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Lecture 9

• We will finish our investigation into 
Renormalisation.

• Look at computing Next-to-Leading Order 
(NLO) Corrections.

• Understand IR singularities.
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One-loop integrals
• In the last lecture we saw that the one-loop 

integral diverges,

• To deal with this situation we will regulate the 
integral using Dimensional Regularisation,

• So we have poles in ε which we want to 
remove.

• To do this we must renormalise our theory.
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QED & QCD Loop Corrections

• To see how renormalisation works let us 
consider a more complicated example than 
the bubble. 

• Look at the QED/QCD Vertex correction.

• The basic vertex looks like,

• The one-loop corrections look like,
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Vertex Correction

• We get the following expression for this,

• There are similar results for the other three 
terms.

• The sum of the terms after integration will 
have the following structure,
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Renormalising the Vertex 
Correction

• Again we have an unwanted ε in our result.

• To remove this we will renormalise.

• What is renormalisation?

• The parameters in the Lagrangian, such as the 
coupling constants and masses, are not the actual 
parameters we measure in an experiment. 

• To renormalise we relate the bare parameters of the 
Lagrangian to the actual measurable quantities.

• We effectively absorb the divergent pieces into a 
redefinition of the parameters.
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Coupling Constant
• For the vertex correction we need to renormalise the 

electromagnetic coupling constant. 

• QED is a renormalisable theory so we only need a finite 
number of renormalisable parameters.

• We can compute the renormalisation parameters order by 
order in perturbation theory.

• To proceed therefore we will compute our perturbative 
expansion as before in terms of bare parameters. 

• Then replace the bare parameters with the redefinition 
above.
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The Coupling Constant
• Let us see how this will work for the charge renormalisation term,

• We can write the Ze as a perturbative expansion in terms of our 
dimensionally regularised result,

• This can then be inserted into our perturbative expression in 
terms of the bare parameters,

• After dropping terms higher order in eR we have,
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Coupling Constant

• We can now choose      such that we cancel the pole 
terms,

• Leads to the expression,

• The renormalised result is now finite and given by,

• This renormalised electric charge is the physical charge 
we measure, all the divergent terms have been absorbed 
into it.
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Counter Terms
• Rather than computing our expressions in terms of the bare 

parameters it is usually more efficient to work with a 
Lagrangian written directly in terms of the renormalised 
fields and parameters.

• Rewrite the Lagrangian in terms of the renormalised 
parameters at the expense of adding additional UV counter-
terms to the Lagrangian to compensate for this.

• It can be shown then that for each renormalisation 
parameter we add an additional term to the Lagrangian.

• We can compute this contribution in a perturbation series, 
e.g.  in QED we would add the new vertex,
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Counter Terms
• With this new Lagrangian the computation that we 

had before would then become,

• The Ze will be exactly as before,

• Again we choose the parameters to cancel the poles, 
so that,

• Again we have a finite result.
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Coupling Constant
• On the surface this procedure might seem somewhat ad-

hoc.

• There seems to be a lot of freedom in our choice for the 
coefficients of these renormalisation terms, but there is a 
limit to the number of terms we can fix in this way.

• We choose coefficients such that they cancel the UV poles.

• This is a self consistent approach. Once we have chosen the 
coefficient to remove one type of divergence we cannot 
change it again to remove another divergence elsewhere.

• The choice once made is universal and works to remove all 
UV divergent terms in the computation.

• This consistent choice is known as a renormalisation scheme. 
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Finite Results
• A similar procedure applied to all the other bare 

parameters in the theory leaves us with a finite result up 
to a particular order in the perturbation series.

• We have removed the one-loop divergence in (eR)3, but 
not at higher orders in eR.

• A consequence of this perturbative renormalisation is 
that we introduce a renormalisation scale, µR.

• This unphysical scale would drop out of any full result, 
but we will be left with a higher order dependance in a 
perturbative computation.

• This leads to the identity,
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The Beta Function
• This beta function tells us how the coupling constant 

evolves with a change of scale.

• It is computed in a perturbative expansion in terms of 
the coupling,

• For QED this leads to the renormalisation scale 
dependance,
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The QCD Beta Function
• We can perform a similar computation in QCD 

but this time the beta function has a minus sign 
in front of it.

• This leads to the famous asymptotic freedom,
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NLO Computations

• We can now compute tree level and one-
loop level amplitudes 

• Combine these together to derive the next-
to-leading order (NLO) contribution to a 
perturbative series.

• This will not be as straightforward as it 
would first appear,

• Collinear and Infra-red (IR) divergences 
will cause problems.
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NLO Contributions

• The perturbative expansion consists of,
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Squared Amplitudes

• Squaring this amplitude to produce a cross 
section or observable shows us why we 
must include both the real and virtual terms,

• Unlike for the LO terms and the real pieces 
the virtual piece can be negative.

• The NLO term can therefore also be 
negative.
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Real Diagrams

• For the real contribution we sum and then 
square (as this is QM)

• The phase space integral is now more 
complicated as it is over two particles.
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Real Phase Space
• The two particle phase space integral is given by,

• Examine “half” of this,

• After summing and squaring the amplitude we get 
at least one term of the type,
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In More Detail

• Examine this term in more detail by choosing a 
particular momentum parameterisation,

• So that the amplitude squared becomes,

• The part of the phase space we are interested 
in is then given by
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IR Divergences
• Examining this expression we see that there 

are two sources of divergence,

• So there are two sources of divergence.

• How do we deal with these, we cannot remove 
them in the same way as UV divergences.
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Virtual Diagrams
• The virtual amplitude contribution will also 

contain poles that we can regulate using 
Dimensional Regularisation,

• The cross section contribution will then be,
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Virtual Diagrams
• The virtual amplitude contribution will also 

contain poles that we can regulate using 
Dimensional Regularisation,

• The cross section contribution will then be,
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Virtual Diagrams
• The virtual amplitude contribution will also 

contain poles that we can regulate using 
Dimensional Regularisation,

• The cross section contribution will then be,
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Cancelling Divergences

• The IR divergence's simply cancel with 
divergences in the virtual part,

• The plus distribution is defined as,
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Cancelling Divergences

• The IR divergence's simply cancel with 
divergences in the virtual part,

• The plus distribution is defined as,
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Bloch-Nordsieck
• The Bloch-Nordsieck theorem tells us that IR 

divergences will always cancel between the real 
and virtual terms.

• This differs from the UV divergences that we had 
to remove using renormalisation.

• What about the Collinear divergences?

• To deal with these we will split them up into two 
classes, 

• Initial State (IS) Radiative Collinear divergences.

• Final State (FS) Radiative Collinear divergences.
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Final State Collinear Divergence

• Just like for IR divergences the divergences 
arising from final state radiation will cancel 
with divergence's in the virtual term,

• We pick up a 1/ε pole from the phase space 
integration of the real piece and an identical 
piece (up to a sign) in the virtual amplitude,
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KLN Theorem

• The KLN theorem tells us that all final state 
collinear divergences cancel when we sum 
over degenerate states.

• If we do not sum over all degenerate states 
then we will have left over divergence's.

• The answer we get will then not make sense!

• We can therefore only compute IR safe 
observables. i.e. observables where all IR 
singularities cancel.
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Infrared Finite Observables

• This means that we must be careful what 
we try to measure when we compare 
theory against experiment.

• Safe observables are generally,

• Total cross sections.

• Event Shapes.

• Jets (with a good jet definition)
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Initial state
• IR singularities from Initial state radiation are slightly 

different.

• They do not cancel between the real and virtual pieces.

• We do not sum over initial states of the form

• Instead these divergence's can be absorbed into the 
pdf’s
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Singularity Summary

• There are three kinds of singularity we 
encounter when performing NLO calculations.

• UV singularities - Remove via 
renormalisation.

• Final State IR singularities - Sum over 
degenerate states and combine the real and 
virtual contributions.

• Initial State IR singularities - Absorb into the 
PDF’s.
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Summary

• We will finish our investigation into 
Renormalisation.

• Look at computing Next-to-Leading Order 
(NLO) Corrections.

• Understand IR singularities.
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Lecture 10

• We will go through some of the modern 
techniques that are used to perform actual 
QCD computations.

• The spinor helicity formalism and helicity 
amplitudes.

• On-Shell Recursion Relations.

• Loops via Unitarity.

32



Helicity Amplitudes
• Usually prefer to compute helicity amplitudes,

• Each external leg is describe in terms of its 
momenta and its helicity.

• We will assume we are dealing with massless 
particles, (but all the techniques are 
straightforwardly adaptable). So this is simply the 
spin of the associated external state.

• These can be separately squared and then integrated 
over the phase space.
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Spinor-Helicity Method
• We will write the two component massless spinors 

as,

• Then the spinor products can be written as,

• These are anti-symmetric,

• We can connect these spinor products to the the 
Lorentz products,
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Spinor-Helicity Method
• These spinor products can be viewed as “square 

roots” of the Lorentz products with a phase,

• The outer product can be written as,

• We can use this identity to rewrite all momentum 
4-vectors as spinors.

• We will see that we can express amplitudes in a 
more compact form if we do this.
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Polarisation Vectors
• We need to write the polarisation vectors in 

terms of spinors as well.

• This can be done using,

• The gauge choice for the polarisation vectors is 
taken into account by the arbitrary n vector.

• We can see that this representation satisfies the 
completeness relation
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Removing 4-Vectors
• Re-express common objects that we find in 

Feynman diagrams,

• The gamma matrices will be contracted with 
some 4-vector, so we can remove all 4-vector 
terms,

• There is also the very useful Schouten identity for 
manipulating these objects,
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An Example
• Let us rewrite one of our previous examples.

• We want to compute the helicity amplitudes, so first 
compute the amplitude, A(1-,2+,3-,4+), we specific specific 
helicities for each leg,

• Only one Feynman diagram contributes as the other would 
be zero, (we saw that each diagram was separately gauge 
invariant earlier)
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An Example

• We can then rewrite the amplitude in 
spinor-helicity notation,

• There is one other helicity amplitude to 
consider,  A(1-,2-,3+,4+), the rest are zero.
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Amplitude Squared
• Apart from the compact expressions for each 

of the amplitudes there is another advantage.

• When we “square” the amplitude we have 
much less work to do, 

• We can just directly square each helicity 
amplitude to get,

• This requires less work than dealing with the 
cross terms and traces of gamma matrices.

40
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Amplitude Squared
• Apart from the compact expressions for each 

of the amplitudes there is another advantage.
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Complexity of QCD 
Amplitudes

• In QCD we have quark-gluon, three gluon and four-
gluon vertices.

• We need to consider all permutations over identical 
particles. This is particularly bad for high multiplicity 
gluon amplitudes.

• There is a factorial growth in the number of Feynman 
diagrams as we increase the number of legs.

• If we want to go beyond tree level this gets even worse.

• This makes the final amplitudes look very complicated.
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All Gluon Amplitudes
• Lets count the number of diagrams we must include 

for a one-loop all gluon amplitude as we increase the 
number of legs.
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V+Jets Amplitudes
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Simple Amplitudes
• We might think that we are stuck with the difficult 

task of computing and combining large numbers of 
Feynman diagrams.

• But the final amplitudes are actually much simpler 
than we would expect.

• An example of this are the Parke-Taylor Amplitudes.

• A(1+, 2+, 3+,..., n+)=0.

• A(1-, 2+, 3+,..., n+)=0.

• A(1-, 2-, 3+,..., n+).
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MHV amplitudes
• These are three all-multiplicity amplitudes. 

• If we were to compute them with Feynman 
diagrams we would need to sum together 
an infinite number of terms.

• The first two amplitudes are zero.

• The third is non-zero and is known as the 
Maximally-Helicity-Violating Amplitude,
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• Why is this amplitude so simple?

• Feynman Diagrams are a powerful tool but they do not 
take into advantage of all the symmetries of the system.

• The problem with Feynman Diagrams is that they are 
gauge dependant objects and they are built up from off-
shell objects.

Gauge Dependence
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A Better Way
• The gauge dependance only cancels at the amplitude 

level.

• The final amplitudes are on-shell objects.

• A simple result after a very complicated computation 
procedure tells us that there is probably a better way.

• There is a better way, we should work with the 
amplitudes directly. They are,

• On-shell.

• Gauge invariant.

• They will therefore be much simpler.
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On-shell Recursion
• How do we use amplitudes directly?

• On-shell recursion (BCFW) relations were 
discovered by Britto, Cachazo, Feng and 
Witten in 2005.

• Simple idea: build up amplitudes from 
amplitudes with fewer legs,
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The Details
• How does this work?

• We pick two legs, i and j.

• We shift the momentum of these two legs so that

• We conserve overall momentum in the 
amplitude.

• The shifted legs remain on-shell.

• To do this we will need complex momentum (it is 
impossible otherwise).
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The Shifted Momentum
• How can we shift these legs and satisfy 

these properties?

• We shift one of the spinor components of 
the momentum, this makes them complex 
momentum,

• We see that momentum is conserved and 
the momenta remain on-shell.
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Recursion
• We then consider all divisions of the 

amplitude into two smaller amplitudes 
where one half contains leg i and the other 
leg j.

• Connecting each half of all such terms with 
a scalar propagator gives us the final 
amplitude.

• This connecting leg needs to be on-shell 
and so we fix z so that this is true.
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Simple Example

• To make this clearer let us try a simple 
example.

• Let us compute the 6 point all gluon MHV 
amplitude A(1-,2-,3+,4+,5+,6+).

• This is a relatively complicated amplitude to 
compute using Feynman diagrams.

• How do we start?
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Simple Example
• Pick two legs to “shift”.

• We will pick leg 2 and leg 3 so their 
momenta become,

• The value of z will depend on how we split 
the amplitude up.

• Next we look at the ways we can split the 
amplitude up.
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Simple Example
• We get six possible terms, five of which vanish.

• As a number of the amplitudes vanish we are 
left with,
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The Amplitude
• Each of the remaining amplitudes is an MHV 

amplitude so we can write down expressions for 
them,

• We can now set z as it is chosen so that     
remains on-shell. This constraint gives us,
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Simplifying

• As we have shifted only one of the spinor 
components in each momentum then we can 
simplify these expressions

• The only remaining shifted momentum is given by,
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The Final Step

• Multiply the two amplitudes together and 
the propagator, 

• We can use two simple identities to 
simplify this,
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On-Shell 3-Point Vertex
• In this example we required an on-shell three point amplitude.

• How can such an object exist?

• Momentum conservation would tell us that,

• We are using complex momentum so this is no longer the case!

• For real momenta these are proportional and so there are no 
non-zero invariants we could use to build a vertex.

• We can build up all amplitudes from just the complex three-
point ones, even though the QCD Lagrangian contains a 4-point 
interaction term.
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(p1 · p2) = (p2 · p3) = (p3 · p1) = 0

�12�/∝[12]



On-Shell Summary
• At tree level we can use on-shell recursion to very 

easily build up amplitudes that would be difficult 
using Feynman diagrams.

• To prove these relations we need only use complex 
momenta, some complex analysis and the simple 
properties of the amplitudes.

• This provides us with a very powerful technique.
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Loops
• At the loop level we will use unitarity.

• We will glue tree amplitudes together to get loops,

• As we now have a method for producing compact 
trees we will be also be able to produce compact 
loops.
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Summary
• We have introduced the spinor-helicity technique 

as an efficient way of computing amplitudes.

• We have seen how we can reduce the 
complicated sum of Feynman diagrams down to 
much simpler amplitudes.

• We have seen how simple factorisation and 
complex analysis give us a very powerful 
techniques for computing amplitudes.
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