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Lecture 5

• How to write down Feynman Diagrams.

• In and out states and their relation to the S-
Matrix.

• Computing cross sections.
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Computing with Diagrams

• Wick’s Theorem greatly simplifies the 
computation of Correlation functions of fields.

• We still need to compute all possible 
complete contractions of the fields.

• Each contraction is a propagator which 
connects two fields.

• Interpret the set of possible propagators as a 
set of diagrams. 
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T {φI(x1)φI(x2) . . . φI(xn)}

+ : all possible contractions :

=: φI(x1)φI(x2) . . . φI(xn) :



A Simple Example

• If we were to interpret the four field example as a set 
of diagrams we see that we have three terms each of 
which involves a field that evolves from one point to 
another,

• Instead of working these out using Wick’s Theorem we 
could simply have written them down.
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T {φ1φ2φ3φ4} = D(x1 − x2)D(x3 − x4)

+D(x1 − x3)D(x2 − x4) + D(x1 − x4)D(x2 − x3)
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Including Interactions
• The previous example shows what happens in a non-

interacting free theory, the points merely evolve in time 
without interfering with each other.

• What about interactions?

• Consider the second term in the perturbative 
expansion of the two point correlation function (the 
first term just being the free field result)
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Wick’s Theorem

• After substituting our interaction Hamiltonian,                             
we have, 

• Applying Wick’s Theorem to this expression we get,

• The integers in front of the two expressions are due to 
the number of contractions that give equivalent results.
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Diagrams

• This can be written down as two diagrams
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The Interaction Vertex
• Each interaction vertex has four fields at the same point.

• Each has an associated factor of 

• The 4! in the denominator is cancelled by 4! coming from the 
different ways of arranging the four legs of the vertex. 

• Each such vertex can be interpreted as the emission and/or 
absorption of particles at the vertex (from the four fields at the 
same point) summed over all points where this process can 
occur (from the integral over z). 

• We must also take into account the symmetry factor of the 
diagram which is basically the number of ways of interchanging 
the components in the diagram with out changing the diagram 
itself.
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�
d4z(−iλ)



Momentum Space

• We are almost ready to write down the 
Feynman rules for this theory. 

• Ideally we want to deal with these rules in 
terms of momenta and not space-time 
positions. 

• To do this insert the expression for the 
propagator in the form,
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DF (x− y) =
�

d4p

(2π)4
i

p2 −m2 + i�
e−ip·(x−y)



Momentum Conservation

• Inserting the propagator in this form introduces 
exponential factors for each end of the propagator.

• We can use the integral over z to integrate over the 
exponentials that are at the interaction term, 

• This means that momentum is conserved at each 
interaction vertex.

• We are now left with a momentum integral instead at 
each vertex. Use these delta functions to perform as 
many of these integrals as possible. 
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�
d4ze−ip1ze−ip2ze−ip3zeip4z = (2π)4δ(4)(p1 + p2 + p3 − p4)



Feynman Rules
• The terms in the perturbative expansion can be written 

down as a diagrammatic set of rules. These are know as the 
Feynman Rules.

• For our simple example they are

1. Write down all completely connected diagrams,

2. For each propagator write,

3. For each vertex write,

4. For each external point write,

5. Integrate over each undetermined momentum; 

6. Divide by the symmetry factor.
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Disconnected Diagrams

• We apply these rules to produce only 
complete connected diagrams, i.e. every line 
must be connected to an external leg.

• Why can we drop the remaining 
disconnected diagrams? 
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Disconnected Diagrams

• The reason we drop them is due to the 
denominator                 present in,                        

• This denominator tells us to commute all 
vacuum diagrams as we compute U between two 
ground states. 

• This factor is in the denominator and so will 
divide out all such states from the numerator.
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Physical Processes
• We can now compute correlation functions using 

Feynman diagrams.

• How are these related to quantities we can 
measure in experiments? 

• In particle physics experiments we typically want 
to compute (differential) cross sections or 
observables. 

• For example the differential cross section, 
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dσ =
|P2|

UnitTime×UnitFlux
dΠ



Phase Space & Probability

• Where dΠ represents the phase space we must 
integrate over. 

• This size of this phase space will depend upon the cuts 
imposed by both theoretical and experimental 
conditions.

• In these lectures we are learning how to compute   , 
the probability of the particular process we are 
interested in occurring. 

• The remaining parameters are determined by the set 
up of the computation.
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Scattering
• We can think of a typical scattering process as 

consisting of three steps,

• Start with a collection of particles which are well 
separated at some time in the distant past. 

• These particles then evolve through time and at 
some point can interact and possibly create new 
states. 

• The states then move apart and then in the far 
distant future they become well separated again.

• These will be our basic assumptions. 

16



In States
• As this is a quantum process we cannot set up initial states 

of specific position and momentum instead we describe 
each initial state via a wave packet,

• Here Φ(k) is the Fourier transform of the spatial wave-
function.

• The in state is then constructed from a product of these 
wave-packets. 

• Typically in a collider experiment there are two particles in 
the in state, which we will label A and B.
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Out States

• After interacting the particles become well 
separated into n states in the distant future, the 
out states. 

• The amplitude can be constructed by computing 
the overlap of the set of in states to the set of out 
states,

• We have to make one assumption that the 
asymptotic in and out states are the same as the free 
states of the theory.
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A =out �φ1φ2 . . . φn|φAφB�in



Asymptotic States
• Assuming that the asymptotic states are the same as the 

non-interacting free states allows us to proceed.

• It is not in fact true. 

• Interacting field theories can never be truly separated at 
infinity so the asymptotic states are not the same as the 
free states.

• For example in QED we will see that there is a “cloud” of 
photons around electrons at infinity and similarly in QCD 
quarks will have a “cloud” of gluons.

• The effects of this assumption will manifest themselves in 
subtle ways as we will see later in these lectures. 
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The S-Matrix

• To perform computations using this amplitude we 
rewrite it as

•  We call S the scattering or S-Matrix of the theory.

• We can write it in terms of things we know how 
to compute as S=U(∞,-∞).
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= �φ1φ2 . . . φn|S|φAφB�

A =out �φ1φ2 . . . φn|φAφB�in

A = �φ1φ2 . . . φn|U(∞, t0)U(t0,−∞)|φAφB�

Assume 
the in and 
out states 
are free 

field states 
in the 

distant past 
and future



Correlation Functions

• The in states at time, -T, can be written in terms of 
interaction picture field operators so that,

• Similarly the out states at time, T, can be written as

• We therefore want to compute,
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Time Limits
• We were able to move the in and out fields inside the Time 

ordering operation as they were defined at the beginning and 
end time of the computation.

• Our assumption is that these states are well separated at a 
time far in the past, this means that we must take the time 
limit to infinity.

• The amplitude can therefore be computed using Feynman 
diagrams as it is directly related to the correlation functions 
we investigated in the last lecture,
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The T-Matrix
• What we are really interested in are the effects of the 

interacting terms. This is the T-Matrix, T, which we 
define via,

• If we compute T rather than S then we discard any 
terms where all the external legs are not connected to 
each other through some interaction.

• Overall momentum will be conserved, so if we extract 
a delta function factor from T to enforce this we can 
define the matrix element or amplitude,
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S = 1 + iT

�φ1φ2 . . . φn|iT |φAφB� = (2π)4δ(4)
�
pA + pB =

�
pf

�
· iA(kA, kb → pf )



External Legs
• Examining our Feynman rules above we would associate 

with each external leg; 

• a factor of exp(-ip.x)

• a propagator connecting the interaction point to the 
external field

• As the external leg is on-shell though this propagator will 
diverge as,

• These propagators though are related to the evolution of 
the external state up to the interaction point and do not 
describe any ''scattering".
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i

p2 −m2
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Amputated Legs
• We will therefore “amputate” this propagator from the 

external legs.

• We will also remove any “bubble loops” from this external 
leg, this will be important later.

• Effectively we are taking account that the external legs of 
the interacting theory are not the same as the free theory.

• This step can be put on a much more formal footing 
through the use of the LSZ reduction formula. 

• The remaining exponentials will then form part of the 
overall momentum conserving delta function we extracted 
in defining the T-Matrix, so we will also drop these pieces. 
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Feynman Rules
• Our final procedure for computing an amplitude is given 

by writing down all amputated, fully connected Feynman 
diagrams, with the following final Feynman rules;

1. For each propagator, 

2. For each vertex, 

3. For each external line, 1

4. Impose momentum conservation at each vertex.

5. Integrate over each undetermined momentum; 

6. Divide by the symmetry factor.
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Spinor & Vector Propagators

• These are the Feynman rules for a scalar field theory 
for other theories that we will want to consider we 
will have to alter rules 1 and 2. 

• For a spinor propagator we write,

• For a photon propagator we would have
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i(/p + m)
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Cross sections

• After computing A we can then compute the cross 
section (or more useful a differential cross section). 

• For two incoming particles this is given by,

• Depending upon the quantity we are interested in 
we can perform some or all of the integrals dΠ. 
This is know as integrating over the phase space. 
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1

4EAEB
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Example 1
• To see how this works in practice let us look at a couple of 

examples. 

• Start with a simple example of a lowest order, called tree 
level, perturbative computation in a Φ3 scalar theory. 

• Here the Feynman rule for the interaction is simply -iλ, 
where again λ is the coupling constant. 

• There are three diagrams for the process Φ1Φ2→Φ3Φ4 they 
are,
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Example 1
• Let us examine two of these Feynman diagrams,

• Use the Feynman rules to get,
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Example 1
• We can use one of the delta functions to 

perform the integral

• This gives us the more compact expression, 

• After adding the third diagram to this we have 
the full amplitude that can then be used to 
compute the cross section.
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Example II
• As a second example consider the next to lowest 

perturbative expansion term, this is usually called the one-
loop term, for Φ1→Φ2

• This gives the amplitude

• This expression retains an integration over an internal 
momentum which needs to be performed. 
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Summary

• We now know how to write down 
Feynman Diagrams.

• We have defined the In and Out states and 
their relation to the S-Matrix.

• We showed how we can connect these 
correlation functions to the computation of 
cross sections.
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Lecture 6
• How do we constructing a Lagrangian?

• Generically what type of terms can we can 
incorporate?

• Investigate the fundamental role different types of 
symmetries play in the construction of field theories 
such as QED and QCD.

• Global,

• Local,

• Gauge.
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Symmetries

• We are now ready to look at more complicated 
gauge field theories such as QED and QCD.

• One key feature of modern physics is the use of 
symmetries.

• In gauge field theories symmetries play an important 
role in determining the structure of the Lagrangian.

• We will see that by demanding the Lagrangian is 
invariant under certain symmetries we are forced to 
introduce interaction terms of the type we desire.
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Perturbations

• What additional terms can we add to a 
Lagrangian which also satisfy our demands that 
we can compute using a perturbative expansion?

• In our example cases we assumed the coupling 
constant λ was very small.

• In general we cannot quite use this argument to 
limit the terms we want in our Lagrangians. 

• Fields carry a “mass dimension”.
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Power Counting

• Consider a Lagrangian

• The Lagrangian, L, carries “dimension”, [L]=0 and as 
[d4x]=-4 then the Lagrange Density has mass dimension

• The other terms in the Lagrangian carry mass 
dimensions
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Relevant Terms

• We need to take into account the dimension of the 
coupling of a term to determine if it is “small”;

• [λ3] = 1, For this term, the dimensionless parameter is λ3/E, 
where E has dimensions of mass. Typically in quantum field 
theories E is the energy scale of the process of interest. 

• This means that λ3 Φ3/3! is a small perturbation at high 
energies E≫λ3, but a large perturbation at low energies 
E≪λ3. 

• Terms that we add to the Lagrangian with this behaviour 
are called relevant because they have the most impact at low 
energies (which is where most of the physics we see lies). 
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Marginal & Irrelevant Terms

• The other types of term fall into two categories,

• [λ4] = 0, this term is small if λ4≪1. Such terms are called 
marginal.

• [λ>4] <0, for n≥5 the dimensionless parameter is λnEn−4, 
which is small at low-energies and large at high energies. 
Such terms are called irrelevant.

• Irrelevant terms lead to “non-renormalisable” field theories, 
where one cannot make sense of the infinities at arbitrarily 
high energies.

• Irrelevant terms are not necessarily to be avoided, they just 
signify that the theory is incomplete in the high energy regime.
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Reduced Lagrangian
• We will restrict ourselves to Lagrangians that contain 

only relevant and marginal terms as we want to deal 
with renormalisable theories.

• Also the physics we are interested in occurs far below 
some “GUT” scale, so irrelevant operators will be 
greatly suppressed.

• Irrelevant operators are very important in Effective 
Field Theory.

• This drastically reduces the number of possible terms 
we can have in our Lagrangian.
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Global Symmetries

• The Lagrangian typically contains a number of Global 
symmetries.

• A global symmetry is a transformation that acts 
only on the fields of the theory and is the same at 
every point in space-time.

• For example a spinor field is invariant under 
transformations of the type,

• So that the Lagrangian remains invariant under this 
global U(1) symmetry.
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Ψ→ e−iαΨ ΨγµΨ→ Ψeiαγµe−iαΨ = ΨγµΨ



Lie Algebras
• The symmetry groups we will look at are all Lie 

Algebras.

• Of all the Lie Algebras we will only use two of 
them in these lectures, U(N) and SU(N).

• U(N) is the group of all unitary N×N matrices.

• So U(1) is just a constant.

• SU(N) is the group of all unitary N×N matrices 
with determinant equal to 1. We will see more 
of this in the next lecture. 
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Global Symmetries
• Global symmetries of this kind lead to conserved 

currents.

• Noethers Theorem tells us that every continuous 
symmetry gives rise to a conserved current, j(x), 
such that the equation of motion is given by,

• For each conserved current there is a 
corresponding conserved charge,
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∂µjµ = 0
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Local Symmetries

• A more interesting class of symmetries arrises 
when we consider making the symmetry 
depend upon space-time.

• As an example consider making the global        
U(1) transformation a local U(1) transformation, 

• If we insert this into the Dirac Lagrangian then 
we get,
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Ψ→ e−iα(x)Ψ

Ψ
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Covariant Derivative
• Unlike in the global case the differential will now act 

on the exponential as it depends on x,

• So this Lagrangian is not invariant under this local 
transformation. 

• To make this invariant we need to add an additional 
term which will make it invariant.

• To achieve this first replace the standard 
derivative,    , with the covariant derivative D,
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Covariant Derivative

• Finally the Lagrangian is invariant if Aµ transforms 
simultaneously under the gauge transformation,

• The complete transform of the covariant 
derivative is then just a change of phase,

• This invariant transformation is know as a local 
gauge transformation.
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Aµ → Aµ −
1
e
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A New Interaction
• By requiring a local gauge transformation we see that we 

have had to introduce an additional term into the 
Lagrangian,

• This is the coupling of two spinors to a vector field with 
a coupling constant e.

• By demanding a local invariance on a symmetry we have 
been constrained to introduce interactions!

• This idea of imposing a symmetry to introduce 
interaction terms is the basis for both QED, EW, QCD 
and many other models. 
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−eΨAµΨ



Photons
• We have one problem though, we have an interaction term 

for a field Aµ but we have no kinetic term.

• We would like to associate the vector field with the 
Electro-Magnetic (EM) field, with e the coupling constant of 
the photon to the electron.

• We must therefore also add the kinetic term, the only term 
that we can add turns out to be the classical Lagrangian for 
Maxwell’s equations,

• With the Field Strength tensor given by
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−eΨAµΨ

LEM = −1
4
FµνFµν

Fµν = ∂µAν − ∂νAµ



Maxwells Equations
• The classical Lagrangian for Maxwell’s equations,

• This Field Strength tensor satisfies the Bianchi identity,

• Using this and the equations of motion of the field we 
can derive all of Maxwells equations (in the absence of 
charged matter),

49

LEM = −1
4
FµνFµν Fµν = ∂µAν − ∂νAµ

∇ · �B = 0 ∂ �B

∂t
= −∇× �E

∂ �E

∂t
= ∇× �B∇ · �E = 0

∂λFµν + ∂µFνλ + ∂νFλµ = 0

Fµν =





0 Ex Ey Ez

−Ex 0 −Bz By

−Ey Bz 0 −Bx

−Ez −By Bx 0







Gauge Symmetries
• After adding this term we can now see why we described,

• as a local gauge transformation.  

• This is simply the gauge transformation that Maxwells 
equations are invariant under, 

• Unlike a global transformation which simply takes a physical 
state to another physical state with the same properties a 
gauge transformation represents a redundancy in the 
description of the system. 

• We identify a state Aµ as being the same state as
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Gauge Choice

• This gauge freedom means that an 
additional constraint or gauge choice is 
required in order to quantise the theory.

• Two possible choices we could make are,

• The Lorenz gauge where

• The Coulomb gauge where

• We will use the Lorenz gauge as it 
preserves Lorentz invariance. 
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∂µAµ = 0
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The QED Lagrangian

• If we assemble all the pieces together then 
we have the Lagrangian for QED,

• This is amazingly simple considering the 
amount of physics it describes!

• It consists of a photon and an electron 
whose coupling to each other is simply the 
electric charge.
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QED Gauge Choice

• When quantising the theory we will want to 
add an additional term to the Lagrangian to take 
into account our gauge fixing choice,

• We can choose different values for α, we 
generally also call these different values “gauge 
choices”

• Feynman Gauge: α=1

• Landau Gauge: α=0 (set in the Feynman rules)
53

LQED = Ψ
�
i/∂ −m

�
Ψ− eΨγµAµΨ− 1

4
FµνFµν +

1
2α

(∂µAµ)2



QED Feynman Rules

• From this Lagrangian we have the following 
Feynman Rules,

• We denote every photon propagator 
using 

• We denote each electron propagator 
using

• For each vertex we have  
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QED Feynman Rules

• For each external photon we have a factor of 

• For each external electron we have a factor of 

• We also have the following rules,
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QED Examples I

• Electron Scattering: e-e-→e-e-

• Two contributing diagrams
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QED Gauge Issues

• Look at this again but try it in a different 
gauge.
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Amplitudes

• Two of the terms are the same as before,

• but we have two additional terms,

• These terms go to zero and so we get the same 
result as before.

• In general the amplitude is gauge invariant though 
individual Feynman diagrams are not.
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Amplitudes

• Two of the terms are the same as before,

• but we have two additional terms,

• These terms go to zero and so we get the same 
result as before.

• In general the amplitude is gauge invariant though 
individual Feynman diagrams are not.

58

= −i(−ie)2
�

[u(p1)γµu(p2)][u(p3)γµu(p4)]
(p2 − p1)2

− [u(p1)γµu(p3)][u(p2)γµu(p4)]
(p1 − p3)2

�

= −i(−ie)2(α− 1)

�
[u(p1)(/p2

− /p1
)u(p2)][u(p3)(/p2

− /p1
)u(p4)]

((p2 − p1)2)2

−
[u(p1)(/p1

− /p3
))u(p3)][u(p2)(/p1

− /p3
)u(p4)]

((p1 − p3)2)2

�
Vanish



QED Examples II

• Electron Positron Scattering : e-e+→e-e+

• Two contributing diagrams
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QED Examples III

• Electron Positron Annihilation : e-e+→γγ

• Two contributing diagrams
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Mandelstam Variables
• When computing 2→2 Feynman Diagrams we will come 

across similar combinations of the external momenta 
repeatedly.

• These standard combinations are known as the Mandelstam 
variables

• Here p1 and p2 are the momenta of the two initial particles, 
and p′1 and p′2 are the momenta of the final two particles.

• When each momenta has mass M2i these variables satisfy,
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Summary

• We have seen what type of terms we can 
incorporate into a Lagrangian. 

• Investigate the fundamental role different types 
of symmetries played in the construction of 
field theories such as QED and QCD.

• Global,

• Local,

• Gauge.
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