval with good 
frequentist properties, and then to draw conclusions using 
Bayesian statistics. The two part should then be clearly separated.
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Outline
● Probability and Statistics, basic concepts
● Monte Carlo techniques
● Event classification
● Parameter estimation
● Limits, confidence intervals, significance
● Closing remarks
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Closing remarks
● As announced, we only scratched the surface.

● Despite what we could think, Probability and statistics is a lively field.

● Many improvements in the last years

● Feldman-Cousins

● Increased consideration for Bayesian techniques

● Better random number generators

● Boosted decision trees

● ...

● Good tools are now available for the physicist (TMVA, RooStat, RooFit, ...)

● Things change quickly: stay tuned, follow the progress on preprint servers 
and journals, get in touch with the experts in your experiment.

● Before all, convince yourself (and others) that you are using the best 
approach!
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