Phenomenology of hadronic collisions

Grégory Soyez

CERN \& IPhT, CEA Saclay

BND summer school - Oostende, Belgium - September 7-17 2010

Plan

You are now experts in computing Feynman diagrams

You (hopefully) want to know how to compute things at hadronic colliders
(the LHC in particular)

Disclaimer

The physics of hadronic colliders is a very vast topic:

Disclaimer

The physics of hadronic colliders is a very vast topic:

- ATLAS TDR (Detector and Physics Performance): 1852 pages
- CMS TDR (2 volumes): 1317 pages

A good coverage of "basic" topics in collider physics:

- QCD and Collider Physics, R. K. Ellis, W. J. Stirling and B.
R. Webber (447 pages)

Disclaimer

The physics of hadronic colliders is a very vast topic:

- ATLAS TDR (Detector and Physics Performance): 1852 pages
- CMS TDR (2 volumes): 1317 pages

A good coverage of "basic" topics in collider physics:

- QCD and Collider Physics, R. K. Ellis, W. J. Stirling and B. R. Webber (447 pages)

I won't be able to cover all that in 6+2 hours!

Plan \#2

How to describe a collision between 2 hadrons?

The very fundamental collision

$$
\sigma=f_{a} \otimes f_{b} \otimes \hat{\sigma}
$$

- "take a parton out of each proton" $f_{a} \equiv$ parton distribution function (PDF) for quark and gluons
a big chapter of these lectures
- hard matrix element perturbative computation Forde-Feynman rules

The more realistic version

- Hard ME
perturbative

The more realistic version

- Hard ME
perturbative
- Parton branching
initial+final state radiation

The more realistic version

- Hard ME
perturbative
- Parton branching
initial+final state radiation
- Hadronisation
$q, g \rightarrow$ hadrons

The more realistic version

- Hard ME
perturbative
- Parton branching
initial+final state radiation
- Hadronisation
$q, g \rightarrow$ hadrons
- Multiple interactions

Underlying event (UE)

The more realistic version

- Hard ME
perturbative
- Parton branching
initial+final state radiation
- Hadronisation
$q, g \rightarrow$ hadrons
- Multiple interactions

Underlying event (UE)

- Pile-up
$\lesssim 25 p p$ at the LHC

Step by step...

We shall investigate those effects one by one:

- $e^{+} e^{-}$collisions for QCD final state (and hadronisation)
- ep collisions aka Deep Inelastic scattering (DIS) for the Parton Distribution Functions
- $p p$ collisions: put everything together
- kinematics
- Monte-Carlo
. jets + various processes (W / Z, Higgs, top, ...)

Step by step...

We shall investigate those effects one by one:

- $e^{+} e^{-}$collisions for QCD final state (and hadronisation)
$e p$ collisions aka Deep Inelastic scattering (DIS) for the Parton Distribution Functions
$p p$ collisions: put everything together kinematics
- Monte-Carlo
jets various processes (W / Z, Higgs, top, ...)

Tutorial

The plan is to play with Pythia 8 (the C++ version) and FastJet.
You can get them (and a few sample codes) from the link at
http://soyez.fastjet.fr

$$
e^{+} e^{-} \text {collisions }
$$

QCD final state

$e^{+} e^{-}$collisions give QCD final state without initial-state/beam contamination

Useful for many QCD studies

Intermediate state can be γ or Z, we only consider γ for simplicity

QCD final state: basic QCD

$$
\begin{aligned}
p_{1} & \equiv \frac{\sqrt{s}}{2}(0,0,1,1) \\
p_{2} & \equiv \frac{\sqrt{s}}{2}(0,0,-1,1) \\
k_{1} & \equiv \frac{\sqrt{s}}{2}(\sin (\theta), 0, \cos (\theta), 1) \\
k_{2} & \equiv \frac{\sqrt{s}}{2}(-\sin (\theta), 0,-\cos (\theta), 1)
\end{aligned}
$$

QCD final state: basic QCD

$$
\begin{aligned}
& p_{1} \equiv \frac{\sqrt{s}}{2}(0,0,1,1) \\
& p_{2} \equiv \frac{\sqrt{s}}{2}(0,0,-1,1) \\
& k_{1} \equiv \frac{\sqrt{s}}{2}(\sin (\theta), 0, \cos (\theta), 1) \\
& k_{2} \equiv \frac{\sqrt{s}}{2}(-\sin (\theta), 0,-\cos (\theta), 1)
\end{aligned}
$$

$$
\frac{d \sigma}{d \cos (\theta)}=e_{q}^{2} N_{c} \frac{\pi \alpha_{e}^{2}}{2 s}\left[1+\cos ^{2}(\theta)\right]
$$

$$
\sigma\left(e^{+} e^{-} \rightarrow q \bar{q}\right)=N_{c}\left(\sum_{q} e_{q}^{2}\right) \sigma_{0}
$$

$$
\sigma_{0}=\frac{4 \pi \alpha_{e}^{2}}{3 s}
$$

QCD final state: basic QCD

$$
\frac{d \sigma}{d \cos (\theta)}=e_{q}^{2} N_{c} \frac{\pi \alpha_{e}^{2}}{2 s}\left[1+\cos ^{2}(\theta)\right]
$$

$$
\sigma\left(e^{+} e^{-} \rightarrow q \bar{q}\right)=N_{c}\left(\sum_{q} e_{q}^{2}\right) \sigma_{0} \quad \sigma\left(e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}\right)=\sigma_{0}
$$

$$
\sigma_{0}=\frac{4 \pi \alpha_{e}^{2}}{3 s}
$$

QCD final state: basic QCD

$$
R=\frac{\sigma\left(e^{+} e^{-} \rightarrow \text { hadrons }\right)}{\sigma\left(e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}\right)} \approx N_{c}\left(\sum_{q} e_{q}^{2}\right)
$$

- $u, d, s: R=3\left(\frac{4}{9}+\frac{1}{9}+\frac{1}{9}\right)=2$
- $u, d, s, c: R=3\left(\frac{4}{9}+\frac{1}{9}+\frac{1}{9}+\frac{4}{9}\right)=\frac{10}{3}$
- $u, d, s, c, b: R=3\left(\frac{4}{9}+\frac{1}{9}+\frac{1}{9}+\frac{4}{9}+\frac{4}{9}\right)=\frac{14}{3}$

Test of

- The 3 colours in QCD ($N_{c}=3$)
- The number of quark flavours

QCD final state: basic QCD

QCD final state: basic QCD

Q: why $\sigma\left(e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}\right)$and not $\sigma\left(e^{+} e^{-} \rightarrow e^{+} e^{-}\right)$?

QCD final state: QCD dynamics

$3 \times(4-1)-4=5$ d.o.f.

- 3 Euler angles
- $x_{i}=2 E_{i} / \sqrt{s}, x_{1}+x_{2}+x_{3}=2$
- or θ_{13}, θ_{23}

$$
\begin{aligned}
\int d \Phi_{3} & =\prod_{i=1}^{3} \frac{d^{3} k_{i}}{(2 \pi)^{3} 2 E_{i}}(2 \pi)^{4} \delta^{(4)}\left(p_{1}+p_{2}-k_{1}-k_{2}-k_{3}\right) \\
& =\frac{s}{32(2 \pi)^{5}} \int d \alpha d \cos \beta d \gamma d x_{1} d x_{2} \\
\cos \left(\theta_{13}\right) & =-\frac{x_{1}^{2}+x_{3}^{2}-x_{2}^{2}}{2 x_{1} x_{3}} \quad \cos \left(\theta_{23}\right)=-\frac{x_{2}^{2}+x_{3}^{2}-x_{1}^{2}}{2 x_{2} x_{3}}
\end{aligned}
$$

QCD final state: QCD dynamics

$$
\begin{aligned}
& \sum|\mathcal{M}|^{2}= 4(4 \pi)^{3} \alpha_{e}^{2} \alpha_{s} C_{F} N_{c} \\
& \frac{\left(p_{1} \cdot k_{1}\right)^{2}+\left(p_{1} \cdot k_{2}\right)^{2}+\left(p_{2} \cdot k_{1}\right)^{2}+\left(p_{2} \cdot k_{2}\right)^{2}}{s\left(k_{1} \cdot k_{3}\right)\left(k_{2} \cdot k_{3}\right)} \\
& \frac{d^{2} \sigma}{d x_{1} d x_{2}}=e_{q}^{2} N_{c} \sigma_{0} \frac{\alpha_{s} C_{F}}{2 \pi} \frac{x_{1}^{2}+x_{2}^{2}}{\left(1-x_{1}\right)\left(1-x_{2}\right)}
\end{aligned}
$$

QCD final state: QCD dynamics

QCD final state: QCD dynamics

QCD final state: QCD dynamics

Divergent when $k_{1} . k_{3} \rightarrow 0$ or $k_{2} . k_{3} \rightarrow 0$
$k_{1} . k_{3} \rightarrow 0 \Rightarrow\left(k_{1}+k_{3}\right)^{2} \rightarrow 0$ i.e.
parent quark propag $=\frac{1}{\left(k_{1}+k_{3}\right)^{2}} \rightarrow \infty \quad \bigodot_{k_{3}, x_{3}}$
Physical origin of the divergence!
They are infrared divergences $\left(\left(k_{1}+k_{3}\right)^{2} \rightarrow 0\right.$, not $\left.\infty\right)$
(one power cancelled by phase-space \Rightarrow log divergence)

QCD final state: QCD dynamics

Divergent when $x_{1}\left(\right.$ or $\left.x_{2}\right) \rightarrow 1$

$$
1-x_{2}=\frac{1}{2} x_{1} x_{3}\left[1-\cos \left(\theta_{13}\right)\right]
$$

- $\theta_{13} \rightarrow 0$ (or θ_{23}): collinear divergence divergence
- $x_{3} \rightarrow 0$ (i.e. $E_{g} \rightarrow 0$): soft divergence

QCD final state: coll and soft divergences

Collinear and soft divergences

- fundamental/omnipresent in QCD! (also in QED) we will meet them often through these lectures

QCD final state: coll and soft divergences

Collinear and soft divergences

- fundamental/omnipresent in QCD! (also in QED)
- also present for $g \rightarrow g g$ (\neq QED; $C_{F} \rightarrow C+A$)

QCD final state: coll and soft divergences

Collinear and soft divergences

- fundamental/omnipresent in QCD! (also in QED)
- also present for $g \rightarrow g g$ (\neq QED; $C_{F} \rightarrow C+A$)
- cancelled by virtual corrections

Real

Virtual

QCD final state: coll and soft divergences

Collinear and soft divergences

- fundamental/omnipresent in QCD! (also in QED)
- also present for $g \rightarrow g g$ (\neq QED; $C_{F} \rightarrow C+A$)
- cancelled by virtual corrections

Dimensional regularisation $d=4-2 \varepsilon$:

$$
\begin{aligned}
\sigma_{\text {real }}^{(q \bar{q} g)} & =e_{q}^{2} N_{c} \sigma_{0} \frac{\alpha_{s} C_{F}}{2 \pi} T(\epsilon)\left[\frac{2}{\varepsilon^{2}}+\frac{3}{\varepsilon}+\frac{19}{2}+\mathcal{O}(\varepsilon)\right] \\
\sigma_{\text {virt }}^{(q \bar{q} g)} & =e_{q}^{2} N_{c} \sigma_{0} \frac{\alpha_{s} C_{F}}{2 \pi} T(\epsilon)\left[\frac{-2}{\varepsilon^{2}}-\frac{3}{\varepsilon}-8+\mathcal{O}(\varepsilon)\right] \\
& \sigma_{\mathcal{O}\left(\alpha_{s}\right)}^{(q \bar{q} g)}=e_{q}^{2} N_{c} \sigma_{0} \frac{3 \alpha_{s} C_{F}}{4 \pi}=e_{q}^{2} N_{c} \sigma_{0} \frac{\alpha_{s}}{\pi}
\end{aligned}
$$

QCD final state: coll and soft divergences

Collinear and soft divergences

- fundamental/omnipresent in QCD! (also in QED)
- also present for $g \rightarrow g g$ (\neq QED; $C_{F} \rightarrow C+A$)
- cancelled by virtual corrections
- cancellation order-by-order in perturbation theory

Block-Nordsieck, Kinoshita-Lee-Nauenberg theorems

QCD final state: coll and soft divergences

Collinear and soft divergences

- fundamental/omnipresent in QCD! (also in QED)
- also present for $g \rightarrow g g$ (\neq QED; $C_{F} \rightarrow C+A$)
- cancelled by virtual corrections
- cancellation order-by-order in perturbation theory

Block-Nordsieck, Kinoshita-Lee-Nauenberg theorems

- Terminology issue: 'soft' divergence sometimes called 'infrared' divergence (though both soft and coll are infrared)

QCD final state: IRC safety

Cancellation of divergence not true for any observable
Example: "number of partons in the final state", $d P / d n$

- $\mathbf{L O}\left(\mathcal{O}\left(\alpha_{s}^{0}\right)\right): d P / d n=\delta(n-2)$
- $\operatorname{NLO}\left(\mathcal{O}\left(\alpha_{s}^{1}\right)\right)$:
(i) real emission: $n=3$
(ii) virtual correction: $n=2$
$\Rightarrow d P / d n=\left[1-\infty \alpha_{s}\right] \delta(n-2)+\infty \alpha_{s} \delta(n-3)$

QCD final state: IRC safety

Cancellation of divergence not true for any observable
Example: "number of partons in the final state", $d P / d n$

- LO $\left(\mathcal{O}\left(\alpha_{s}^{0}\right)\right): d P / d n=\delta(n-2)$
- $\operatorname{NLO}\left(\mathcal{O}\left(\alpha_{s}^{1}\right)\right)$:
(i) real emission: $n=3$
(ii) virtual correction: $n=2$

$$
\Rightarrow d P / d n=\left[1-\infty \alpha_{s}\right] \delta(n-2)+\infty \alpha_{s} \delta(n-3)
$$

Observables for which cancellation happens are called INFRARED-AND-COLLINEAR SAFE
Necessary for perturbative QCD computation to make sense!!

QCD final state: IRC safety

Observable \mathcal{O} :
$\mathcal{O}=\sum_{n=0}^{\infty} \int \underbrace{d \Psi_{n}\left(k_{1}, \ldots, k_{n}\right)}_{\text {phasespace }} \underbrace{\frac{d \sigma}{d \Psi_{n}}\left(k_{1}, \ldots, k_{n}\right)}_{\text {matrix element }} \underbrace{\mathcal{O}_{n}\left(k_{1}, \ldots, k_{n}\right)}_{\text {observable }}$

- IR safety: "adding a soft particle does not change $\mathcal{O}^{\prime \prime}$

$$
\mathcal{O}_{n+1}\left(k_{1}, \ldots, k_{n}, k_{n+1}\right) \stackrel{k_{n+1} \rightarrow 0}{=} \mathcal{O}_{n}\left(k_{1}, \ldots, k_{n}\right)
$$

- Collinear safety: "a collinear splitting does not change \mathcal{O} "

$$
\mathcal{O}_{n+1}\left(k_{1}, \ldots, \lambda k_{n},(1-\lambda) k_{n}\right)=\mathcal{O}_{n}\left(k_{1}, \ldots, k_{n}\right)
$$

$$
\text { for } 0<\lambda<1
$$

QCD final state: IRC safety

Example \#1: event-shapes in $e^{+} e^{-}$ thrust, sphericity, thrust major, thrust minor, ...

$$
\text { Thrust: } \quad T_{n}=\max _{|\vec{u}|=1} \frac{\sum_{i=0}^{n}\left|\vec{k}_{i} \cdot \vec{u}\right|}{\sum_{i=0}^{n}\left|\vec{k}_{i}\right|}
$$

pencil-like: $T \lesssim 1$

spherical: $T \gtrsim 1 / 2$

QCD final state: IRC safety

Example \#1: event-shapes in $e^{+} e^{-}$
thrust, sphericity, thrust major, thrust minor, ...

$$
\text { Thrust: } \quad T_{n}=\max _{|\vec{u}|=1} \frac{\sum_{i=0}^{n}\left|\vec{k}_{i} \cdot \vec{u}\right|}{\sum_{i=0}^{n}\left|\vec{k}_{i}\right|}
$$

- the thrust is infrared safe: for $k_{n+1} \rightarrow 0$

$$
T_{n+1}=\max _{|\vec{u}|=1} \frac{\sum_{i=0}^{n+1}\left|\vec{k}_{i} \cdot \vec{u}\right|}{\sum_{i=0}^{n+1}\left|\vec{k}_{i}\right|}=\max _{|\vec{u}|=1} \frac{\sum_{i=0}^{n}\left|\vec{k}_{i} \cdot \vec{u}\right|}{\sum_{i=0}^{n}\left|\vec{k}_{i}\right|}=T_{n}
$$

- the thrust is collinear safe

$$
0<\lambda<1 \Rightarrow\left\{\begin{array}{l}
|\vec{u} .(\lambda \vec{k}+(1-\lambda) \vec{k})|=|\vec{u} \cdot \vec{k}| \\
|\lambda \vec{k}+(1-\lambda) \vec{k}|=|\vec{k}|
\end{array}\right.
$$

QCD final state: IRC safety

Example \#1: event-shapes in $e^{+} e^{-}$ thrust, sphericity, thrust major, thrust minor, ...

$$
\text { Thrust: } \quad T_{n}=\max _{|\vec{u}|=1} \frac{\sum_{i=0}^{n}\left|\vec{k}_{i} \cdot \vec{u}\right|}{\sum_{i=0}^{n}\left|\vec{k}_{i}\right|}
$$

Computation in perturbative QCD (from the matrix element given earlier)

$$
\frac{1}{\sigma} \frac{d \sigma}{d T}=\frac{\alpha_{s} C_{F}}{2 \pi}\left[\frac{2\left(2-3 T+3 T^{2}\right)}{T(1-T)} \log \left(\frac{2 T-1}{1-T}\right)-\frac{3(2-T)(3 T-2)}{1-T}\right]
$$

- Allows for test of QCD (e.g. at LEP)
- "log" is a reminiscence from the soft and collinear divergence

Thrust

comparison with LEP data: peaked at $T=1$

$e^{+} e^{-}: \mathbf{Q C D}$ divergences

Typical behaviour of divergences:

- Collinear limit:

$$
\frac{1}{\sigma_{0}} d \sigma \approx \underbrace{\frac{\alpha_{s}}{2 \pi} \frac{1+(1-z)^{2}}{z}}_{\text {splitting proba }} \underbrace{\frac{d \theta^{2}}{\theta^{2}}}_{\text {coll.div }}
$$

For different situations (different parton types), the branching probability changes but the $d \theta / \theta$ is generic!

$e^{+} e^{-}: \mathbf{Q C D}$ divergences

Typical behaviour of divergences:

- Collinear limit:

$$
\frac{1}{\sigma_{0}} d \sigma \approx \underbrace{\frac{\alpha_{s}}{2 \pi} \frac{1+(1-z)^{2}}{z}}_{\text {splitting proba }} \underbrace{\frac{d \theta^{2}}{\theta^{2}}}_{\text {coll.div }}
$$

- Soft limit:

$$
d \sigma_{q \bar{q} g}=d \sigma_{q \bar{q}} \frac{\alpha_{S} C_{F}}{\pi^{2}} \frac{\left(k_{1} \cdot k_{2}\right)}{\left(k_{1} \cdot k_{3}\right)\left(k_{2} \cdot k_{3}\right)} d^{4} k_{3} \delta\left(k^{2}\right) \propto \frac{d E_{3}}{E_{3}} \propto \frac{d z}{z}
$$

Antenna formula - soft-gluon emission

Frequent appearance in computations:

Both soft and collinear divergences are logarithmic
\Rightarrow the emission of a gluon comes with a factor $\alpha_{s} \log$
Example: soft emissions for the thrust : $\alpha_{s} \log (1-T)$

At some point, $\alpha_{s} \log \sim 1$ i.e. NLO~LO in the perturbative series
\Rightarrow At order n, we will have $\alpha_{s}^{n} \log ^{n}$ all of the same order
\Rightarrow ALL have to be considered: resummation

Other interests in $e^{+} e^{-}$collisions

- Fragmentation functions
"parton \rightarrow hadron transition", $D_{p / \pi}\left(z, p_{t}\right)$
- Hadronisation
e.g. Lund strings
- Jets

Collinear divergence \longrightarrow a parton develops into a bunch of collimated particles

We will postpone (part of) this to the "hadronic collisions" chapter

- $e^{+} e^{-}$collisions: good framework to test QCD (final state)
- emission of a gluon has 2 divergences: soft and collinear
. cancel between "real" and "virtual" daigrams
- ... provided the observable is IRC safe
- give rise to "logarithms" in perturbative computations
- ... resummed to all orders when $\alpha_{s} \log \sim 1$
. ... done analytically or by parton cascade MC
- collinear divergence+parton branching \rightarrow jets

Time for questions!

<interlude hadronic collisions> kinematics jets

The very fundamental collision

$$
\sigma=f_{a} \otimes f_{b} \otimes \hat{\sigma}
$$

- "take a parton out of each proton" $f_{a} \equiv$ parton distributio
for quark and gluons
- hard matrix element perturbative computation Forde-Feynman rules

Kinematics

Incoming partons:

$$
\begin{aligned}
& p_{1} \equiv x_{1} \frac{\sqrt{s}}{2}(0,0, \quad 1,1) \\
& p_{2} \equiv x_{2} \frac{\sqrt{s}}{2}(0,0,-1,1)
\end{aligned}
$$

- carry a fraction of the beam's (longitudinal) momentum
- Energy ${ }^{2}$ in the hard collision: $\left(p_{1}+p_{2}\right)^{2}=x_{1} x_{2} s \leq s$
- the partonic centre-of-mass is shifted/boosted compared to the lab/pp centre-of-mass \Rightarrow need variables (longitudinally) boost-invariant

Kinematics

Final-state particles: commonly-used variables
$k \equiv\left(k_{x}, k_{y}, k_{z}, E\right) \equiv E(\sin (\theta) \cos (\phi), \sin (\theta) \sin (\phi), \cos (\theta), 1)$

- E and θ are not suited!

Kinematics

Final-state particles: commonly-used variables

- Transverse plane
- azimuthal angle ϕ
- transverse momentum $p_{t}=\sqrt{p_{x}^{2}+p_{y}^{2}}$

Kinematics

Final-state particles: commonly-used variables

- Transverse plane
- azimuthal angle ϕ
- transverse momentum $p_{t}=\sqrt{p_{x}^{2}+p_{y}^{2}}$
- Longitudinal variable
- Rapidity: $y=\frac{1}{2} \log \left(\frac{E+p_{z}}{E-p_{z}}\right)$

Boost: $y \rightarrow \frac{1}{2} \log \left(\frac{\gamma\left(E-\beta p_{z}\right)+\gamma\left(p_{z}-\beta E\right)}{\gamma\left(E-\beta p_{z}\right)-\gamma\left(p_{z}-\beta E\right)}\right)$

$$
=\frac{1}{2} \log \left(\frac{\gamma(1-\beta)\left(E+p_{z}\right)}{\gamma(1+\beta)\left(E-p_{z}\right)}\right)=y+\frac{1}{2} \log \left(\frac{(1-\beta)}{(1+\beta)}\right)
$$

not boost-invariant itself but $\Delta y=y_{2}-y_{1}$ is ($\Delta \theta$ is not)

Kinematics

Final-state particles: commonly-used variables

- Transverse plane
- azimuthal angle ϕ
- transverse momentum $p_{t}=\sqrt{p_{x}^{2}+p_{y}^{2}}$
- Longitudinal variable
- Rapidity: $y=\frac{1}{2} \log \left(\frac{E+p_{z}}{E-p_{z}}\right)$

$$
k \equiv\left(k_{t} \cos (\phi), k_{t} \sin (\phi), m_{t} \sinh (y), m_{t} \cosh (y)\right)
$$

Transverse mass: $m_{t}^{2}=k_{t}^{2}+m^{2}$

- Pseudo-rapidity: $\eta=\frac{1}{2} \log (\tan (\theta / 2))$
$\Delta \eta$ boost-invariant if massless
- For massless particles: $y=\eta$

Jets

- We have seen in the $e^{+} e^{-}$studies (thrust) that the final state is pencil-like

- Consequence of the collinear divergence QCD branchings are most likely collinear $\left(d P / d \theta \propto \alpha_{s} / \theta\right)$

Jets

- We have seen in the $e^{+} e^{-}$studies (thrust) that the final state is pencil-like

- Consequence of the collinear divergence QCD branchings are most likely collinear $\left(d P / d \theta \propto \alpha_{s} / \theta\right)$
"Jets" \equiv bunch of collimated particles \cong hard partons

Jets

- We have seen in the $e^{+} e^{-}$studies (thrust) that the final state is pencil-like

- Consequence of the collinear divergence QCD branchings are most likely collinear $\left(d P / d \theta \propto \alpha_{s} / \theta\right)$
"Jets" \equiv bunch of collimated particles \cong hard partons

Jets

"Jets" \equiv bunch of collimated particles \cong hard partons

obviously 2 jets

Jets

"Jets" \equiv bunch of collimated particles \cong hard partons
3 jets

Jets

"Jets" \equiv bunch of collimated particles \cong hard partons
3 jets... or $4 ?$

- "collinear" is arbitrary

Jets

"Jets" \equiv bunch of collimated particles \cong hard partons
3 jets... or $4 ?$

- "collinear" is arbitrary
- "parton" concept strictly valid only at LO

Jets

Partons/Particles/Calorimeter towers/Tracks

Jet definition

Jet algorithm

Parameters

Recomb. scheme

Jets

Jets

A jet definiton is supposed to be (as) consistent (as possible) across different view of an event

NLO partons
Jet ${ }_{\Downarrow}$ Def n

parton shower
Jet ${ }_{\Downarrow}$ Def n

hadron level

$$
\text { Jet } \downarrow \text { Def }^{\mathrm{n}}
$$

Jet definitions: constraints

SNOWMASS accords (FermiLab, 1990)

Several important properties that should be met by a jet definition are [3]:

1. Simple to implement in an experimental analysis;
2. Simple to implement in the theoretical calculation;
3. Defined at any order of perturbation theory;
4. Yields finite cross section at any order of perturbation theory;
5. Yields a cross section that is relatively insensitive to hadronization.

Jet definitions: constraints

SNOWMASS accords (FermiLab, 1990)

Several important properties that should be met by a jet definition are [3]:

1. Simple to implement in an experimental analysis;
2. Simple to implement in the theoretical calculation;
3. Defined at any order of perturbation theory;
4. Yields finite cross section at any order of perturbation theory;
5. Yields a cross section that is relatively insensitive to hadronization.

30 years later, these are only recently satisfied!!!

Jet definitions: cone

Cone algorithm

- Concept of stable cone as a direction of energy flow
- "cone": circle of fixed radius R in the (y, ϕ) plane
- "stable": sum of the particles (4-mom.) inside the cone points in the direction of its centre

Jet definitions: cone

Cone algorithm

- Concept of stable cone as a direction of energy flow
- "cone": circle of fixed radius R in the (y, ϕ) plane
- "stable": sum of the particles (4-mom.) inside the cone points in the direction of its centre
- Iterative stable-cone search (aka seeded cone):
. start from an initial direction (seed) for the cone centre
- the sum of particles in the cone gives a new direction
- iterate until stable

Jet definitions: cone

Cone algorithm

- Concept of stable cone as a direction of energy flow
- "cone": circle of fixed radius R in the (y, ϕ) plane
- "stable": sum of the particles (4-mom.) inside the cone points in the direction of its centre
- Iterative stable-cone search (aka seeded cone):
. start from an initial direction (seed) for the cone centre
- the sum of particles in the cone gives a new direction
- iterate until stable
- Stable cones \equiv jets ... up to overlaps!

Jet definitions: cone with SM

Cone algorithm: (1) cone with split-merge

- Step 1: find the stable cones with the seeds

1. input particles (over a seed threshold)
2. midpoints of the stable cones found above

- Step 2: split-merge (with threshold f)

$$
p_{t, \text { common }}>f p_{t, \text { hard }}
$$

Jet definitions: cone with SM

Cone algorithm: (1) cone with split-merge

- Step 1: find the stable cones with the seeds

1. input particles (over a seed threshold)
2. midpoints of the stable cones found above

- Step 2: split-merge (with threshold f)

Examples: main algorithm at the Tevatron

- CDF JetClu (1)
- CDF MidPoint (1+2)
- D0 Run II Cone (1+2)
- ATLAS Cone (1)

Jet definitions: cone with SM

Cone algorithm: (1) cone with split-merge

- Step 1: find the stable cones with the seeds

1. input particles (over a seed threshold)
2. midpoints of the stable cones found above

- Step 2: split-merge (with threshold f)

Examples: main algorithm at the Tevatron

- CDF JetClu (1) IR unsafe (2 hard+1 soft)
- CDF MidPoint (1+2) IR unsafe (3 hard+1 soft)
- D0 Run II Cone (1+2) IR unsafe (3 hard+1 soft)
- ATLAS Cone (1) IR unsafe (2 hard+1 soft)

IR unsafety of the Midpoint alg

3-particle event - MidPoint clustering

IR unsafety of the Midpoint alg

3 hard seeds + midpoint seed $\rightarrow 2$ stable cones

IR unsafety of the Midpoint alg

IR unsafety of the Midpoint alg

IR unsafety of the Midpoint alg

Stable cones:
Midpoint:

$\{1,2\} \&\{3\} \&\{2,3\}$

IR unsafety of the Midpoint alg

Stable cones:
Midpoint:
$\{1,2\} \&\{3\}$

$\{1,2\} \&\{3\} \&\{2,3\}$

Jets: $(f=0.5)$
Midpoint:
$\{1,2\} \&\{3\}$
\{1,2,3\}

IR unsafety of the Midpoint alg

Stable cones:

Midpoint:
$\{1,2\} \&\{3\}$
$\{1,2\} \&\{3\} \&\{2,3\}$
$\{1,2\} \&\{3\} \&\{2,3\}$
Seedless:
Jets: $(f=0.5)$
Midpoint:
Seedless:
$\{1,2\} \&\{3\} \&\{2,3\}$
\{1,2,3\}
\{1,2,3\}

IR unsafety of the Midpoint alg

Stable cones:

Midpoint:
Seedless:
Jets: $(f=0.5)$
Midpoint:
Seedless:
$\{1,2\} \&\{3\}$
$\{1,2\} \&\{3\} \&\{2,3\}$
$\{1,2\} \&\{3\} \&\{2,3\}$
$\{1,2\} \&\{3\} \&\{2,3\}$

Stable cone missed \longrightarrow MidPoint is IR unsafe

Jet definitions

Cone algorithm: (1) cone with split-merge

- Step 1: find ALL stable cones in a reasonable time
- MidPoint: time $\propto N^{3}$
- All-Naive: time $\propto 2^{N}$
- SISCone: time $\propto N^{2} \log (N)$
- Step 2: split-merge (with threshold f)

Example: SISCone Seedless Infrared-Safe Cone
2007!!!

Jet definition: cone with PR

Cone algorithm: (2) cone with progressive removal

- Recipe:
. start with the hardest particle as a seed
- iterate to find a stable cone
- stable cone $\rightarrow 1^{\text {st }}$ jet
- remove its constituents
. continue with the next hardest particle left

Jet definition: cone with PR

Cone algorithm: (2) cone with progressive removal

- Recipe:
. start with the hardest particle as a seed
- iterate to find a stable cone
- stable cone $\rightarrow 1^{\text {st }}$ jet
- remove its constituents
. continue with the next hardest particle left
- Benchmark: circular/soft-resilient hard jets

Jet definition: cone with PR

Cone algorithm: (2) cone with progressive removal

- Recipe:
. start with the hardest particle as a seed
- iterate to find a stable cone
. stable cone $\rightarrow 1^{\text {st }}$ jet
- remove its constituents
. continue with the next hardest particle left
- Benchmark: circular/soft-resilient hard jets
- Example: CMS Iterative Cone

Jet definition: cone with PR

Cone algorithm: (2) cone with progressive removal

- Recipe:
. start with the hardest particle as a seed
- iterate to find a stable cone
- stable cone $\rightarrow 1^{\text {st }}$ jet
- remove its constituents
. continue with the next hardest particle left
- Benchmark: circular/soft-resilient hard jets
- Example: CMS Iterative Cone BUT Collinear unsafe (3 hard+1 coll.splitting) !!

Jet definition: successive recombinations

Idea: Undo the QCD cascade

- Define an inter-particle distance $d_{i j}$ and a beam distance $d_{i B}$
- Successively
- Find the minimum of all $d_{i j}, d_{i B}$
- If $d_{i j}$, recombine $i+j \rightarrow k$ (remove i, j; add k)
- If $d_{i B}$, call i a jet (remove i)
- Until all particles have been clustered

Jet definition: successive recombinations

Typical choice of distances:

$$
\begin{aligned}
d_{i j}^{2} & =\min \left(k_{t, i}^{2 p}, k_{t, j}^{2 p}\right)\left(\Delta y_{i j}^{2}+\Delta \phi_{i j}^{2}\right) \\
d_{i B}^{2} & =k_{t, i}^{2 p} R^{2}
\end{aligned}
$$

- $p=1: k_{t}$ algorithm (1993)
- $p=0$: Cambridge-Aachen algorithm (1997)
- $p=-1$: anti- k_{t} algorithm (2008)
- parameter R (jet separation)
- trivially IRC-safe

Jet definition: successive recombinations

Typical choice of distances:

$$
\begin{aligned}
d_{i j}^{2} & =\min \left(k_{t, i}^{2 p}, k_{t, j}^{2 p}\right)\left(\Delta y_{i j}^{2}+\Delta \phi_{i j}^{2}\right) \\
d_{i B}^{2} & =k_{t, i}^{2 p} R^{2}
\end{aligned}
$$

- $p=1$: k_{t} algorithm (1993)
(as close as possible to pQCD)
- $p=0$: Cambridge-Aachen algorithm (1997)
(close to pQCD; useful for substructure)
- $p=-1$: anti- k_{t} algorithm (2008)
(circular/soft-resilient jets; replaces it. cone)

Variants for $e^{+} e^{-}$collisions (+JADE)

Jet definitions: IRC safety matters

As said in $e^{+} e^{-}$: IRC safety matters if you want to compare to QCD computations

	Last OK order			today's
Process	IR $_{2+1}$	IR/Coll		
$3+1$	safe	pQCD		
Incl. jet x-sect	LO	NLO	any	NLO
W/Z/H+1 jet	LO	NLO	any	NLO
3-jet x-sect	none	LO	any	NLO
W/Z/H+2 jet	none	LO	any	NLO
jet mass in 3-jet	none	none	any	LO

Jet definitions: IRC safety matters

As said in $e^{+} e^{-}$: IRC safety matters if you want to compare to QCD computations

	Last OK order			today's
Process	IR $_{2+1}$	IR/Coll		
$3+1$	safe	pQCD		
Incl. jet x-sect	LO	NLO	any	NLO
W/Z/H+1 jet	LO	NLO	any	NLO
3-jet x-sect	none	LO	any	NLO
W/Z/H+2 jet	none	LO	any	NLO
jet mass in 3-jet	none	none	any	LO

\Rightarrow Use an IRC-safe algorithm like k_{t}, C/A, anti- k_{t} or SISCone

Jet definitions: comparison

Quick comparison of the algorithms

	k_{t}	C/A	anti- k_{t}	SISCone
pQCD	$\checkmark \checkmark \checkmark$	$\checkmark \checkmark \checkmark$	$\checkmark \checkmark$	$\checkmark \checkmark$
soft (UE)	x	\sim OK	$\checkmark \checkmark$	$\checkmark \checkmark \checkmark$
speed	$\checkmark \checkmark \checkmark$	$\checkmark \checkmark \checkmark$	$\checkmark \checkmark \checkmark$	\checkmark
substruct	$\checkmark \checkmark$	$\checkmark \checkmark \checkmark$	x	x
calibr.	\checkmark	\checkmark	$\checkmark \checkmark \checkmark$	$\checkmark \checkmark$

Jet clustering: usage/access

FastJet

[M.Cacciari, G.Salam, GS]

- Fast implementation of recomb. algs $(N \log (N))$
- Plugins for all common algs
(SISCone; CDF, D0, ATLAS, CMS algs; $e^{+} e^{-}$algs)
- Other tools (like jet areas)
- More in the tutorial part!

Jets: experimentally

- Tevatron

Use of IR-unsafe JetClu or MidPoint and sometimes k_{t}

Jets: experimentally

- Tevatron

Use of IR-unsafe JetClu or MidPoint and sometimes k_{t}

- LHC: anti- k_{t} by default

Jets: hadronic colliders

At hadronic colliders, many "contaminations" to a jet:

- radiation from partons in the initial state
- Underlying event/Multiple interactions
- shift: UE \approx uniform soft background i.e. contamination \propto jet area $\propto R^{2}$
. smearing: due to UE fluctuations
- typical scale: a few GeV
- Pile-up: many $p p$ interactions in 1 bunch-crossing:

$$
n \approx \mathcal{L} \Delta t_{\text {bunch }} \sigma_{p p} \approx 10^{34} 25.10^{-9} 100.10^{-27} \approx 25
$$

Again: shift + smearing
Typical scale: 20-30 GeV
Need for subtraction techniques
</interlude>

The very fundamental collision

$$
\sigma=f_{a} \otimes f_{b} \otimes \hat{\sigma}
$$

- "take a parton out of each proton" $f_{a} \equiv$ parton distributio
for quark and gluons
- hard matrix element perturbative computation Forde-Feynman rules

Deep Inelastic Scattering Introduce/Discuss/Study the PDFs

Process + kinematics

$$
\begin{array}{ll}
& s=(e+p)^{2} \\
W^{2}=\left(k^{\prime}\right) & Q^{2}=-q^{2}>0 \\
& \\
& =p \cdot q=W^{2}+Q^{2} \\
x=Q^{2} /(2 \nu) \\
y=p \cdot q / p \cdot k=\left(W^{2}+Q^{2}\right) / s \\
e p \rightarrow e X \quad \text { with } \gamma \text { exchange }
\end{array}
$$

- Z and W also possible as well as ν instead of e
- also more exclusive meas.: ep $\rightarrow e p, e X Y, e Y p$, e.g. jets, charm, vector-mesons, photons

Process + kinematics

Experimentally: only the outgoing e is needed to reconstruct the kinematics

$$
Q^{2}=4 E E^{\prime} \cos ^{2}\left(\theta_{e} / 2\right) \quad x=\frac{E E^{\prime} \cos ^{2}\left(\theta_{e} / 2\right)}{P\left[E-E^{\prime} \sin ^{2}\left(\theta_{e} / 2\right)\right]}
$$

Process + kinematics

Idea:
use the photon to probe the proton structure Q^{2} large \Rightarrow small distance $\sim 1 / Q$

Process + kinematics

$$
\begin{aligned}
& s=(e+p)^{2} \\
& W^{2}=(q+p)^{2} \\
& Q^{2}=-q^{2}>0 \\
& \nu=p \cdot q=W^{2}+Q^{2} \\
& x=Q^{2} /(2 \nu) \\
& y=p \cdot q / p \cdot k=\left(W^{2}+Q^{2}\right) / s
\end{aligned}
$$

Experiments:
most important results recently from HERA at DESY
(H1 and ZEUS experiments)

A crystal-clear example

Electroweak unification

$e^{ \pm}$total x-sect differential in Q^{2}

Neutral currents

$e p \rightarrow e X$
via γ, Z
Charged currents
$e p \rightarrow \nu X$
via $W^{ \pm}$

Process + kinematics

Factorisation in a leptonic and hadronic part:

$$
|\mathcal{M}|^{2}=l_{\mu \nu} W^{\mu \nu} \quad l^{\mu \nu}=4 e^{2}\left(k^{\mu} k^{\prime \nu}+k^{\nu} k^{\prime \mu}-g^{\mu \nu} k \cdot k^{\prime}\right)
$$

\longrightarrow study the hadronic tensor $W^{\mu \nu}\left(W^{2}, Q^{2}\right)$
(or $W^{\mu \nu}\left(x, Q^{2}\right)$)

Hadronic tensor

Most generic structure for $W^{\mu \nu}\left(x, Q^{2}\right)$

$$
W^{\mu \nu}=A g^{\mu \nu}+B p^{\mu} p^{\mu}+C q^{\mu} q^{\nu}+D p^{\mu} q^{\nu}+E q^{\mu} p^{\nu} .
$$

Constraints:

$$
W^{\mu \nu}=W^{\nu \mu} \quad \text { and } \quad q_{\mu} W^{\mu \nu}=0 \text { (gauge inv.) }
$$

Implying

$$
W^{\mu \nu}=-\left(g^{\mu \nu}+\frac{q^{\mu} q^{\nu}}{Q^{2}}\right) F_{1}+\frac{2 x}{Q^{2}}\left(p^{\mu}+\frac{q^{\mu}}{2 x}\right)\left(p^{\nu}+\frac{q^{\nu}}{2 x}\right) F_{2}
$$

$F_{1}, F_{2}\left(x, Q^{2}\right)$: proton structure functions

Structure functions

(inclusive) proton interaction fully parametrised by the 2 structure functions F_{1} and $F_{2}\left(x, Q^{2}\right)$

- dimensionless
- $F_{L}=F_{2}-2 x F_{1}$ (longitudinally-polarized γ^{*})
- For charged currents: additional $F_{3}\left(x, Q^{2}\right)$

Parton model

Useful to consider a frame where the proton is highly boosted ($P \gg 1, p$ looks like a pancake)

$$
\begin{array}{rlr}
p^{\mu} & \equiv(0,0, P, P) & \\
n^{\mu} & \equiv\left(0,0, \frac{-1}{2 P}, \frac{1}{2 P}\right) & \left(n^{2}=0, n \cdot p=1\right) \\
q^{\mu} & \equiv q_{\perp}^{\mu}+\nu n^{\mu} & \left(n \cdot q=0, \vec{q}_{\perp}^{2}=Q^{2}\right)
\end{array}
$$

We obtain

$$
\begin{aligned}
& F_{2}=\nu n^{\mu} n^{\nu} W_{\mu \nu} \\
& F_{L}=\frac{4 x^{2}}{\nu} p^{\mu} p^{\nu} W_{\mu \nu}
\end{aligned}
$$

Parton model

Bag model

The photon resolves
a quark inside the proton

$$
k^{\mu}=\xi p^{\mu}+\frac{k^{2}+k_{\perp}^{2}}{2 \xi} n^{\mu}+k_{\perp}^{\mu}
$$

$$
W^{\mu \nu}=e_{q}^{2} \int \frac{d^{4} k}{(2 \pi)^{4}} \operatorname{tr}\left(\gamma^{\mu}(\not k+\not q) \gamma^{\nu} B(k, p)\right) \delta\left((k+q)^{2}\right)
$$

Parton model

Bag model

The photon resolves
a quark inside the proton

$$
\begin{aligned}
& k^{\mu}=\xi p^{\mu}+\frac{k^{2}+k_{\perp}^{2}}{2 \xi} n^{\mu}+k_{\perp}^{\mu} \\
& F_{2}=\nu e_{q}^{2} \int \frac{d^{4} k}{(2 \pi)^{4}} \operatorname{tr}(\not n(\not k+\not q) \not h B(k, p)) \delta\left((k+q)^{2}\right)
\end{aligned}
$$

Parton model

Bag model

The photon resolves
a quark inside the proton

$$
k^{\mu}=\xi p^{\mu}+\frac{k^{2}+k_{\perp}^{2}}{2 \xi} n^{\mu}+k_{\perp}^{\mu}
$$

$$
\begin{gathered}
F_{2}= \\
\nu e_{q}^{2} \int \frac{d^{4} k}{(2 \pi)^{4}} \operatorname{tr}(\not n(\not k+\not k) \nmid h B(k, p)) \delta\left((k+q)^{2}\right) \\
\operatorname{tr}(\not x(\not k+\not k) \not k B(k, p))=2 \xi \operatorname{tr}(\not x B(k, p))
\end{gathered}
$$

Parton model

Bag model

The photon resolves
a quark inside the proton

$$
k^{\mu}=\xi p^{\mu}+\frac{k^{2}+k_{\perp}^{2}}{2 \xi} n^{\mu}+k_{\perp}^{\mu}
$$

$$
F_{2}=\nu e_{q}^{2} \int \frac{d^{4} k}{(2 \pi)^{4}} \operatorname{tr}(\not x(\not k+\not q) n \boldsymbol{n} B(k, p)) \delta\left((k+q)^{2}\right)
$$

$$
\delta\left((k+q)^{2}\right)=\delta\left(k^{2}-Q^{2}+2 \xi \nu-2 \vec{k}_{\perp}^{2} \cdot \vec{q}_{\perp}^{2}\right)
$$

$$
\stackrel{Q^{2} \gg}{\simeq} \delta\left(2 \nu \xi-Q^{2}\right) \simeq \frac{1}{2 \nu} \delta\left(2 \nu \xi-Q^{2}\right)
$$

Parton model

Putting everything together:

$$
F_{2}=x e_{q}^{2} \int \frac{d^{4} k}{(2 \pi)^{4}} \operatorname{tr}(\not x B(k, p)) \delta(x-\xi)
$$

i.e.
$F_{2}=x e_{q}^{2} q(x) \quad$ with $\quad q(x)=\int \frac{d^{4} k}{(2 \pi)^{4}} \operatorname{tr}(\not \subset B(k, p)) \delta(x-\xi)$
with a sum over flavours

$$
F_{2}=\sum_{q} x e_{q}^{2}[q(x)+\bar{q}(x)]
$$

$q(x)$: parton distribution function (PDF)

Parton model

$$
F_{2}=\sum_{q} x e_{q}^{2}[q(x)+\bar{q}(x)]
$$

$$
q(x) \equiv \mathrm{PDF}
$$

- interpreted as the probability density to find a quark carrying a fraction x of the proton's momentum (universal!!)
- $F_{2}\left(x, Q^{2}\right)=F_{2}(x): Q^{2}$-independent. Bjorken scaling
- F_{L} suppressed by $1 / Q^{2}$ compared to F_{2} $F_{2}=2 x F_{1}$. Calan-Gross relation: spin $1 / 2$ for q
- charged currents: different quark combinations

Bjorken scaling

F_{2} from BCDMS, SLAC, NMC, H1 and ZEUS (~ 1990)

Bjorken scaling violations

HERA measurements (~1993-2007)

Scaling violations!!!

Bjorken scaling violations

A closer look for 3 bins in x

Bjorken scaling violations

Can we describe the scaling violations in QCD?

Bjorken scaling violations

Can we describe the scaling violations in QCD?

Idea: quarks can
radiate gluons $\overbrace{k}^{q} \underbrace{k+q}$

One-gluon emission

4 graphs to compute
Work in an axial gauge $n . A=0$ (recall $n^{2}=0, n . p=1$, $n . q=0$): gluon of mom k^{μ} has propagator

$$
d^{\mu \nu}(k)=\left(-g^{\mu \nu}+\frac{n^{\mu} k^{\nu}+k^{\mu} n^{\nu}}{n \cdot k}\right) \frac{1}{k^{2}}
$$

One-gluon emission

$$
\begin{aligned}
& k^{\mu}=\xi p^{\mu}+\frac{k_{\perp}^{2}-\left|k^{2}\right|}{2 \xi} n^{\nu}+k_{\perp}^{\mu} \\
& p \equiv(0,0, P, P) \\
& n^{\mu} n^{\nu} \sum^{-}|\mathcal{M}|^{2}=\frac{1}{2 N_{c}} e_{q}^{2} g^{2} \operatorname{tr}\left(t_{a} t^{a}\right) \frac{1}{k^{4}} \operatorname{tr}\left(\not n\left(\not k+\not q^{2}\right) \not 九 \not k \gamma^{\alpha} \not p \gamma^{\beta} \not k\right) \\
& {\left[-g^{\alpha \beta}+\frac{n^{\alpha}(p-k)^{\beta}+(p-k)^{\alpha} n^{\beta}}{n \cdot(p-k)}\right]} \\
& =32 \pi e_{q}^{2} \alpha_{s} \frac{\xi P(\xi)}{\left|k^{2}\right|} \quad P(\xi)=C_{F} \frac{1+\xi^{2}}{1-\xi}
\end{aligned}
$$

One-gluon emission

$$
\begin{aligned}
& k^{\mu}=\xi p^{\mu}+\frac{k_{\perp}^{2}-\left|k^{2}\right|}{2 \xi} n^{\nu}+k_{\perp}^{\mu} \\
& P(\xi)=C_{F} \frac{1+\xi^{2}}{1-\xi}
\end{aligned}
$$

$$
\hat{F}_{2}=e_{q}^{2} \frac{\alpha_{s}}{4 \pi^{2}} \int d \xi \xi P(\xi) \int \frac{d\left|k^{2}\right|}{\left|k^{2}\right|} d k_{\perp}^{2} d \theta \delta\left((p-k)^{2}\right) \delta\left((k+q)^{2}\right)
$$

One-gluon emission

$$
\begin{aligned}
k^{\mu} & =\xi p^{\mu}+\frac{k_{\perp}^{2}-\left|k^{2}\right|}{2 \xi} n^{\nu}+k_{\perp}^{\mu} \\
P(\xi) & =C_{F} \frac{1+\xi^{2}}{1-\xi} \\
\hat{F}_{2} & =e_{q}^{2} \frac{\alpha_{s}}{4 \pi^{2}} \int d \xi \xi P(\xi) \int \frac{d\left|k^{2}\right|}{\left|k^{2}\right|} d k_{\perp}^{2} d \theta \delta\left((p-k)^{2}\right) \delta\left((k+q)^{2}\right) \\
& =e_{q}^{2} \frac{\alpha_{s}}{2 \pi^{2}} \int_{0}^{2 \nu} \frac{d\left|k^{2}\right|}{\left|k^{2}\right|} \int_{\xi_{-}}^{\xi_{+}} d \xi \frac{\xi P(\xi)}{\sqrt{\left(\xi_{+}-\xi\right)\left(\xi-\xi_{-}\right)}}
\end{aligned}
$$

with $\xi_{ \pm}=x \pm \mathcal{O}\left(\left|k^{2}\right| / Q^{2}\right)$

One-gluon emission

$$
\hat{F}_{2}=e_{q}^{2} \frac{\alpha_{s}}{2 \pi^{2}} x P(x) \int_{0}^{2 \nu} \frac{d\left|k^{2}\right|}{\left|k^{2}\right|}=e_{q}^{2} \frac{\alpha_{s}}{2 \pi^{2}} x P(x) \int_{0}^{Q^{2}} \frac{d\left|k^{2}\right|}{\left|k^{2}\right|}
$$

- other diagrams suppressed by powers of Q
- only kept the leading terms in Q
- $\left|k^{2}\right|$ integration DIVERGENT!!

One-gluon emission

$$
\hat{F}_{2}=e_{q}^{2} \frac{\alpha_{s}}{2 \pi^{2}} x P(x) \int_{0}^{2 \nu} \frac{d\left|k^{2}\right|}{\left|k^{2}\right|}=e_{q}^{2} \frac{\alpha_{s}}{2 \pi^{2}} x P(x) \int_{0}^{Q^{2}} \frac{d\left|k^{2}\right|}{\left|k^{2}\right|}
$$

- other diagrams suppressed by powers of Q
- $\left|k^{2}\right|$ integration DIVERGENT!!

From $\delta\left((p-k)^{2}\right)$ we get $\vec{k}_{\perp}^{2}=(1-\xi)\left|k^{2}\right|$
Thus, $\left|k^{2}\right| \rightarrow 0 \Rightarrow \vec{k}_{\perp} \rightarrow 0$

This is thus a collinear divergence! The same as we already encountered in $e^{+} e^{-}$collisions.

One-gluon emission

$$
\hat{F}_{2}=e_{q}^{2} \frac{\alpha_{s}}{2 \pi^{2}} x P(x) \int_{0}^{2 \nu} \frac{d\left|k^{2}\right|}{\left|k^{2}\right|}=e_{q}^{2} \frac{\alpha_{s}}{2 \pi^{2}} x P(x) \int_{0}^{Q^{2}} \frac{d\left|k^{2}\right|}{\left|k^{2}\right|}
$$

- other diagrams suppressed by powers of Q
- $\left|k^{2}\right|$ integration DIVERGENT!!

From $\delta\left((p-k)^{2}\right)$ we get $\vec{k}_{\perp}^{2}=(1-\xi)\left|k^{2}\right|$
Thus, $\left|k^{2}\right| \rightarrow 0 \Rightarrow \vec{k}_{\perp} \rightarrow 0$

This is thus a collinear divergence! The same as we already encountered in $e^{+} e^{-}$collisions.
Not cancelled by virtual corrections
Here: technique similar to renormalisation

Recall: renormalisation

Vertex correction in QED

Recall: renormalisation

Vertex correction in QED

We have defined a scale-dependent coupling

$$
\alpha\left(\mu^{2}\right)=\alpha+\beta_{0} \cdot \alpha^{2} \int_{0}^{\mu^{2}} \frac{d k^{2}}{k^{2}}
$$

Recall: renormalisation

Vertex correction in QED

We have defined a scale-dependent coupling

$$
\alpha\left(\mu^{2}\right)=\alpha+\beta_{0} \cdot \alpha^{2} \int_{0}^{\mu^{2}} \frac{d k^{2}}{k^{2}}
$$

μ^{2} is arbitrary i.e. physics should not depend on it

$$
\mu^{2} \partial_{\mu^{2}} \alpha\left(\mu^{2}\right)=\beta_{0} \alpha^{2}\left(\mu^{2}\right)
$$

renormalisation group equation

Reabsorption of the collinear divergence

Reabsorption of the collinear divergence

Reabsorption of the collinear divergence

Reabsorption of the collinear divergence

Reabsorption of the collinear divergence

$$
\begin{aligned}
& F_{2}\left(x, Q^{2}\right)= x e_{q}^{2} \int_{x}^{1} \frac{d \xi}{\xi}\left[\delta\left(1-\frac{x}{\xi}\right)+P\left(\frac{x}{\xi}\right) \int_{0}^{Q^{2}} \frac{d\left|k^{2}\right|}{\left|k^{2}\right|}\right] q_{\mathrm{bare}}(\xi) \\
&= x e_{q}^{2} \int_{x}^{1} \frac{d \xi}{\xi}\left[\delta\left(1-\frac{x}{\xi}\right)+P\left(\frac{x}{\xi}\right) \int_{0}^{\mu^{2}} \frac{d\left|k^{2}\right|}{\left|k^{2}\right|}\right] q_{\mathrm{bare}}(\xi) \\
&+x e_{q}^{2} \int_{x}^{1} \frac{d \xi}{\xi} P\left(\frac{x}{\xi}\right) \int_{\mu^{2}}^{Q^{2}} \frac{d\left|k^{2}\right|}{\left|k^{2}\right|} q_{\mathrm{bare}}(\xi) \\
&= x e_{q}^{2} \int_{x}^{1} \frac{d \xi}{\xi}\left[\delta\left(1-\frac{x}{\xi}\right)+P\left(\frac{x}{\xi}\right) \int_{\mu^{2}}^{Q^{2}} \frac{d\left|k^{2}\right|}{\left|k^{2}\right|}\right] q\left(\xi, \mu^{2}\right) \\
&= x e_{q}^{2} q\left(\xi, Q^{2}\right) \\
& P(x)=\frac{\alpha_{s}}{2 \pi} C_{F} \frac{1+x^{2}}{1-x}
\end{aligned}
$$

Reabsorption of the collinear divergence

We have defined

$$
q\left(x, \mu^{2}\right)=q_{\text {bare }}(x)+\int_{x}^{1} \frac{d \xi}{\xi} P\left(\frac{x}{\xi}\right) \int_{0}^{\mu^{2}} \frac{d\left|k^{2}\right|}{\left|k^{2}\right|} q_{\text {bare }}(\xi)
$$

Reabsorption of the collinear divergence

We have defined

$$
q\left(x, \mu^{2}\right)=q_{\mathrm{bare}}(x)+\int_{x}^{1} \frac{d \xi}{\xi} P\left(\frac{x}{\xi}\right) \int_{0}^{\mu^{2}} \frac{d\left|k^{2}\right|}{\left|k^{2}\right|} q_{\mathrm{bare}}(\xi)
$$

Physics independent of the choice for μ^{2}

$$
\mu^{2} \partial_{\mu^{2}} q\left(x, \mu^{2}\right)=\frac{\alpha_{s}}{2 \pi} \int_{x}^{1} \frac{d \xi}{\xi} P\left(\frac{x}{\xi}\right) q\left(\xi, \mu^{2}\right)
$$

DGLAP equation

The DGLAP equation

$$
Q^{2} \partial_{Q^{2}} q\left(x, Q^{2}\right)=\frac{\alpha_{s}}{2 \pi} \int_{x}^{1} \frac{d \xi}{\xi} P\left(\frac{x}{\xi}\right) q\left(\xi, Q^{2}\right)
$$

- DGLAP: Dokshitzer-Gribov-Lipatov-Altarelli-Parisi

The DGLAP equation

$$
Q^{2} \partial_{Q^{2}} q\left(x, Q^{2}\right)=\frac{\alpha_{s}}{2 \pi} \int_{x}^{1} \frac{d \xi}{\xi} P\left(\frac{x}{\xi}\right) q\left(\xi, Q^{2}\right)
$$

- DGLAP: Dokshitzer-Gribov-Lipatov-Altarelli-Parisi
- the PDFs get some dependence on Q^{2}
- Bjorken scaling violations

The DGLAP equation

$$
Q^{2} \partial_{Q^{2}} q\left(x, Q^{2}\right)=\frac{\alpha_{s}}{2 \pi} \int_{x}^{1} \frac{d \xi}{\xi} P\left(\frac{x}{\xi}\right) q\left(\xi, Q^{2}\right)
$$

- DGLAP: Dokshitzer-Gribov-Lipatov-Altarelli-Parisi
- the PDFs get some dependence on Q^{2}
- Bjorken scaling violations
- μ called the factorisation scale

The DGLAP equation

$$
Q^{2} \partial_{Q^{2}} q\left(x, Q^{2}\right)=\frac{\alpha_{s}}{2 \pi} \int_{x}^{1} \frac{d \xi}{\xi} P\left(\frac{x}{\xi}\right) q\left(\xi, Q^{2}\right)
$$

- DGLAP: Dokshitzer-Gribov-Lipatov-Altarelli-Parisi
- the PDFs get some dependence on Q^{2}
- Bjorken scaling violations
- μ called the factorisation scale
- Leading order computation in $\alpha_{s} \log \left(Q^{2} / \mu^{2}\right)$

The DGLAP equation

$$
Q^{2} \partial_{Q^{2}} q\left(x, Q^{2}\right)=\frac{\alpha_{s}}{2 \pi} \int_{x}^{1} \frac{d \xi}{\xi} P\left(\frac{x}{\xi}\right) q\left(\xi, Q^{2}\right)
$$

- DGLAP: Dokshitzer-Gribov-Lipatov-Altarelli-Parisi
- the PDFs get some dependence on Q^{2}
- Bjorken scaling violations
- μ called the factorisation scale
- Leading order computation in $\alpha_{s} \log \left(Q^{2} / \mu^{2}\right)$
- Actually resums all terms $\alpha_{s}^{n} \log ^{n}\left(Q^{2} / \mu^{2}\right)$ (recall: $\alpha_{s} \log \left(Q^{2} / \mu^{2}\right) \sim 1 \Rightarrow$ compute at all orders)

The DGLAP equation: resummation

$$
Q^{2} \partial_{Q^{2}} q\left(x, Q^{2}\right)=\frac{\alpha_{s}}{2 \pi} \int_{x}^{1} \frac{d \xi}{\xi} P\left(\frac{x}{\xi}\right) q\left(\xi, Q^{2}\right)
$$

The DGLAP equation: resummation

$$
Q^{2} \partial_{Q^{2}} q\left(x, Q^{2}\right)=\frac{\alpha_{s}}{2 \pi} \int_{x}^{1} \frac{d \xi}{\xi} P\left(\frac{x}{\xi}\right) q\left(\xi, Q^{2}\right)
$$

The DGLAP equation: resummation

$$
Q^{2} \partial_{Q^{2}} q\left(x, Q^{2}\right)=\frac{\alpha_{s}}{2 \pi} \int_{x}^{1} \frac{d \xi}{\xi} P\left(\frac{x}{\xi}\right) q\left(\xi, Q^{2}\right)
$$

The DGLAP equation: resummation

$$
Q^{2} \partial_{Q^{2}} q\left(x, Q^{2}\right)=\frac{\alpha_{s}}{2 \pi} \int_{x}^{1} \frac{d \xi}{\xi} P\left(\frac{x}{\xi}\right) q\left(\xi, Q^{2}\right)
$$

Resumming (leading) contributions $\alpha_{s}^{n} \log ^{n}\left(Q^{2} / Q_{0}^{2}\right)$

The DGLAP equation: splitting function

$$
Q^{2} \partial_{Q^{2}} q\left(x, Q^{2}\right)=\frac{\alpha_{s}}{2 \pi} \int_{x}^{1} \frac{d \xi}{\xi} P\left(\frac{x}{\xi}\right) q\left(\xi, Q^{2}\right)
$$

$P(\xi)$ called the splitting function:
transition from a quark of longitudinal momentum $x P$ to a quark of momentum $x \xi P$ with emission of a gluon

The DGLAP equation: splitting function

$$
Q^{2} \partial_{Q^{2}} q\left(x, Q^{2}\right)=\frac{\alpha_{s}}{2 \pi} \int_{x}^{1} \frac{d \xi}{\xi} P\left(\frac{x}{\xi}\right) q\left(\xi, Q^{2}\right)
$$

$P(\xi)$ called the splitting function:
transition from a quark of longitudinal momentum $x P$ to a quark of momentum $x \xi P$ with emission of a gluon

Correction due to virtual-gluon emission:

$$
P(x)=C_{F}\left[\frac{1+x^{2}}{1-x}\right]_{+}
$$

NB: the $1 /(1-x)$ behaviour is the soft QCD divergence

The DGLAP equation: splitting function

$Q^{2} \partial_{Q^{2}}\binom{q\left(x, Q^{2}\right)}{g\left(x, Q^{2}\right)}=\frac{\alpha_{s}}{2 \pi} \int_{x}^{1} \frac{d \xi}{\xi}\left(\begin{array}{ll}P_{q q} & P_{q g} \\ P_{g q} & P_{g g}\end{array}\right)\binom{x}{\xi}\binom{q\left(\xi, Q^{2}\right)}{g\left(\xi, Q^{2}\right)}$
$P_{a b}(\xi)$ called the splitting function:

$P_{q q}$

$P_{g q}$

$P_{q g}$

$P_{g g}$
$P_{a b}(x)$ is the probability to obtain a parton of type a carrying a fraction x of the longitudinal momentum of a parent parton of type b

DGLAP and the factorisation theorem

The result is more general: it holds at any order in perturbation theory

$$
Q^{2} \partial_{Q^{2}} q\left(x, Q^{2}\right)=\int_{x}^{1} \frac{d \xi}{\xi} P\left(\frac{x}{\xi}\right) q\left(\xi, Q^{2}\right)
$$

with
$P(x)=\left(\frac{\alpha_{s}}{2 \pi}\right) P^{(0)}(x)+\left(\frac{\alpha_{s}}{2 \pi}\right)^{2} P^{(1)}(x)+\left(\frac{\alpha_{s}}{2 \pi}\right)^{3} P^{(2 x)}(x)+\ldots$

DGLAP and the factorisation theorem

The result is more general: it holds at any order in perturbation theory

$$
Q^{2} \partial_{Q^{2}} q\left(x, Q^{2}\right)=\int_{x}^{1} \frac{d \xi}{\xi} P\left(\frac{x}{\xi}\right) q\left(\xi, Q^{2}\right)
$$

with

$$
P(x)=\underbrace{\left(\frac{\alpha_{s}}{2 \pi}\right) P^{(0)}(x)}_{\text {LO }}+\underbrace{\left(\frac{\alpha_{s}}{2 \pi}\right)^{2} P^{(1)}(x)}_{\text {NLO }}+\underbrace{\left(\frac{\alpha_{s}}{2 \pi}\right)^{3} P^{(2)}(x)}_{\mathrm{NNLO}}+\ldots
$$

- LO resums $\alpha_{s}^{n} \log ^{n}\left(Q^{2} / \mu^{2}\right)$ (leading logarithms)
- NLO resums $\alpha_{s}^{n} \log ^{n}\left(Q^{2} / \mu^{2}\right)$ and $\alpha_{s}^{n+1} \log ^{n}\left(Q^{2} / \mu^{2}\right)$

Note: order refers to P; includes diagrams at all orders
Note: known up to NNLO since 2004 (Moch, Vermaseren, Vogt)

DGLAP and the factorisation theorem

The result is more general: it holds at any order in perturbation theory

$$
Q^{2} \partial_{Q^{2}} q\left(x, Q^{2}\right)=\int_{x}^{1} \frac{d \xi}{\xi} P\left(\frac{x}{\xi}\right) q\left(\xi, Q^{2}\right)
$$

with
$P(x)=\left(\frac{\alpha_{s}}{2 \pi}\right) P^{(0)}(x)+\left(\frac{\alpha_{s}}{2 \pi}\right)^{2} P^{(1)}(x)+\left(\frac{\alpha_{s}}{2 \pi}\right)^{3} P^{(2 x)}(x)+\ldots$

Fundamental result in QCD know as the factorisation theorem

Collinear divergences can be reabsorbed in the definition of the PDFs at all orders!

DGLAP vs. data

H1 and ZEUS Combined PDF Fit

Very nice description of the Q^{2}-dependence observed in the data

DGLAP vs. data

DGLAP only gives the Q^{2} evolution of the PDFs
One still needs an initial condition $f_{a}\left(x, \mu^{2}\right)$

Global PDF fit:

- Parametrise q and g at an initial scale μ^{2} e.g. $q\left(x, \mu^{2}\right)=x^{\lambda}(1-x)^{\beta}(A+B \sqrt{x}+C x)$
- Obtain the PDFs $f_{a}\left(x, Q^{2}\right)$ at all Q^{2} using DGLAP
- Compute a series of observables (e.g. F_{2})
- Fit the experimental measurements $\left(\chi^{2}\right.$ minimisation)

DGLAP vs. data

- Many teams: MSTW/MRST, CTEQ, NNPDF, HERA, H1, ZEUS, Alekhin, GRV
- Each with many updates e.g. CTEQ4I, CTEQ4m, CTEQ5I, CTEQ5m, CTEQ6, CTEQ6I, CTEQ6m, CTEQ61, CTEQ65, CTEQ66 MRST98, MRST2001, MRST2002, MRST2003, MRST2004, MRST2006, MRST2007, MSTW2008

DGLAP vs. data

- Many teams: MSTW/MRST, CTEQ, NNPDF, HERA, H1, ZEUS, Alekhin, GRV
- Each with many updates
- Points of difference (7):

DGLAP vs. data

- Many teams: MSTW/MRST, CTEQ, NNPDF, HERA, H1, ZEUS, Alekhin, GRV
- Each with many updates
- Points of difference (7):
- Choice of initial scale
- Choice of initial parametrisation
- Order of the fit (LO, NLO, NNLO)
- Data selection (e.g. cuts, old vs. new data)
- Heavy-flavour treatment
- Computation of PDFs uncertainties
- List of observables (9)

DGLAP vs. data

- Many teams: MSTW/MRST, CTEQ, NNPDF, HERA, H1, ZEUS, Alekhin, GRV
- Each with many updates
- Points of difference (7):
- Choice of initial scale
- Choice of initial parametrisation
- Order of the fit (LO, NLO, NNLO)
- Data selection (e.g. cuts, old vs. new data)
- Heavy-flavour treatment
- Computation of PDFs uncertainties
- List of observables (9) $F_{2}^{p}, F_{2}^{d}, F_{L}, F_{2}^{\nu}, F_{3}^{\nu}, F_{2}^{c}, F_{2}^{b}$, Drell-Yan, Tev. jets

Global fits

Global fits are important for LHC physics as they affect every perturbative computation

Global fits

Initial
distributions
$Q^{2}=\mu^{2}=2 \mathrm{GeV}$

Global fits

Initial 'flavour-singlet' distributions $Q^{2}=\mu^{2}=2 \mathrm{GeV}$

Global fits

Impact of HERA measurements

With HERA

Without HERA

Global fits

DIS: summary

DIS: $\gamma^{*} p$ scattering with highly virtual $\gamma\left(Q^{2} \gg \Lambda_{\mathrm{QCD}}^{2}\right)$

- Parton model
. directly probes partons inside the proton
- Bjorken scaling

DIS: summary

DIS: $\gamma^{*} p$ scattering with highly virtual $\gamma\left(Q^{2} \gg \Lambda_{\mathrm{QCD}}^{2}\right)$

- Parton model
. directly probes partons inside the proton
- Bjorken scaling
- QCD collinear divergences
- Violations of Bjorken scaling
- Factorisation theorem/DGLAP equation (fundamental result/prediction of QCD)
- Parton Distribution Functions (PDF)
- Global fits for the PDF determination of the PDFs: mandatory for precision at the LHC

Time for questions!

pp collisions (at last!)

The very fundamental collision

$$
\sigma=f_{a} \otimes f_{b} \otimes \hat{\sigma}
$$

- "take a parton out of each proton" $f_{a} \equiv$ parton distribution function (PDF) for quark and gluons
a big chapter of these lectures
- hard matrix element perturbative computation Forde-Feynman rules

The more realistic version

- Hard ME
perturbative
- Parton branching initial+final state radiation
- Hadronisation
q, $g \rightarrow$ hadrons
- Multiple interactions

Underlying event (UE)

- Pile-up
$\lesssim 25 p p$ at the LHC

Plan

- A few generic considerations
- kinematics (done)
- Monte-Carlo
- Processes one-by-one
. Drell-Yan
- Jets (done)
- W/Z (+jets)
- top
- H
. SUSY (?)

Plan

- A few generic consid
- kinematics (done)
- Monte-Carlo
- Processes one-by-or
. Drell-Yan
- Jets (done)
- W/Z (+jets)
. top
- H
. SUSY (?)

Parton luminosities

Vary $\sqrt{s} \Rightarrow$ same ME, only PDF vary

$\sigma=\sum \int d x_{1} d x_{2} f_{a}\left(x_{1}\right) f_{b}\left(x_{2}\right) \hat{\sigma}$

$$
=\sum_{i j} \int d \hat{s} \frac{d L_{i j}}{d \hat{s}} \hat{\sigma}(\hat{s})
$$

NB: Tevatron: $p \bar{p}$
LHC: $p p$

Drell-Yan

Production of a lepton pair (of mass M)

Hard matrix element:

$$
\frac{d \hat{\sigma}}{d M^{2}}=\frac{e_{q}^{2} N_{c}}{N_{c}^{2}} \frac{4 \pi \alpha^{2}}{3 M^{2}} \delta\left(x_{1} x_{2} s-M^{2}\right)
$$

Lowest order $\left(\mathrm{PDF}_{1} \otimes \mathrm{PDF}_{2} \otimes \mathrm{ME}\right)$

$$
\frac{d \sigma}{d M^{2}}=\int d x_{1} d x_{2} \sum_{q}\left[q\left(x_{1}, M^{2}\right) \bar{q}\left(x_{2}, M^{2}\right)+(1 \leftrightarrow 2)\right] \frac{d \hat{\sigma}}{d M^{2}}
$$

Drell-Yan

Production of a lepton pair (of mass M)

More differential cross-sections:
Ex. 1: lepton-pair rapidity (y)
$\begin{aligned} \Rightarrow & \delta\left(x_{1} x_{2} s-M^{2}\right) \\ & \delta\left(y-\frac{1}{2} \log \left(x_{1} / x_{2}\right)\right)\end{aligned}$

$\frac{d^{2} \sigma}{d M^{2} d y}=\sum_{q} \frac{4 \pi e_{q}^{2} \alpha^{2}}{3 N_{c} M^{2} s}\left[q\left(\frac{M}{\sqrt{s}} e^{y}, M^{2}\right) \bar{q}\left(\frac{M}{\sqrt{s}} e^{-y}, M^{2}\right)+(y \leftrightarrow-y)\right]$

Drell-Yan

Production of a lepton pair (of mass M)

More differential cross-sections:
Ex. 1: lepton-pair rapidity (y)
$\begin{aligned} \Rightarrow & \delta\left(x_{1} x_{2} s-M^{2}\right) \\ & \delta\left(y-\frac{1}{2} \log \left(x_{1} / x_{2}\right)\right)\end{aligned}$

Ex. 2: Feynman $x\left(x_{F}\right)$
$x_{F}=\frac{2}{\sqrt{s}}\left(p_{z, l^{+}}-p_{z, l^{-}}\right) \stackrel{\text { LO }}{=} x_{1}-x_{2}$: also 2δ 's

Drell-Yan

- Next order: emission of one gluon \quad mommm
, real and virtual
- depends on $g\left(x, M^{2}\right)$
- $p_{t, \gamma / Z} \neq 0$

Drell-Yan

- Next order: emission of one gluon
- factorisation proven at ANY order

$$
\begin{aligned}
\frac{d \sigma}{d M^{2}}= & \int d x_{1} d x_{2} d z_{1} d z_{2} \\
& \sum_{f} f_{a}\left(x_{1}, M^{2}\right) f_{b}\left(x_{2}, M^{2}\right) D_{a b}\left(z_{1} / x_{1}, z_{2} / x_{2}\right) \\
& \frac{d \hat{\sigma}}{d M^{2}}\left(z_{1}, z_{2} ; M^{2}\right)
\end{aligned}
$$

Drell-Yan

- Next order: emission of one gluon
- factorisation proven at ANY order

$$
\begin{aligned}
\frac{d \sigma}{d M^{2}}= & \int d x_{1} d x_{2} d z_{1} d z_{2} \\
& \sum_{f} f_{a}\left(x_{1}, M^{2}\right) f_{b}\left(x_{2}, M^{2}\right) D_{a b}\left(z_{1} / x_{1}, z_{2} / x_{2}\right) \\
& \frac{d \hat{\sigma}}{d M^{2}}\left(z_{1}, z_{2} ; M^{2}\right)
\end{aligned}
$$

- ONLY case where the factorisation $\mathrm{PDF}_{1} \otimes \mathrm{PDF}_{2} \otimes \mathrm{ME}$ is proven, otherwise it's just a "reasonable assumption"

Monte-Carlo generators

Parton cascades, hadronisation, Underlying Event, pileup: a realistic event is complicated!

\Rightarrow Use of (Monte-Carlo) event generators to simulate full events

Monte-Carlo generators: fixed order

Perturbative computations are the base of everything But are often hard/impossible to compute analytically (especially for exclusive measurements)
\Rightarrow use a fixed-order Monte-Carlo genrator

Monte-Carlo generators: fixed order

Perturbative computations are the base of everything
But are often hard/impossible to compute analytically (especially for exclusive measurements)
\Rightarrow use a fixed-order Monte-Carlo genrator

- Aim: provide signals and backgrounds for LHC studies (usually needed at NLO)
See the LesHouche list of completed/wanted processes, e, g,
. many jets
- W+jets
- H+jets
- top ($t \bar{t}$ and single top)
- SUSY

Monte-Carlo generators: fixed order

Perturbative computations are the base of everything
But are often hard/impossible to compute analytically (especially for exclusive measurements)
\Rightarrow use a fixed-order Monte-Carlo genrator

- Aim: provide signals and backgrounds for LHC studies (usually needed at NLO)
- Generate matrix elements + phase-space
- 2 big categories:

LO (many legs) or NLO (includes virtual corrections)

- Tendency to automate!
- Plenty of them: Alpgen, MadGraph, NLOJet, MCFM, BlackHat, Golem,...

Monte-Carlo generators: full event

For full-event simulation, Monte-Carlo generators are a cornerstone

- parton cascade: collinear splittings (DGLAP-like) As seen in $e^{+} e^{-}$, they have the form

$$
\frac{d^{2} P}{d \theta d z}=\alpha_{s} P(z) \frac{1}{\theta}
$$

Leading terms $\left(\alpha_{s}^{n} \log ^{n}(1 / \theta)\right)$ have angular ordering $\theta_{1}>\theta_{2}>\cdots>\theta_{n}$

Watch out: LO collinear branchings!!! e.g. Multi-jet processes hardly reliable (alternatives like virtuality ordered but always LO

Monte-Carlo generators: full event

For full-event simulation, Monte-Carlo generators are a cornerstone

- parton cascade: collinear splittings (DGLAP-like)
- hadronisation: non-perturbative per se! e.g. Lund string fragmentations (form strings based on colour connections and fragment them)

Monte-Carlo generators: full event

For full-event simulation, Monte-Carlo generators are a cornerstone

- parton cascade: collinear splittings (DGLAP-like)
- hadronisation: non-perturbative per se!
- Multiple interactions/Underlying Event: hadronic beams carry colour i.e. interact strongly
- Modelling
- Then tuning to Tevatron (and LHC) data

Monte-Carlo generators: full event

For full-event simulation, Monte-Carlo generators are

 a cornerstone- parton cascade: collinear splittings (DGLAP-like)
- hadronisation: non-perturbative per se!
- Multiple interactions/Underlying Event: hadronic beams carry colour i.e. interact strongly
- Matching to fixed-order LO generator: better description of multi-jet final-states

Monte-Carlo generators: full event

For full-event simulation, Monte-Carlo generators are

 a cornerstone- parton cascade: collinear splittings (DGLAP-like)
- hadronisation: non-perturbative per se!
- Multiple interactions/Underlying Event: hadronic beams carry colour i.e. interact strongly
- Matching to fixed-order LO generator: better description of multi-jet final-states
- Progress towards NLO generator

Monte-Carlo generators: full event

For full-event simulation, Monte-Carlo generators are a cornerstone

- parton cascade: collinear splittings (DGLAP-like)
- hadronisation: non-perturbative per se!
- Multiple interactions/Underlying Event: hadronic beams carry colour i.e. interact strongly
- Matching to fixed-order LO generator: better description of multi-jet final-states
- Progress towards NLO generator
- Most commonly used: Pythia, Herwig, Sherpa... but others available
- more in the tutorials

W / Z production

- Production:
- $q \bar{q}^{\prime} \rightarrow W^{ \pm}$
- $q \bar{q} \rightarrow Z$
- $14 \mathrm{TeV} \sigma_{W} \approx 20 \mathrm{nb}$ i.e. $200 \mathrm{~W} / \mathrm{s}\left(\mathcal{L}=10^{34} \mathrm{~cm}^{2} / \mathrm{s}\right)$
- Decay:
- $W \rightarrow q \bar{q} \rightarrow 2$ jets $(\mathrm{BR} \approx 2 / 3)$
$W \rightarrow \ell \nu_{\ell}(\mathrm{BR} \approx 1 / 3)$
- $Z \rightarrow q \bar{q} \rightarrow 2$ jets (BR $\approx 70 \%$)
$Z \rightarrow \ell \bar{\ell}(\mathrm{BR} \approx 10 \%)$
$Z \rightarrow \nu \bar{\nu}(\mathrm{BR} \approx 20 \%)$
- leptonic channel most convenient hadronic important for statistics!

W/Z physics

- not really a discovery channel...
- ... but important in many respects
- often $W / Z+$ jets
- standard model tests/MC calibration
- background to many searches e.g. top $(\rightarrow W b)$ or SUSY $\left(E_{t}\right)$
- W cross-section as a standard candle for luminosity measurements

W for lumi measurement

W cross-section as a standard candle for luminosity measurements

PDF main source of uncertainty

top physics

- Production:
- Mostly gg $\rightarrow t \bar{t}$
- Tevatron: $\sigma_{t} \approx 4 \mathrm{pb}$: discovery!
- LHC: $\sigma_{t} \approx 1 \mathrm{nb}: \approx 10 / \mathrm{s}$ LHC \equiv top factory
- Decay:
- Mostly $t \rightarrow W b$
$t \rightarrow q \bar{q} b(\approx 66 \%)$ or $t \rightarrow \ell \nu_{\ell} b(\approx 33 \%)$
- for $t \bar{t}$: 3 options
- leptonic: not-so-easy because 2 neutrinos
. semi-leptonic: $\ell, 4$ jets (2b) and E_{t}
(the most convenient)
. hadronic: 6 jets i.e. technical to reconstruct but $\approx 45 \%$ of the stat!

top physics

top very important at the LHC

- precision mass measurement
- many new physics scenario involve the top (mostly because of its large mass)
\Rightarrow need to reconstruct as many tops as possible

top physics

top very important at the LHC

- precision mass measurement
- many new physics scenario involve the top (mostly because of its large mass)
\Rightarrow need to reconstruct as many tops as possible
Issues:
- $W+$ jets background
- b mis-tagging
- combinatorial background (especially for full hadr.)
- efforts e.g. in boosted-top reconstruction

Higgs: production

Production at the LHC: mostly $g g$ fusion (through top loop)

$m_{H}=120 \mathrm{GeV} \Rightarrow \sigma_{H}^{(\mathrm{L} 0)} \approx 21 \mathrm{pb}$ (vs 0.3 at the Tevatron)

Higgs: decay

Heavy higgs
$\left(m \gtrsim 2 m_{W}\right)$:
 mostly $H \rightarrow W W^{(*)}$ or $H \rightarrow Z Z$ the easiest situation (see e.g. Tevatron)

Higgs: decay

Light higgs ($m<2 m_{W}$):
more complicated

- bb \rightarrow jets dominant but buried in the QCD bkgd
- $\gamma \gamma$ clean but only 0.1-0.3\% of the events

Higgs: discovery

$\sim 30 \mathrm{fb}^{-1}$
needed for
5σ discovery

Higgs: additional comments

- $H \rightarrow b \bar{b}$ may be visible/helpful for boosted $H+W / Z$

Higgs: additional comments

- $H \rightarrow b \bar{b}$ may be visible/helpful for boosted $H+W / Z$
- some additional ideas like
. $H \rightarrow \tau \tau$
- Higgs in SUSY events

Higgs: additional comments

- $H \rightarrow b \bar{b}$ may be visible/helpful for boosted $H+W / Z$
- some additional ideas like
. $H \rightarrow \tau \tau$
. Higgs in SUSY events
- Not the end of the story: also need to verify Higgs properties/couplings.
- e.g. $t \bar{t} H$ may help
- need for luminosity!

SUSY

Typical SUSY process:

- production of a pair of supersymmetric particles
- decay: SM particles + lightest SUSY particle (LSP)

SUSY

Typical SUSY process:

- production of a pair of supersymmetric particles
- decay: SM particles + lightest SUSY particle (LSP)

Typical SUSY signal:

- missing E_{T} (from the LSP + neutrinos)
- leptons
- jets (from QCD partons) \rightarrow excess at large p_{t}

SUSY

Typical SUSY process:

- production of a pair of supersymmetric particles
- decay: SM particles + lightest SUSY particle (LSP)

Typical SUSY signal:

- missing E_{T} (from the LSP + neutrinos)
- leptons
- jets (from QCD partons) \rightarrow excess at large p_{t}

Typical issues

- Need good determination of E_{t}
- Control the multi-jet background at large p_{t}

Time for questions!

