Introduction to Quantum Field Theory and QCD Lecture 3 \& 4

Darren Forde CERN \& NIKHEF

BND Summer School 2010 Oostende, Belgium, Sept 6-17th 2010

Lecture 3

- Before moving on to interacting theories there is a second type of field we want to learn how to quantise.
- The Dirac field.
- Dirac Spinors.
- Quantising the Dirac Field.
- The Dirac Propagator.

Spin 0

- We have seen how to quantise the Klein-Gordon equation for a real scalar field.
- This describes particles of spin 0.
- The field is invariant under Lorentz transformations,

$$
\phi(x) \rightarrow \phi^{\prime}(x)=\phi\left(\Lambda^{-1} x\right)
$$

- In nature most particles carry spin and so we require fields that carry higher degrees of spin.

Dirac Equation

- The Dirac field will give rise to particles of spin I/2.
- This field will transform differently under a Lorentz transformation. In general a field will transform as,

$$
\phi^{a}(x) \rightarrow D[\Lambda]_{b}^{a} \phi^{b}\left(\Lambda^{-1} x\right) \quad D\left[\lambda_{1}\right] D\left[\lambda_{2}\right]=D\left[\lambda_{1} \lambda_{2}\right]
$$

- The equation of motion for the Dirac field is given by,

$$
\left(i \gamma^{\mu} \partial_{\mu}-m\right) \Psi(x)=0
$$

- This equation is first order rather than second order as the KG equation is, but is still Lorentz invariant.

γ-Matrices

$$
\left(i \gamma^{\mu} \partial_{\mu}-m\right) \Psi(x)=0
$$

- The γ-matrices are 4×4 matrices of the following form

The 2×2 identity matrix

$$
\gamma_{0}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \gamma_{i}=\left(\begin{array}{cc}
0 & \sigma_{i} \\
-\sigma_{i} & 0
\end{array}\right)
$$

- The σ_{i} are the 2×2 Pauli matrices.

$$
\sigma_{0}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \quad \sigma_{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad \sigma_{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \quad \sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

- They satisfy $\left\{\sigma^{i}, \sigma^{j}\right\}=2 \delta^{i j}$.

Anti-commutation relations

Properties of γ-Matrices

- The γ-matrices satisfy the Clifford Algebra.

$$
\begin{aligned}
& \left\{\gamma^{\mu}, \gamma^{\nu}\right\}=\gamma^{\mu} \gamma^{\nu}+\gamma^{\nu} \gamma^{\mu}=2 g^{\mu \nu} \mathbf{1}_{g^{\mu \mu}=}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right) \\
& \text { n we have } \mu \neq v \text { then }
\end{aligned}
$$

$$
\gamma^{\mu} \gamma^{\nu}=-\gamma^{\nu} \gamma^{\mu} \quad\left(\gamma^{0}\right)^{2}=1 \quad\left(\gamma^{i}\right)^{2}=-1
$$

- There are many different possible representations of the gamma matrices, they are all equivalent via unitarity transforms.
- The representation we will use is known as the Weyl representation.

Dirac Spinors
 $$
\left(i \gamma^{\mu} \partial_{\mu}-m\right) \Psi(x)=0
$$

- The Dirac equation describes the motion of a Spinor field Ψ.
- Spinors do not transform as Lorentz scalars, instead they transform under the $\Lambda_{1 / 2}$ representation of the Lorentz group,

$$
\Psi(x) \rightarrow \Lambda_{1 / 2} \Psi\left(\Lambda^{-1} x\right)
$$

- Where Λ is the Lorentz transformation of a 4-vector,

$$
x^{\mu} \rightarrow \Lambda_{\nu}^{\mu} x^{\nu}
$$

- The gamma matrices transform as,

$$
\Lambda_{1 / 2}^{-1} \gamma^{\mu} \Lambda_{1 / 2}=\Lambda_{\nu}^{\mu} \gamma^{\nu}
$$

Lorentz Transformations

- It is straightforward to see that the Dirac equation is invariant under Lorentz transformations,

$$
\left(i \gamma^{\mu} \partial_{\mu}-m\right) \Psi(x)=0
$$

- Lagrangians are also invariant,

$$
\mathcal{L}\left(x_{\mu}\right) \rightarrow \mathcal{L}\left(\left(\Lambda^{-1}\right)_{\mu}^{\nu} x_{\nu}\right)
$$

- As Lagrangian's are invariant under Lorentz transformations then we need to work out how to write down products of Dirac spinors that form Lorentz scalars.

First Attempt at a Spinor Product

- Our first guess might be $\Psi^{\dagger} \Psi$.
- This does not work as it transforms as,

$$
\Psi^{\dagger} \Lambda_{1 / 2}^{\dagger} \Lambda_{1 / 2} \Psi
$$

- $\Lambda_{1 / 2}$ is not Unitary,

$$
\Lambda_{1 / 2}^{\dagger} \Lambda_{1 / 2} \neq 1
$$

- So $\Lambda_{1 / 2}^{\dagger} \neq \Lambda_{1 / 2}^{-1}$ and $\Psi^{\dagger} \Psi$ does not transform as a scalar.

Second Attempt at a Spinor Product

- We need to consider a slightly more complicated expression.
- If we use γ_{0} we can define the quantity, which we call the Dirac Adjoint,

$$
\bar{\Psi}=\Psi^{\dagger} \gamma^{0} \quad \gamma_{0}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right)
$$

- Due to the properties of γ_{0}, this transforms as,

$$
\bar{\Psi} \rightarrow \bar{\Psi} \Lambda_{1 / 2}^{-1}
$$

- We can then define the following Lorentz invariant bilinear,

$$
\bar{\Psi} \Psi
$$

Other Bilinear Covariants

- We can build up other objects as well,

$$
\bar{\Psi} \gamma^{\mu} \Psi
$$

- This transforms as Lorentz vector,

$$
\bar{\Psi} \gamma^{\mu} \Psi \rightarrow \Lambda_{\nu}^{\mu} \bar{\Psi}\left(\Lambda^{-1} x\right) \gamma^{\nu} \Psi\left(\Lambda^{-1} x\right)
$$

- So we can treat the gamma matrices as 4 -vectors. Contracting it with 4 -vectors gives Lorentz scalars.
- Similarly we can write down an object that transforms as a Lorentz tensor,

$$
\bar{\Psi} \gamma^{\mu} \gamma^{\nu} \Psi
$$

The Dirac Lagrangian

- It is now possible to build up a Lagrangian for the Dirac theory using these Bilinear objects,

$$
\mathcal{L}_{\text {Dirac }}=\bar{\Psi}\left(i \gamma^{\mu} \partial_{\mu}-m\right) \Psi
$$

- From which the Dirac equation, is readily reproduced using the Euler-Lagrange equation with $\bar{\Psi}$.
- The Dirac spinor is a four component object, how do we go about writing these components down?

Spinor Representations

- Our starting point is to note that the Dirac representation of the spinors is reducible.
- The four component Dirac spinor can be written as two 2-component spinors,

$$
\Psi=\binom{\Psi_{L}}{\Psi_{R}}
$$

- These are the left-handed, Ψ_{L}, and righthanded, Ψ_{R}, Weyl spinors.

Rewriting the Dirac Eq

- Using this representation of the spinors we can rewrite the Dirac equation,

$$
\left(i \gamma^{\mu} \partial_{\mu}-m\right) \Psi=\left(\begin{array}{cc}
-m & i\left(\partial_{0}+\vec{\sigma} \cdot \vec{\nabla}\right) \\
i\left(\partial_{0}-\vec{\sigma} \cdot \vec{\nabla}\right) & -m
\end{array}\right)\binom{\Psi_{L}}{\Psi_{R}}=0
$$

- If we set $m=0$ then we see that these massless spinors decouple into two equations, one for the lefthanded spinors and one for the right-handed spinors,

$$
\begin{array}{lc}
i\left(\partial_{0}+\vec{\sigma} \cdot \vec{\nabla}\right) \Psi_{L}=i \sigma \cdot \partial \Psi_{L}=0 & \sigma=(1, \vec{\sigma}) \\
i\left(\partial_{0}-\vec{\sigma} \cdot \vec{\nabla}\right) \Psi_{R}=i \bar{\sigma} \cdot \partial \Psi_{R}=0 & \bar{\sigma}=(1,-\vec{\sigma})
\end{array}
$$

Y_{5}

- For our particular choice of the gamma matrices we produced a Chiral representation of the spinors.
- To do this for any choice of representation we can take advantage of a useful object,

$$
\gamma^{5}=-i \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3}
$$

- This satisfies the relations,

$$
\left\{\gamma_{5}, \gamma_{\mu}\right\}=0 \quad\left(\gamma_{5}\right)^{2}=1
$$

- In the Weyl representation γ_{5} is given by,

$$
\gamma^{5}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Helicity Projection

- Using this we can construct a projection operator,

$$
P_{ \pm}=\frac{1}{2}\left(1 \pm \gamma^{5}\right)
$$

- This satisfies,

$$
P_{ \pm}^{2}=P_{ \pm} \quad P_{+} P_{-}=0
$$

- We can then define the chiral states as,

$$
\Psi_{ \pm}=P_{ \pm} \Psi
$$

$$
\begin{aligned}
& \Psi_{+}=\Psi_{R} \\
& \Psi_{-}=\Psi_{L}
\end{aligned}
$$

Notation

- There is an alternative notation that we will find useful later on,

$$
\left\langle p^{-}\right|=\Psi_{-}, \quad\left\langle p^{+}\right|=\Psi_{+}
$$

- When writing down combinations of gamma matrices contracted with 4 -vectors there is the compact notation

$$
\not \phi=\gamma^{\mu} a_{\mu}
$$

Solving the Dirac Equation

- Next we want to write down forms for the spinors that satisfy the Dirac equation.
- To do this start with an ansatz for the solution,

$$
\Psi=u(\vec{p}) e^{-i p \cdot x}
$$

- $u(\vec{p})$ is a four component spinor and all the space time dependance is now in the exponential.
- The Dirac equation can then be written as,

$$
(\not p-m) u(\vec{p})=\left(\begin{array}{cc}
-m & p_{\mu} \sigma^{\mu} \\
p_{\mu} \bar{\sigma}^{\mu} & -m
\end{array}\right) u(\vec{p})=0
$$

Solutions of the Dirac

Equation

- Using $(p \cdot \sigma)(p \cdot \bar{\sigma})=m^{2}$ we can then write the positive frequency solution $u(\vec{p})$,

$$
u(\vec{p})=\binom{\sqrt{p \cdot \sigma} \xi}{\sqrt{p \cdot \bar{\sigma} \xi}}
$$

- Here ξ is a two component object normalised so that $\xi^{\dagger} \xi=1$.
- Similarly there is a a negative frequency solution for, $\Psi=v(\vec{p}) e^{i p \cdot x}$, which satisfies the Dirac equation,

$$
(\not p+m) v(\vec{p})=\left(\begin{array}{cc}
m & p_{\mu} \sigma^{\mu} \\
p_{\mu} \bar{\sigma}^{\mu} & m
\end{array}\right) v(\vec{p})=0 \Rightarrow v(\vec{p})=\binom{\sqrt{p \cdot \sigma} \eta}{-\sqrt{p \cdot \bar{\sigma}} \eta}
$$

Helicity

- The helicity is the projection of the angular momentum in the direction of momentum.
- For massless particles this will be the same as the spin.
- We can compute the helicity of the particle using the operator,

$$
h=\frac{1}{2} \frac{k_{i}}{|\vec{k}|}\left(\begin{array}{cc}
\sigma^{i} & 0 \\
0 & \sigma^{i}
\end{array}\right)
$$

- This acting on the positive/negative massless chiral solutions to the Dirac equation will give $\pm(I / 2)$.

Spinor Products

- Write these spinor solutions u and v in terms of a component basis for the ξ^{s} and η^{s}, for example

$$
\xi^{1}=\binom{1}{0}, \quad \xi^{2}=\binom{0}{1}
$$

- We can then write down a spinor inner product,

$$
\begin{aligned}
u^{r}(\vec{p}) \cdot u^{s}(\vec{p}) & =\left(\xi^{r \dagger} \sqrt{p \cdot \sigma}, \xi^{r \dagger} \sqrt{p \cdot \bar{\sigma}}\right)\binom{\sqrt{p \cdot \sigma} \xi^{s}}{\sqrt{p \cdot \bar{\sigma}} \xi^{s}} \\
& =\xi^{r \dagger}(p \cdot \sigma) \xi^{s}+\xi^{r \dagger}(p \cdot \bar{\sigma}) \xi^{s}=2 \xi^{r^{\dagger}} p_{0} \xi^{s}=2 p_{0} \delta^{r s}
\end{aligned}
$$

Spinor Products

- As well as

$$
\begin{aligned}
\bar{u}^{r}(\vec{p}) \cdot u^{s}(\vec{p}) & =\left(\xi^{r \dagger} \sqrt{p \cdot \sigma}, \xi^{r \dagger} \sqrt{p \cdot \bar{\sigma}}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\binom{\sqrt{p \cdot \sigma} \xi^{s}}{\sqrt{p \cdot \bar{\sigma}} \xi^{s}} \\
& =2 m \delta^{r s}
\end{aligned}
$$

- There are similar result for the v spinors.
- The remaining spinor inner products of u and v give zero.
0_{2} The spinor outer product is, ${ }_{2}$
$\sum_{s=1}^{{ }_{2}} u^{s}(\vec{p}) \bar{u}^{s}(\vec{p})=\not p+m \sum_{s=1}^{s} v^{s}(\vec{p}) \bar{v}^{s}(\vec{p})=\not p-m$

Quantising the Dirac field

- We want to quantise the Dirac Lagrangian,

$$
\mathcal{L}=\bar{\Psi}\left(i \gamma^{\mu} \partial_{\mu}-m\right) \Psi
$$

- We will proceed step by step as we did for the scalar field.
- First we note that the conjugate momentum is simply, $\pi_{\Psi}=i \Psi^{\dagger}$, because the Dirac equation is a first order equation.

Quantising the Dirac field

- Our next step would be to promote the field Ψ and its conjugate momentum $i \Psi^{\dagger}$ to operators.
- Taking out inspiration from the scalar case we assume the form of the operator Ψ can be written down in terms of ladder operators (in the Schrodinger picture),
$\Psi(x)=\int \frac{d^{3} p}{(2 \pi)^{3}} \frac{1}{\sqrt{2 \omega(\vec{p})}} \sum_{s=1,2}\left(a^{s}(\vec{p}) u^{s}(\vec{p}) e^{i \vec{p} \cdot \vec{x}}+b^{s i}(\vec{p}) v^{s} e^{-\vec{p} \cdot \vec{x}}\right)$
$\Psi^{\dagger}(x)=\int \frac{d^{3} p}{(2 \pi)^{3}} \frac{1}{\sqrt{2 \omega(\vec{p})}} \sum_{s=1,2}\left(a^{s \dagger}(\vec{p}) u^{s}(\vec{p}) e^{i \vec{p} \cdot \vec{x}}+b^{s}(\vec{p}) v^{s} e^{-\vec{p} \cdot \vec{x}}\right)$

Ladder Operators

- There are two ladder operators here
- $a^{s}(\vec{p})$ associated with the positive frequency states $u^{s}(\vec{p})$
- $b^{s}(\vec{p})$ associated with the negative frequency states $v^{s}(\vec{p})$
- As before the vacuum is defined to be,

$$
a(\vec{p})^{s}|0\rangle=0|0\rangle=0, \quad b(\vec{p})^{s}|0\rangle=0|0\rangle=0
$$

Commutation Relations?

- The next step would then be to impose equal time commutation relations on Ψ and Ψ^{\dagger}

$$
\left[\Psi_{a}(\vec{x}), \Psi_{b}^{\dagger}(\vec{y})\right]=\delta^{(3)}(\vec{x}-\vec{y}) \delta_{a b}
$$

- The ladder operators would then satisfy corresponding commutation relations to satisfy these.
- Spinors are fermions and so obey Fermi-Dirac statistics.
- Dirac fields anti-commute rather than commute.
- Commutation relations do not correctly quantise the theory, we would would end up with negative energy states among other problems.

Anti-commutation Relations

- As the Dirac field anti-commutes then we will instead impose anti-commutation relations on the operators Ψ and $\Psi{ }^{\dagger}$,
$\left\{\Psi_{a}, \Psi_{b}^{\dagger}\right\}=\delta^{(3)}(\vec{x}-\vec{y}) \delta_{a b}, \quad\left\{\Psi_{a}, \Psi_{b}\right\}=\left\{\Psi_{a}^{\dagger}, \Psi_{b}^{\dagger}\right\}=0$
- Similarly the ladder operators must also now satisfy anti-commutation relations,

$$
\begin{aligned}
& \left\{a_{r}(\vec{p}), a_{s}^{\dagger}(\vec{q})\right\}=(2 \pi)^{3} \delta_{r s} \delta^{(3)}(\vec{p}-\vec{q}) \\
& \left\{b_{r}(\vec{p}), b_{s}^{\dagger}(\vec{q})\right\}=(2 \pi)^{3} \delta_{r s} \delta^{(3)}(\vec{p}-\vec{q})
\end{aligned}
$$

The Hilbert Space

- We can show that the Ladder creation and destruction operators for the different types of spinor satisfy commutation relations with the Hamiltonian,

$$
\begin{aligned}
& {\left[H, b^{r}(\vec{p})\right] }=-\omega(\vec{p}) b^{r}(\vec{p})\left[H, b^{r \dagger}(\vec{p})\right]=\omega(\vec{p}) b^{r \dagger}(\vec{p}) \\
& {\left[H, a^{r}(\vec{p})\right]=-\omega(\vec{p}) a^{r}(\vec{p})\left[H, a^{r \dagger}(\vec{p})\right]=\omega(\vec{p}) a^{r \dagger}(\vec{p}) }
\end{aligned}
$$

- We can therefore use them to build up the Hilbert Space of states as before,

$$
|\vec{p}, r\rangle=b^{r \dagger}(\vec{p})|0\rangle
$$

- From this we can see the Fermi-Dirac nature of the states,

$$
\left|p_{1}, p_{2}\right\rangle=a^{\dagger}\left(\vec{p}_{1}\right) a^{\dagger}\left(\vec{p}_{2}\right)|0\rangle=-a^{\dagger}\left(\vec{p}_{2}\right) a^{\dagger}\left(\vec{p}_{1}\right)|0\rangle=-\left|p_{2}, p_{1}\right\rangle
$$

- If we were to try to create two states of the same momentum we would have,

$$
a_{r}^{\dagger}(\vec{p}) a_{s}^{\dagger}(\vec{p})|0\rangle \equiv-a_{s}^{\dagger}(\vec{p}) a_{r}^{\dagger}(\vec{p})|0\rangle=0
$$

Dirac Hamiltonian

- The Hamiltonian of the Dirac Theory is given by,

$$
H=\int \frac{d^{3} p}{(2 \pi)^{3}} \sum_{s} \omega(\vec{p})\left(a_{s}^{\dagger}(\vec{p}) a_{s}(\vec{p})+b_{s}^{\dagger}(\vec{p}) b_{s}(\vec{p})\right)
$$

- This shows that all states produced have positive energy, as we desire.
- If we had carried on computing with commutation relations we would have a negative sign, allowing us to create an infinite number of negative energy states.
- This result shows a defining feature of these theories, we must use anti-commutation relation for Fermions and commutation relations for Bosons. If we want to preserve Lorentz invariance and causality as well as have only positive energies and norms.

Dirac Hamiltonian

- The Hamiltonian of the Dirac Theory is given by,

$$
H=\int \frac{d^{3} p}{(2 \pi)^{3}} \sum_{s} \omega(\vec{p})\left(a_{s}^{\dagger}(\vec{p}) a_{s}(\vec{p})+b_{s}^{\dagger}(\vec{p}) b_{s}(\vec{p})\right)
$$

- This shows that all states produced have positive energy, as we desire.
- If we had carried on computing with commutation relations we would have a negative sign, allowing us to create an infinite number of negative energy states.
- This result shows a defining feature of these theories, we must use anti-commutation relation for Fermions and commutation relations for Bosons. If we want to preserve Lorentz invariance and causality as well as have only positive energies and norms.

Dirac Propagator

- Now that we have quantised the spinor field we want to write down its propagator.
- In the scalar case the propagator was derived from the commutator of two fields, in analogy we investigate the anti-commutator relations between two fields to get the spinor propagator.
- We wish to write down the Feynman propagator so we will start from the time ordered two particle correlation function,

$$
S_{F}(x-y)=\langle 0| T\{\Psi(x) \bar{\Psi}(y)\}|0\rangle
$$

Dirac Propagator

- As we are working with anti-commuting fields the Time ordering operation inserts a minus sign when we swap the order of the fields,

$$
\langle 0| T\{\bar{\Psi}(y) \Psi(x)\}|0\rangle=\left\{\begin{array}{cc}
\langle 0| \Psi(x) \bar{\Psi}(y)|0\rangle & x^{0}>y^{0} \\
\langle 0|-\bar{\Psi}(y) \Psi(x)|0\rangle & x^{0}<y^{0}
\end{array}\right.
$$

- These correlation functions can be written as,

$$
\begin{aligned}
\langle 0| \Psi_{a}(x) \bar{\Psi}_{b}(y)|0\rangle & =\int \frac{d^{3} p}{(2 \pi)^{3}} \frac{1}{2 \omega(\vec{p})} \sum_{s} u_{a}^{s}(p) \bar{u}_{b}^{s}(p) e^{-i p \cdot(x-y)} \\
& =\int \frac{d^{3} p}{(2 \pi)^{3}} \frac{1}{2 \omega(\vec{p})}(\not p+m) e^{-i p \cdot(x-y)} \\
& =\left(i व_{x}+m\right)_{a b} \int \frac{d^{3} p}{(2 \pi)^{3}} \frac{1}{2 \omega(\vec{p})} e^{-i p \cdot(x-y)}
\end{aligned}
$$

Dirac Propagator

- And for the other time ordering

$$
\langle 0|-\bar{\Phi}_{b}(y) \Phi_{a}(x)|0\rangle=\left(i \partial_{x}+m\right)_{a b} \int \frac{d^{3} p}{(2 \pi)^{3}} \frac{1}{2 \omega(\vec{p})} e^{i p \cdot(x-y)}
$$

- The expression inside the integral is just that of a real scalar propagator $\mathrm{D}(\mathrm{x}-\mathrm{y})$.
- Acting on this with the $i\left(\phi_{x}+m\right)$ operator gives the Dirac Feynman propagator,

$$
S_{F}(x-y)=i \int \frac{d^{4} p}{(2 \pi)^{4}} e^{-i p \cdot(x-y)} \frac{\not p+m}{p^{2}-m^{2}+i \epsilon}
$$

Dirac Propagator

- And for the other time ordering

$$
\langle 0|-\bar{\Phi}_{b}(y) \Phi_{a}(x)|0\rangle=\left(i \partial_{x}+m\right)_{a b} \int \frac{d^{3} p}{(2 \pi)^{3}} \frac{1}{2 \omega(\vec{p})} e^{i p \cdot(x-y)}
$$

- The expression inside the integral is just that of a real scalar propagator $\mathrm{D}(\mathrm{x}-\mathrm{y})$.
- Acting on this with the $i\left(\phi_{x}+m\right)$ operator gives the Dirac Feynman propagator,

$$
S_{F}(x-y)=i \int \frac{d^{4} p}{(2 \pi)^{4}} e^{-i p \cdot(x-y)} \frac{\not p+m}{p^{2}-m^{2}+i \epsilon}
$$

Summary

- We now know about Dirac Spinors their Lorentz transformation properties and how to write down solutions of the Dirac equation in terms of them.
- We can now Quantise the Dirac Field.
- We have derived the Dirac Propagator.

Lecture 4

- Introduce Interacting theories.
- The Interaction picture.
- Relate full fields to free fields.
- Wick's Theorem.

Interactions

- So far we have quantised non-interacting theories and derived their propagators.
- To compare against the real world we need to deal with interacting theories.
- The free particle states are no longer eigenstates of the Hamiltonian.
- This will make our lives more difficult as we cannot directly apply the simple procedure we used before.
- As a first step we will find it useful to split the Lagrangian into two pieces,

$$
\mathcal{L}=\mathcal{L}_{\text {kinetic }}+\mathcal{L}_{\text {int }}
$$

Splitting the Lagrangian $\mathcal{L}=\mathcal{L}_{\text {kinetic }}+\mathcal{L}_{\text {int }}$

- $\mathcal{L}_{\text {kinetic }}$ contains all the non-interacting, kinetic terms.
- $\mathcal{L}_{\text {int }}$ contains all the interacting terms.
- Typically these are non-linear combinations of local fields, i.e. terms of the type $\phi(x) \phi(x) \phi(x)$
- We will use as our main example ϕ^{4} theory,

$$
\mathcal{L}=\frac{1}{2}\left(\partial_{\mu} \phi\right)^{2}-\frac{1}{2} m^{2} \phi^{2}-\frac{\lambda}{4!} \phi^{4}
$$

Example Theory
 $$
\mathcal{L}=\frac{1}{2}\left(\partial_{\mu} \phi\right)^{2}-\frac{1}{2} m^{2} \phi^{2}-\frac{\lambda}{4!} \phi^{4}
$$

- The final term is the interaction term and has a coupling constant of λ.
- To perform computations within this theory we cannot proceed directly as in the case of the free field.
- To see this let us start with the simplest object we could compute, the two-point time ordered correlation function,

$$
\langle\Omega| T\{\phi(x) \phi(y)\}|\Omega\rangle
$$

Interacting Fields

$$
\langle\Omega| T\{\phi(x) \phi(y)\}|\Omega\rangle
$$

- In the free theory this object is the propagator.
- The ground state of the interacting theory $|\Omega\rangle$ is different from that of the free theory $|0\rangle$.
- We can no longer solve the theory for all time by directly using ladder operators and the analogy with SHO's.
- The full theory is too hard to solve completely we will instead take the tactic of computing what we can by relating it to the free theory.
- We will compute a perturbative expansion.

Evolving Interacting States

- Using the ladder operators we can write the scalar field Φ at a fixed time t_{0} as

$$
\phi\left(t_{0}, \vec{x}\right)=\int \frac{d^{3} p}{(2 \pi)^{3}} \frac{1}{\sqrt{2 \omega(\vec{p})}}\left(a(\vec{p}) e^{i \vec{p} \cdot \vec{x}}+a^{\dagger}(\vec{p}) e^{-i \vec{p} \cdot \vec{x}}\right)
$$

- To obtain this operator at different values of t we switch to the Heisenberg picture,

$$
\phi(x)=e^{i H t} \phi(\vec{x}) e^{-i H t}
$$

- Unlike for the free case we cannot just commute $e^{i H t}$ through Φ as

$$
H=H_{0}+H_{i n t}
$$

- The Hamiltonian, H, is now made up of two parts, $H_{\text {int }}$ is the Hamiltonian of the interacting term and H_{0} of the free field i.e. something we can solve.

The Interaction Picture

- To proceed we set the interaction term to zero, $\lambda=0$.
- We can then bring the exponential through Φ to get the time dependance of the field in this limit, $\left.\phi(x)\right|_{\lambda=0}=e^{i H_{0}\left(t-t_{0}\right)} \phi\left(t_{0}, \vec{x}\right) e^{-i H_{0}\left(t-t_{0}\right)} \equiv \phi_{I}(x)$
- We call $\phi_{I}(x)$ the field in the interaction picture.
- When λ is small this will still give the most important part of the time dependance of $\phi(x)$.

The Interaction Picture

- This is a halfway point between the Schrodinger picture and the Heisenberg picture, as now both states and operators evolve with time.
- In the interaction picture states evolve in time according to the interaction Hamiltonian,

$$
|\phi(t)\rangle_{I}=e^{i H_{0} t}|\phi(t)\rangle_{S}
$$

- Operators also evolve in time according to the free Hamiltonian.

$$
O_{I}(t)=e^{i H_{0} t} O_{S} e^{-i H_{0} t}
$$

Evolution operator

- So far this seems too limited, how do we relate the interaction picture fields to the full fields?
- Translate the interaction picture field into the Heisenberg picture of the full field Φ,

$$
\begin{aligned}
\phi(x) & =e^{i H\left(t-t_{0}\right)} e^{-i H_{0}\left(t-t_{0}\right)} \phi_{I}(x) e^{i H_{0}\left(t-t_{0}\right)} e^{-i H\left(t-t_{0}\right)} \\
& =U^{\dagger}\left(t, t_{0}\right) \phi_{I}(x) U\left(t, t_{0}\right)
\end{aligned}
$$

- This relates the full fields to the interaction picture fields via an evolution operator U,

$$
U\left(t, t_{0}\right)=e^{i H_{0}\left(t-t_{0}\right)} e^{-i H\left(t-t_{0}\right)}
$$

- The U operators are unitary and satisfy

$$
U\left(t_{1}, t_{2}\right) U\left(t_{2}, t_{3}\right)=U\left(t_{1}, t_{3}\right)
$$

Evolution Operators

- For this to be useful we need to express U in terms of the interaction picture fields ϕ_{I}.
- This can be done by noting that $\mathrm{U}\left(\mathrm{t}, \mathrm{t}_{0}\right)$ with the initial condition $\mathrm{U}\left(\mathrm{t}, \mathrm{t}_{0}\right)=1$ satisfies the Schrodinger equation,

$$
\begin{aligned}
i \frac{\partial}{\partial t} U\left(t, t_{0}\right) & =e^{i H_{0}\left(t-t_{0}\right)}\left(H-H_{0}\right) e^{-i H\left(t-t_{0}\right)} \\
& =e^{i H_{0}\left(t-t_{0}\right)}\left(H_{\mathrm{int}}\right) e^{-i H_{0}\left(t-t_{0}\right)} e^{i H_{0}\left(t-t_{0}\right)} e^{-i H\left(t-t_{0}\right)} \\
& =H_{I}(t) U\left(t, t_{0}\right)
\end{aligned}
$$

- Where $H_{I}(t)$ is the interaction Hamiltonian in the interaction picture, and is given by,

$$
H_{I}=e^{i H_{0}\left(t-t_{0}\right)}\left(H_{\mathrm{int}}\right) e^{-i H_{0}\left(t-t_{0}\right)}
$$

Solving the Evolution Operator

$$
i \frac{\partial}{\partial t} U\left(t, t_{0}\right)=H_{I}(t) U\left(t, t_{0}\right)
$$

- We now want to solve this equation.
- Doing this will lead to a perturbative expansion.
- We start from,

$$
U\left(t, t_{0}\right)=1+(-i) \int_{t_{0}}^{t} d t_{1} H_{I}\left(t_{1}\right) U\left(t_{1}, t_{0}\right)
$$

- Then we iterate this solution,

$$
U\left(t, t_{0}\right)=1+(-i) \int_{t_{0}}^{t} d t_{1} H_{I}\left(t_{1}\right)\left(1+(-i) \int_{t_{0}}^{t_{1}} d t_{2} H_{I}\left(t_{2}\right) U\left(t_{2}, t_{0}\right)\right)
$$

Solving the Evolution Operator

- If we keep on doing this we get a perturbative expansion,

$$
\begin{aligned}
U\left(t, t_{0}\right)=1 & +(-i) \int_{t_{0} t}^{t} d t_{1} H_{I}\left(t_{1}\right) \\
& +(-i)^{2} \int_{t_{0}}^{t_{1}} d t_{1} \int_{t_{0}}^{t_{1}} d t_{2} H_{I}\left(t_{1}\right) H_{I}\left(t_{2}\right) \\
& +(-i)^{3} \int_{t_{0}}^{t} d t_{1} \int_{t_{0}}^{t_{1}} d t_{2} \int_{t_{0}}^{t_{2}} d t_{3} H_{I}\left(t_{1}\right) H_{I}\left(t_{2}\right) H_{I}\left(t_{3}\right)+\ldots
\end{aligned}
$$

- With each time in order $t>t_{1}>t_{2}>\ldots>t_{0}$

Simplifying the Time Ordering

- We note that,

$$
\int_{t_{0}}^{t} d t_{1} \int_{t_{0}}^{t_{1}} d t_{2} H_{I}\left(t_{1}\right) H_{I}\left(t_{2}\right)=\frac{1}{2} \int_{t_{0}}^{t} d t_{1} \int_{t_{0}}^{t} d t_{2} T\left\{H_{I}\left(t_{1}\right) H_{I}\left(t_{2}\right)\right\}
$$

- This can be visualised,

Time Ordered Result

- As each field stands in time order then we can rewrite this in a more compact form,

$$
\begin{aligned}
& U\left(t, t_{0}\right)=1+(-i) \int_{t_{0}}^{t} d t_{1} H_{I}\left(t_{1}\right) \\
& \quad+\frac{(-i)^{2}}{2} \int_{t_{0}}^{t} \int_{t_{0}}^{t} d t_{1} d t_{2} T\left\{H_{I}\left(t_{1}\right) H_{I}\left(t_{2}\right)\right\} \\
& \quad+\frac{(-i)^{3}}{3!} \int_{t_{0}}^{t} \int_{t_{0}}^{t} \int_{t_{0}}^{t} d t_{1} d t_{2} d t_{3} T\left\{H_{I}\left(t_{1}\right) H_{I}\left(t_{2}\right) H_{I}\left(t_{3}\right)\right\}+\ldots
\end{aligned}
$$

- This can further be rewritten in the more compact notation,

$$
U\left(t, t_{0}\right)=T\left\{\exp \left[-i \int_{t_{0}}^{t} d t^{\prime} H_{I}\left(t^{\prime}\right)\right]\right\}
$$

- This time ordered exponential is defined as the timeordering of each term in the Taylor series.

The Ground State

- Now that we have expressed the field $\phi(x)$ as a perturbative expansion in terms of the free field we must now do something similar for the ground state of the interacting theory $|\Omega\rangle$.
- This can be done using the evolution operator U,

$$
|\Omega\rangle=U\left(t_{0},-T\right)|0\rangle
$$

- The state evolves from the ground state of the free theory at some time -T to a time t_{0}.
- We will eventually want to take T to be the infinite past.

Rewriting Correlation Functions

- Take the full field expressed in terms of fields in the interaction picture and the ground state written in terms of this as well gives,

$$
\begin{aligned}
& \langle\Omega| T\left\{\phi\left(x_{1}\right) \phi\left(x_{2}\right) \ldots \phi\left(x_{n}\right)\right\}|\Omega\rangle=\lim _{T \rightarrow \infty(1-i \epsilon)} \\
& \frac{\langle 0| T\left\{U\left(T, x_{1}\right) \phi\left(x_{1}\right) U\left(x_{1}, x_{2}\right) \phi\left(x_{2}\right) U\left(x_{2}, x_{3}\right) \ldots U\left(x_{n-1}, x_{n}\right) \phi\left(x_{n}\right) U\left(x_{n},-T\right)\right\}|0\rangle}{\langle 0| T\{U(T,-T)\}|0\rangle}
\end{aligned}
$$

- The denominator factor is to ensure the correct normalisation, we will see the role this term has a little bit later on.

Final Form

- Making use of the Time ordering operator we have our final compact form for a correlation function of our full theory (where we have dropped the I label for the interaction picture fields)

$$
\begin{aligned}
& \langle\Omega| T\left\{\phi\left(x_{1}\right) \phi\left(x_{2}\right) \ldots \phi\left(x_{n}\right)\right\}|\Omega\rangle \\
& \quad=\lim _{T \rightarrow \infty(1-i \epsilon)} \frac{\langle 0| T\left\{\phi\left(x_{1}\right) \phi\left(x_{2}\right) \ldots \phi\left(x_{n}\right) \exp \left[-i \int_{T}^{-T} d t H_{I}(t)\right]\right\}|0\rangle}{\langle 0| T\left\{\exp \left[-i \int_{T}^{-T} d t H_{I}(t)\right]\right\}|0\rangle}
\end{aligned}
$$

Computing Correlation Functions

- The problem of computing with the interaction theory has been reduced to calculating time ordered products of interaction picture fields,

$$
\langle 0| T\left\{\phi_{I}\left(x_{1}\right) \phi_{I}\left(x_{2}\right) \ldots \phi_{I}\left(x_{n}\right)\right\}|0\rangle
$$

- When we only have two fields this reduces to simply the propagator of the free theory.
- What about more general cases?
- We could expand out the Φ_{I} 's in terms of ladder operators and then compute from there.
- There is a better approach.

Wick's Theorem

- Instead we can apply Wick's theorem to simplify the amount of computation involved,

$$
T\left\{\phi_{I}\left(x_{1}\right) \phi_{I}\left(x_{2}\right) \ldots \phi_{I}\left(x_{n}\right)\right\}=: \phi_{I}\left(x_{1}\right) \phi_{I}\left(x_{2}\right) \ldots \phi_{I}\left(x_{n}\right):
$$

+ : all possible contractions :
- We define a contraction of the fields $\Phi\left(\mathrm{x}_{1}\right)$ and $\Phi\left(\mathrm{x}_{2}\right)$ to be the Feynman propagator of these fields $\mathrm{D}_{\mathrm{F}}\left(\mathrm{X}_{1}-\mathrm{X}_{2}\right)$.
- The N operator means the fields are normally ordered, rather than time ordered.

Field Components

- To understand this better let us break up the field into two pieces

$$
\begin{gathered}
\phi(x)=\phi^{+}(x)+\phi^{-}(x) \\
\phi^{+}(x)=\int \frac{d^{3} p}{(2 \pi)^{3}} \frac{1}{\sqrt{2 \omega(\vec{p})}} a(\vec{p}) e^{-i p \cdot x} \\
\phi^{-}(x)=\int \frac{d^{3} p}{(2 \pi)^{3}} \frac{1}{\sqrt{2 \omega(\vec{p})}} a^{\dagger}(\vec{p}) e^{+i p \cdot x}
\end{gathered}
$$

- Rewrite the time ordered product of fields.
- When $\mathrm{x}_{0}>\mathrm{y}_{0}$ we have

$$
\begin{aligned}
& T \phi(x) \phi(y)=\phi(x) \phi(y) \\
& \quad=\phi^{+}(x) \phi^{+}(y)+\phi^{-}(x) \phi^{+}(y)+\phi^{-}(y) \phi^{+}(x)+\left[\phi^{+}(x), \phi^{-}(y)\right]+\phi^{-}(x) \phi^{-}(y)
\end{aligned}
$$

Normal Ordering

$\phi^{+}(x) \phi^{+}(y)+\phi^{-}(x) \phi^{+}(y)+\phi^{-}(y) \phi^{+}(x)+\left[\phi^{+}(x), \phi^{-}(y)\right]+\phi^{-}(x) \phi^{-}(y)$

- This expression is now normally ordered, i.e. all "+" states are ordered before all "-" states. We denote this using the :: notation.
- Also we have picked up a commutator which is simply part of the propagator. For the time ordering $x_{0}>y_{0}$ we rewrite this expression as

$$
T \phi(x) \phi(y)=: \phi(x) \phi(y):+D(x-y)
$$

- For the other time ordering $y_{0}>x_{0}$ we get

$$
T \phi(x) \phi(y)=: \phi(x) \phi(y):+D(x-y)
$$

- Combining the two we get the simplest example of the general relationship,

$$
T \phi(x) \phi(y)=: \phi(x) \phi(y):+D_{F 4}(x-y)
$$

Contractions

$$
T \phi(x) \phi(y)=: \phi(x) \phi(y):+D_{F}(x-y)
$$

- A contraction is the commutator of two components of the field.
- This can then be related to a propagator.
- A second example is the 4 field correlation function

$$
\begin{aligned}
& T\left\{\phi_{1} \phi_{2} \phi_{3} \phi_{4}\right\}=: \phi_{1} \phi_{2} \phi_{3} \phi_{4}:+: D\left(x_{1}-x_{2}\right) \phi_{3} \phi_{4}:+: D\left(x_{1}-x_{3}\right) \phi_{2} \phi_{4}: \\
& \quad+: D\left(x_{1}-x_{4}\right) \phi_{2} \phi_{3}:+: D\left(x_{2}-x_{3}\right) \phi_{1} \phi_{4}:+: D\left(x_{2}-x_{4}\right) \phi_{1} \phi_{3}: \\
& \quad+: D\left(x_{3}-x_{4}\right) \phi_{1} \phi_{2}:+D\left(x_{1}-x_{2}\right) D\left(x_{3}-x_{4}\right) \\
& \quad+D\left(x_{1}-x_{3}\right) D\left(x_{2}-x_{4}\right)+D\left(x_{1}-x_{4}\right) D\left(x_{2}-x_{3}\right)
\end{aligned}
$$

Simpler Computation

- How has changing the ordering helped us?
- The Normal ordering operation moves all destructive ladder operators to the right. These will then annihilate against the ground state,

$$
: a_{1} a_{2}^{\dagger} a_{3}:|0\rangle=: a_{2}^{\dagger} a_{1} a_{3}:|0\rangle=0
$$

- Any operator which is not fully contracted will then vanish.
- This means that only the propagator terms will survive inside the correlation function.

Approaching Feynman Diagrams

- We have reduced the computation of a correlation function of a product of fields to the computation of the set of all ways of connecting the fields via propagators.
- In the four field case we have,

$$
T\left\{\phi_{1} \phi_{2} \phi_{3} \phi_{4}\right\}=D\left(x_{1}-x_{2}\right) D\left(x_{3}-x_{4}\right)
$$

$$
+D\left(x_{1}-x_{3}\right) D\left(x_{2}-x_{4}\right)+D\left(x_{1}-x_{4}\right) D\left(x_{2}-x_{3}\right)
$$

- This is beginning to look very much like Feynman diagrams as we can interpret these terms in a diagrammatic way.

Summary

- Introduce Interacting theories.
- Switched into the Interaction picture, to relate the full fields of the theory which we cannot compute to the free fields we can compute.
- We have seen that this leads to a perturbative expansion.
- We have the beginnings of a diagrammatic approach to computation through the use of Wick's Theorem.

