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Lecture 3

• Before moving on to interacting theories 
there is a second type of field we want to 
learn how to quantise.

• The Dirac field. 

• Dirac Spinors.

• Quantising the Dirac Field.

• The Dirac Propagator.
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Spin 0
• We have seen how to quantise the Klein-Gordon 

equation for a real scalar field. 

• This describes particles of spin 0.

• The field is invariant under Lorentz 
transformations,

• In nature most particles carry spin and so we 
require fields that carry higher degrees of spin.
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φ(x)→ φ�(x) = φ(Λ−1x)



Dirac Equation
• The Dirac field will give rise to particles of spin 1/2.

• This field will transform differently under a Lorentz 
transformation. In general a field will transform as,

• The equation of motion for the Dirac field is given 
by,

• This equation is first order rather than second order 
as the KG equation is, but is still Lorentz invariant.
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(iγµ∂µ −m) Ψ(x) = 0

φa(x)→ D [Λ]ab φb(Λ−1x) D[λ1]D[λ2] = D[λ1λ2]



γ-Matrices

• The γ-matrices are 4×4 matrices of the 
following form

• The σi are the 2×2 Pauli matrices.

• They satisfy                     .
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(iγµ∂µ −m) Ψ(x) = 0

σ0 =
�

1 0
0 1

�
σ1 =

�
0 1
1 0

�
σ2 =

�
0 −i
i 0

�
σ3 =

�
1 0
0 −1

�

γ0 =
�

0 1
1 0

�
, γi =

�
0 σi

−σi 0

�
The 2×2 identity matrix

{σi, σj} = 2δij

Anti-commutation relations
{A, B} = AB + BA



• The γ-matrices satisfy the Clifford Algebra.

• When we have µ≠ν then 

• There are many different possible representations 
of the gamma matrices, they are all equivalent via 
unitarity transforms.

• The representation we will use is known as the 
Weyl representation. 

 Properties of γ-Matrices
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{γµ, γν} = γµγν + γνγµ = 2gµν1

γµγν = −γνγµ (γ0)2 = 1 (γi)2 = −1

gµν =





1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1







Dirac Spinors
• The Dirac equation describes the motion of a Spinor field 
Ψ.

• Spinors do not transform as Lorentz scalars, instead they 
transform under the Λ1/2 representation of the Lorentz 
group,

• Where Λ is the Lorentz transformation of a 4-vector, 

• The gamma matrices transform as,
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(iγµ∂µ −m) Ψ(x) = 0

Ψ(x)→ Λ1/2Ψ(Λ−1x)

xµ → Λµ
νxν

Λ−1
1/2γ

µΛ1/2 = Λµ
νγν



Lorentz Transformations

• It is straightforward to see that the Dirac equation 
is invariant under Lorentz transformations, 

• Lagrangians are also invariant,

• As Lagrangian's are invariant under Lorentz 
transformations then we need to work out how to 
write down products of Dirac spinors that form 
Lorentz scalars.
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(iγµ∂µ −m) Ψ(x) = 0

L(xµ)→ L((Λ−1)ν
µxν)



First Attempt at a Spinor 
Product

• Our first guess might be       .

• This does not work as it transforms as,

• Λ1/2 is not Unitary,

• So                    and         does not transform 
as a scalar. 
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Ψ†Ψ

Ψ†Λ†
1/2Λ1/2Ψ

Λ†
1/2 �= Λ−1

1/2 Ψ†Ψ

Λ†
1/2Λ1/2 �= 1



Second Attempt at a Spinor 
Product

• We need to consider a slightly more complicated 
expression.

• If we use γ0 we can define the quantity, which we call 
the Dirac Adjoint,

• Due to the properties of γ0, this transforms as,

• We can then define the following Lorentz invariant 
bilinear,
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Ψ = Ψ†γ0

Ψ→ ΨΛ−1
1/2

ΨΨ

γ0 =
�

0 1
1 0

�
, γi =

�
0 σi

−σi 0

�



Other Bilinear Covariants

• We can build up other objects as well,

• This transforms as Lorentz vector,

• So we can treat the gamma matrices as 4-vectors. 
Contracting it with 4-vectors gives Lorentz scalars.

• Similarly we can write down an object that 
transforms as a Lorentz tensor,
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ΨγµΨ

ΨγµγνΨ

ΨγµΨ→ Λµ
νΨ(Λ−1x)γνΨ(Λ−1x)



The Dirac Lagrangian

• It is now possible to build up a Lagrangian for the 
Dirac theory using these Bilinear objects,

• From which the Dirac equation, is readily 
reproduced using the Euler-Lagrange equation 
with   .

• The Dirac spinor is a four component object, how 
do we go about writing these components down?
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LDirac = Ψ (iγµ∂µ −m) Ψ

Ψ



Spinor Representations

• Our starting point is to note that the Dirac 
representation of the spinors is reducible. 

• The four component Dirac spinor can be 
written as two 2-component spinors,

• These are the left-handed,     , and right-
handed,      , Weyl spinors.
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Ψ =
�

ΨL

ΨR

�

ΨL

ΨR



Rewriting the Dirac Eq

• Using this representation of the spinors we can 
rewrite the Dirac equation,

• If we set m=0 then we see that these massless 
spinors decouple into two equations, one for the left-
handed spinors and one for the right-handed spinors,
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i(∂0 + �σ · �∇)ΨL = iσ · ∂ΨL = 0

i(∂0 − �σ · �∇)ΨR = iσ · ∂ΨR = 0

σ = (1,�σ)

σ = (1,−�σ)

(iγµ∂µ −m)Ψ =
�

−m i(∂0 + �σ · �∇)
i(∂0 − �σ · �∇) −m

� �
ΨL

ΨR

�
= 0



γ5

• For our particular choice of the gamma matrices 
we produced a Chiral representation of the 
spinors. 

• To do this for any choice of representation we 
can take advantage of a useful object,

• This satisfies the relations,

• In the Weyl representation γ5 is given by,
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(γ5)2 = 1

γ5 =
�

1 0
0 −1

�

{γ5, γµ} = 0

γ5 = −iγ0γ1γ2γ3



Helicity Projection

• Using this we can construct a projection 
operator,

• This satisfies,

• We can then define the chiral states as,
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P± =
1
2
(1± γ5)

P 2
± = P± P+P− = 0

Ψ± = P±Ψ Ψ+ = ΨR

Ψ− = ΨL



Notation

• There is an alternative notation that we will 
find useful later on,

• When writing down combinations of gamma 
matrices contracted with 4-vectors there is the 
compact notation
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/a = γµaµ

�p−| = Ψ−, �p+| = Ψ+



Solving the Dirac Equation

• Next we want to write down forms for the 
spinors that satisfy the Dirac equation. 

• To do this start with an ansatz for the solution,

•        is a four component spinor and all the space 
time dependance is now in the exponential.

• The Dirac equation can then be written as,
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Ψ = u(�p)e−ip·x

u(�p)

(/p−m)u(�p) =
�
−m pµσµ

pµσµ −m

�
u(�p) = 0



Solutions of the Dirac 
Equation

• Using                          we can then write the positive 
frequency solution         , 

• Here ξ is a two component object normalised so 
that              .

• Similarly there is a a negative frequency solution 
for,                        , which satisfies the Dirac 
equation,
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u(�p)
u(�p) =

� √
p · σξ√
p · σξ

�

ξ†ξ = 1

Ψ = v(�p)eip·x

v(�p) =
� √

p · ση
−
√

p · ση

�

⇒(/p + m)v(�p) =
�

m pµσµ

pµσµ m

�
v(�p) = 0

(p · σ)(p · σ) = m2



Helicity

• The helicity is the projection of the angular 
momentum in the direction of momentum.

• For massless particles this will be the same as the 
spin.

• We can compute the helicity of the particle using 
the operator,

• This acting on the positive/negative massless chiral 
solutions to the Dirac equation will give ±(1/2).
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h =
1
2

ki

|�k|

�
σi 0
0 σi

�



Spinor Products

• Write these spinor solutions u and v in terms of 
a component basis for the ξs  and  ηs, for 
example

• We can then write down a spinor inner product, 
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ξ1 =
�

1
0

�
, ξ2 =

�
0
1

�

ur(�p) · us(�p) =
�
ξr†√p · σ, ξr†�p · σ

� � √
p · σξs

√
p · σξs

�

= ξr†(p · σ)ξs + ξr†(p · σ)ξs = 2ξr†p0ξ
s = 2p0δ

rs



Spinor Products

• As well as

• There are similar result for the v spinors.

• The remaining spinor inner products of u and v 
give zero.

• The spinor outer product is,
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ur(�p) · us(�p) =
�
ξr†√p · σ, ξr†�p · σ

� �
0 1
1 0

� � √
p · σξs

√
p · σξs

�

= 2mδrs

2�

s=1

us(�p)us(�p) = /p + m
2�

s=1

vs(�p)vs(�p) = /p−m



Quantising the Dirac field

• We want to quantise the Dirac Lagrangian,

• We will proceed step by step as we did for 
the scalar field. 

• First we note that the conjugate 
momentum is simply,              , because the 
Dirac equation is a first order equation.
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L = Ψ (iγµ∂µ −m) Ψ

πΨ = iΨ†



Quantising the Dirac field

• Our next step would be to promote the field Ψ and 
its conjugate momentum iΨ† to operators. 

• Taking out inspiration from the scalar case we 
assume the form of the operator Ψ can be written 
down in terms of ladder operators (in the 
Schrodinger picture),
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Ψ†(x) =
�

d3p

(2π)3
1�

2ω(�p)

�

s=1,2

�
as†(�p)us(�p)ei�p·�x + bs(�p)vse−�p·�x�

Ψ(x) =
�

d3p

(2π)3
1�

2ω(�p)

�

s=1,2

�
as(�p)us(�p)ei�p·�x + bs†(�p)vse−�p·�x�



Ladder Operators

• There are two ladder operators here 

•         associated with the positive 
frequency  states 

•         associated with the negative 
frequency  states  

• As before the vacuum is defined to be,
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as(�p)
us(�p)

vs(�p)
bs(�p)

a(�p)s|0� = 0|0� = 0, b(�p)s|0� = 0|0� = 0



Commutation Relations?

• The next step would then be to impose equal time 
commutation relations on Ψ and Ψ†

• The ladder operators would then satisfy corresponding 
commutation relations to satisfy these.

• Spinors are fermions and so obey Fermi-Dirac statistics. 

• Dirac fields anti-commute rather than commute.

• Commutation relations do not correctly quantise the 
theory, we would would end up with negative energy 
states among other problems.
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[Ψa(�x),Ψ†
b(�y)] = δ(3)(�x− �y)δab



Anti-commutation Relations

• As the Dirac field anti-commutes then we will instead 
impose anti-commutation relations on the operators 
Ψ and Ψ†,

• Similarly the ladder operators must also now satisfy 
anti-commutation relations,
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{Ψa,Ψ†
b} = δ(3)(�x− �y)δab, {Ψa,Ψb} = {Ψ†

a,Ψ†
b} = 0

{ar(�p), a†s(�q)} = (2π)3δrsδ
(3)(�p− �q),

{br(�p), b†s(�q)} = (2π)3δrsδ
(3)(�p− �q),



The Hilbert Space
• We can show that the Ladder creation and destruction operators 

for the different types of spinor satisfy commutation relations 
with the Hamiltonian,

• We can therefore use them to build up the Hilbert Space of states 
as before,

• From this we can see the Fermi-Dirac nature of the states, 

• If we were to try to create two states of the same momentum we 
would have,
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a†r(�p)a†s(�p)|0� ≡ −a†s(�p)a†r(�p)|0� = 0

[H, b
r(�p)] = −ω(�p)br(�p) [H, b

r†(�p)] = ω(�p)br†(�p)
[H, a

r†(�p)] = ω(�p)ar†(�p)[H, a
r(�p)] = −ω(�p)ar(�p)

|�p, r� = br†(�p)|0�

|p1, p2� = a†(�p1)a†(�p2)|0� = −a†(�p2)a†(�p1)|0� = −|p2, p1�



Dirac Hamiltonian
• The Hamiltonian of the Dirac Theory is given by,

• This shows that all states produced have positive energy, as we 
desire.

• If we had carried on computing with commutation relations 
we would have a negative sign, allowing us to create an infinite 
number of negative energy states.

• This result shows a defining feature of these theories, we must 
use anti-commutation relation for Fermions and commutation 
relations for Bosons. If we want to preserve Lorentz invariance 
and causality as well as have only positive energies and norms.
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H =
�

d
3
p

(2π)3
�

s

ω(�p)
�
a
†
s(�p)as(�p) + b

†
s(�p)bs(�p)

�



Dirac Hamiltonian
• The Hamiltonian of the Dirac Theory is given by,

• This shows that all states produced have positive energy, as we 
desire.

• If we had carried on computing with commutation relations 
we would have a negative sign, allowing us to create an infinite 
number of negative energy states.

• This result shows a defining feature of these theories, we must 
use anti-commutation relation for Fermions and commutation 
relations for Bosons. If we want to preserve Lorentz invariance 
and causality as well as have only positive energies and norms.
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H =
�

d
3
p

(2π)3
�

s

ω(�p)
�
a
†
s(�p)as(�p) + b

†
s(�p)bs(�p)

�



Dirac Propagator

• Now that we have quantised the spinor field we 
want to write down its propagator. 

• In the scalar case the propagator was derived 
from the commutator of two fields, in analogy 
we investigate the anti-commutator relations 
between two fields to get the spinor propagator. 

• We wish to write down the Feynman 
propagator so we will start from the time 
ordered two particle correlation function,
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SF (x − y) = �0|T{Ψ(x)Ψ(y)}|0�



Dirac Propagator

• As we are working with anti-commuting fields the 
Time ordering operation inserts a minus sign when 
we swap the order of the fields,

• These correlation functions can be written as,
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�0|T{Ψ(y)Ψ(x)}|0� =
�

�0|Ψ(x)Ψ(y)|0� x0 > y0

�0|− Ψ(y)Ψ(x)|0� x0 < y0

=
�

d3p

(2π)3
1

2ω(�p)
(/p + m)e−ip·(x−y)

= (i /∂x + m)ab

�
d3p

(2π)3
1

2ω(�p)
e−ip·(x−y)

�0|Ψa(x)Ψb(y)|0� =
�

d3p

(2π)3
1

2ω(�p)

�

s

us
a(p)us

b(p)e−ip·(x−y)



Dirac Propagator

• And for the other time ordering

• The expression inside the integral is just that of a 
real scalar propagator D(x-y).

• Acting on this with the                operator gives 
the Dirac Feynman propagator,
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�0| − Φb(y)Φa(x)|0� = (i /∂x + m)ab

�
d3p

(2π)3
1

2ω(�p)
eip·(x−y)

i(/∂x + m)

SF (x− y) = i

�
d4p

(2π)4
e−ip·(x−y) /p + m

p2 −m2 + i�



Dirac Propagator

• And for the other time ordering

• The expression inside the integral is just that of a 
real scalar propagator D(x-y).

• Acting on this with the                operator gives 
the Dirac Feynman propagator,
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�0| − Φb(y)Φa(x)|0� = (i /∂x + m)ab

�
d3p

(2π)3
1

2ω(�p)
eip·(x−y)

i(/∂x + m)

SF (x− y) = i

�
d4p

(2π)4
e−ip·(x−y) /p + m

p2 −m2 + i�



Summary

• We now know about Dirac Spinors their 
Lorentz transformation properties and how 
to write down solutions of the Dirac 
equation in terms of them.

• We can now Quantise the Dirac Field.

• We have derived the Dirac Propagator.
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Lecture 4

• Introduce Interacting theories.

• The Interaction picture.

• Relate full fields to free fields.

• Wick’s Theorem.
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Interactions
• So far we have quantised non-interacting theories and 

derived their propagators. 

• To compare against the real world we need to deal with 
interacting theories.

• The free particle states are no longer eigenstates of the 
Hamiltonian.

• This will make our lives more difficult as we cannot 
directly apply the simple procedure we used before.

• As a first step we will find it useful to split the 
Lagrangian into two pieces, 
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L = Lkinetic + Lint



Splitting the Lagrangian

•           contains all the non-interacting, 
kinetic terms. 

•       contains all the interacting terms.    

• Typically these are non-linear combinations 
of local fields, i.e. terms of the type 

• We will use as our main example    theory,

36

L = Lkinetic + Lint

Lint

Lkinetic

φ(x)φ(x)φ(x)

φ4

L =
1
2

(∂µφ)2 − 1
2
m2φ2 − λ

4!
φ4



Example Theory

• The final term is the interaction term and has a 
coupling constant of λ. 

• To perform computations within this theory we 
cannot proceed directly as in the case of the free 
field. 

• To see this let us start with the simplest object 
we could compute, the two-point time ordered 
correlation function,
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L =
1
2

(∂µφ)2 − 1
2
m2φ2 − λ

4!
φ4

�Ω|T{φ(x)φ(y)}|Ω�



Interacting Fields

• In the free theory this object is the propagator. 

• The ground state of the interacting theory      is 
different from that of the free theory    .

• We can no longer solve the theory for all time by 
directly using ladder operators and the analogy with 
SHO’s.

• The full theory is too hard to solve completely we will 
instead take the tactic of computing what we can by 
relating it to the free theory.

• We will compute a perturbative expansion. 
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|Ω�
|0�

�Ω|T{φ(x)φ(y)}|Ω�



Evolving Interacting States

• Using the ladder operators we can write the scalar field Φ at a 
fixed time t0 as

• To obtain this operator at different values of t we switch to the 
Heisenberg picture, 

• Unlike for the free case we cannot just commute          through Φ 
as

• The Hamiltonian, H, is now made up of two parts,          is the 
Hamiltonian of the interacting term and       of the free field i.e. 
something we can solve.
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φ(t0, �x) =
�

d3p

(2π)3
1�

2ω(�p)

�
a(�p)ei�p·�x + a†(�p)e−i�p·�x�

φ(x) = eiHtφ(�x)e−iHt

eiHt

H = H0 + Hint

Hint

H0



The Interaction Picture

• To proceed we set the interaction term to zero, 
λ=0.

• We can then bring the exponential through Φ to 
get the time dependance of the field in this limit,

• We call          the field in the interaction picture. 

• When λ is small this will still give the most 
important part of the time dependance of        .
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φ(x)|λ=0 = eiH0(t−t0)φ(t0, �x)e−iH0(t−t0) ≡ φI(x)

φ(x)

φI(x)



The Interaction Picture

• This is a halfway point between the Schrodinger 
picture and the Heisenberg picture, as now 
both states and operators evolve with time.

• In the interaction picture states evolve in time 
according to the interaction Hamiltonian,

• Operators also evolve in time according to the 
free Hamiltonian.

41

OI(t) = e
iH0t

OSe
−iH0t

|φ(t)�I = eiH0t|φ(t)�S



Evolution operator
• So far this seems too limited, how do we relate the 

interaction picture fields to the full fields?

• Translate the interaction picture field into the Heisenberg 
picture of the full field Φ,

• This relates the full fields to the interaction picture fields 
via an evolution operator U,

• The U operators are unitary and satisfy
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φ(x) = eiH(t−t0)e−iH0(t−t0)φI(x)eiH0(t−t0)e−iH(t−t0)

= U†(t, t0)φI(x)U(t, t0)

U(t, t0) = eiH0(t−t0)e−iH(t−t0)

U(t1, t2)U(t2, t3) = U(t1, t3)



Evolution Operators

• For this to be useful we need to express U in terms 
of the interaction picture fields    .

• This can be done by noting that U(t,t0) with the initial 
condition U(t,t0)=1 satisfies the Schrodinger equation,

• Where HI(t) is the interaction Hamiltonian in the 
interaction picture, and is given by,

43

φI

i
∂

∂t
U(t, t0) = e

iH0(t−t0)(H −H0)e−iH(t−t0)

= e
iH0(t−t0)(Hint)e−iH0(t−t0)e

iH0(t−t0)e
−iH(t−t0)

= HI(t)U(t, t0)

HI = e
iH0(t−t0)(Hint)e−iH0(t−t0)



Solving the Evolution Operator

• We now want to solve this equation.

• Doing this will lead to a perturbative 
expansion.

• We start from,

• Then we iterate this solution,

44

i
∂

∂t
U(t, t0) = HI(t)U(t, t0)

U(t, t0) = 1 + (−i)
� t

t0

dt1HI(t1)U(t1, t0)

U(t, t0) = 1 + (−i)
� t

t0

dt1HI(t1)
�

1 + (−i)
� t1

t0

dt2HI(t2)U(t2, t0)
�



Solving the Evolution Operator

• If we keep on doing this we get a 
perturbative expansion,

• With each time in order t>t1>t2>...>t0

45

+(−i)3
� t

t0

dt1

� t1

t0

dt2

� t2

t0

dt3HI(t1)HI(t2)HI(t3) + . . . .

U(t, t0) = 1 + (−i)
� t

t0

dt1HI(t1)

+(−i)2
� t

t0

dt1

� t1

t0

dt2HI(t1)HI(t2)



Simplifying the Time Ordering

• We note that,

• This can be visualised,

46

� t

t0

dt1

� t1

t0

dt2HI(t1)HI(t2) =
1
2

� t

t0

dt1

� t

t0

dt2T{HI(t1)HI(t2)}

t1

t2 t1=t2

t

t

t0

t0

t1>t2

t1<t2



Time Ordered Result

• As each field stands in time order then we can rewrite this 
in a more compact form,

• This can further be rewritten in the more compact 
notation,

• This time ordered exponential is defined as the time-
ordering of each term in the Taylor series.
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U(t, t0) = 1 + (−i)
� t

t0

dt1HI(t1)

+
(−i)2

2

� t

t0

� t

t0

dt1dt2T {HI(t1)HI(t2)}

+
(−i)3

3!

� t

t0

� t

t0

� t

t0

dt1dt2dt3T {HI(t1)HI(t2)HI(t3)} + . . .

= T

�
exp

�
−i

� t

t0

dt
�
HI(t�)

��
U(t, t0) = 1 + (−i)

� t

t0

dt1HI(t1)



The Ground State
• Now that we have expressed the field        as a 

perturbative expansion in terms of the free field we 
must now do something similar for the ground state 
of the interacting theory      . 

• This can be done using the evolution operator U,

• The state evolves from the ground state of the free 
theory at some time -T to a time t0. 

• We will eventually want to take T to be the infinite 
past. 

48

|Ω�

φ(x)

|Ω� = U(t0,−T )|0�



Rewriting Correlation Functions
• Take the full field expressed in terms of fields in the 

interaction picture and the ground state written in 
terms of this as well gives,

• The denominator factor is to ensure the correct 
normalisation, we will see the role this term has a little 
bit later on.
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�Ω|T{φ(x1)φ(x2) . . . φ(xn)}|Ω� = lim
T→∞(1−i�)

�0|T{U(T, x1)φ(x1)U(x1, x2)φ(x2)U(x2, x3) . . . U(xn−1, xn)φ(xn)U(xn,−T )}|0�
�0|T{U(T,−T )}|0�



Final Form
• Making use of the Time ordering operator we have 

our final compact form for a correlation function 
of our full theory (where we have dropped the I 
label for the interaction picture fields)
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�Ω|T{φ(x1)φ(x2) . . . φ(xn)}|Ω�

= lim
T→∞(1−i�)

�0|T{φ(x1)φ(x2) . . . φ(xn) exp
�
−i

� −T
T dtHI(t)

�
}|0�

�0|T{exp
�
−i

� −T
T dtHI(t)

�
}|0�



Computing Correlation Functions

• The problem of computing with the interaction theory 
has been reduced to calculating time ordered products 
of interaction picture fields,

• When we only have two fields this reduces to simply the 
propagator of the free theory. 

• What about more general cases? 

• We could expand out the ΦI's in terms of ladder 
operators and then compute from there.

• There is a better approach.
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�0|T {φI(x1)φI(x2) . . . φI(xn)} |0�



Wick’s Theorem

• Instead we can apply Wick's theorem to simplify 
the amount of computation involved,

• We define a contraction of the fields Φ(x1) and   
Φ(x2) to be the Feynman propagator of these 
fields DF(x1-x2).

• The N operator means the fields are normally 
ordered, rather than time ordered.
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T {φI(x1)φI(x2) . . . φI(xn)}

+ : all possible contractions :

=: φI(x1)φI(x2) . . . φI(xn) :



Field Components
• To understand this better let us break up the 

field into two pieces

• Rewrite the time ordered product of fields.

• When x0>y0 we have
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φ(x) = φ+(x) + φ−(x)

φ+(x) =
�

d3p

(2π)3
1�

2ω(�p)
a(�p)e−ip·x

φ−(x) =
�

d3p

(2π)3
1�

2ω(�p)
a†(�p)e+ip·x

Tφ(x)φ(y) = φ(x)φ(y)

= φ+(x)φ+(y) + φ−(x)φ+(y) + φ−(y)φ+(x) +
�
φ+(x), φ−(y)

�
+ φ−(x)φ−(y)



Normal Ordering
• This expression is now normally ordered, i.e. all “+” states 

are ordered before all “-” states. We denote this using 
the  : : notation.

• Also we have picked up a commutator which is simply part 
of the propagator. For the time ordering x0>y0 we rewrite 
this expression as

• For the other time ordering y0>x0 we get

• Combining the two we get the simplest example of the 
general relationship, 
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= φ+(x)φ+(y) + φ−(x)φ+(y) + φ−(y)φ+(x) +
�
φ+(x), φ−(y)

�
+ φ−(x)φ−(y)

Tφ(x)φ(y) =: φ(x)φ(y) : +D(x− y)

Tφ(x)φ(y) =: φ(x)φ(y) : +D(x− y)

Tφ(x)φ(y) =: φ(x)φ(y) : +DF (x− y)



Contractions

• A contraction is the commutator of two components of 
the field.

• This can then be related to a propagator.

• A second example is the 4 field correlation function
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Tφ(x)φ(y) =: φ(x)φ(y) : +DF (x− y)

T {φ1φ2φ3φ4} =: φ1φ2φ3φ4 : + : D(x1 − x2)φ3φ4 : + : D(x1 − x3)φ2φ4 :

+ : D(x1 − x4)φ2φ3 : + : D(x2 − x3)φ1φ4 : + : D(x2 − x4)φ1φ3 :

+D(x1 − x3)D(x2 − x4) + D(x1 − x4)D(x2 − x3)
�
.

+ : D(x3 − x4)φ1φ2 : +D(x1 − x2)D(x3 − x4)



Simpler Computation

• How has changing the ordering helped us?

• The Normal ordering operation moves all 
destructive ladder operators to the right. These 
will then annihilate against the ground state,

• Any operator which is not fully contracted will 
then vanish.

• This means that only the propagator terms will 
survive inside the correlation function.
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: a1a
†
2a3 : |0� =: a†2a1a3 : |0� = 0



Approaching Feynman Diagrams

• We have reduced the computation of a correlation 
function of a product of fields to the computation of 
the set of all ways of connecting the fields via 
propagators.

• In the four field case we have,

• This is beginning to look very much like Feynman 
diagrams as we can interpret these terms in a 
diagrammatic way. 
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T {φ1φ2φ3φ4} = D(x1 − x2)D(x3 − x4)

+D(x1 − x3)D(x2 − x4) + D(x1 − x4)D(x2 − x3)



Summary
• Introduce Interacting theories.

• Switched into the Interaction picture, to relate 
the full fields of the theory which we cannot 
compute to the free fields we can compute.

• We have seen that this leads to a perturbative 
expansion.

• We have the beginnings of a diagrammatic 
approach to computation through the use of 
Wick’s Theorem.
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