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Lecture 7

• Investigate how non-abelian local 
symmetries introduce new interaction 
terms.

• Examine how a local SU(N) gauge 
symmetry leads to QCD.

• Investigate some of the properties of QCD 
computations including the use of PDF’s.
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Yang-Mills Theory

• QED is an abelian U(1) theory, its Lagrangian is 
invariant under local phase rotations.

• Consider a more general class of theories.

• Want to investigate invariance under any continuous 
symmetry group.

• Theories of this type are known as Yang-Mills 
theories.

• QCD is an example of this where we demand 
invariance under rotations in an internal SU(3) space.
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The General Case

• In QED we had a single field transforming.

• Consider generalising to N copies of the field,

• The field now carries an additional index, a.

• This internal space has dimension N and a runs from 
1 to N.

• We want to consider local invariant transforms of the 
field with this additional index.
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Ψa(x) =





Ψ1(x)
Ψ2(x)

. . .
ΨN (x)







General Transformation

• A general local transformation of the field in this internal 
space is written as,

• We will consider local phase transformations, so U(x) is 
of the general form,

• The vector of fields Ψa will multiply (products) of the ti  
which are N×N matrices,
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Ψa(x)→ Uab(x)Ψb(x)

Uab(x) = exp

�
i
�

i

αi(x)tiab

�





. . .
. . .

. . .
. . .









Ψ1(x)
Ψ2(x)

. . .
ΨN (x)







The Symmetry Group

• What form can the ti matrices take?

• We will choose the ti to be the generators of a symmetry 
group, there will be as many αi‘s as there are generators.

• To connect with QCD we will choose this group to be 
the SU(N) Lie Algebra.

• In QED we had a single generator, a constant.

• Here the number of generators will depend upon the 
representation of the group.

• In general the ti generators will not commute.
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Uab(x) = exp

�
i
�

i

αi(x)tiab

�



SU(N) Lie Algebras
• We now need to go into a little more detail about Lie 

Algebras.

• SU(N) is the group of all unitary N×N matrices with 
determinant equal to1.

• The generators will satisfy commutation relations related 
to their group structure. 

• The commutation relations of the Lie Algebra we use will 
define the structure of the Lagrangian,

• Theories which are defined through such Lie Algebras are 
known as non-abelian.
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�
tA, tB
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= ifABCtC



SU(N)

• To proceed we need to have a representation 
of the group.

• We will start by using the Fundamental 
representation, e.g. for SU(3) this is
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t1 =
1
2




0 1 0
1 0 0
0 0 0



 t2 =
1
2




0 −i 0
i 0 0
0 0 0



 t3 =
1
2




1 0 0
0 −1 0
0 0 0





t4 =
1
2




0 0 1
0 0 0
1 0 0



 t5 =
1
2




0 0 −i
0 0 0
i 0 0



 t6 =
1
2




0 0 0
0 0 1
0 1 0





t7 =
1
2




0 0 0
0 0 −i
0 i 0



 t8 =
1

2
√

3




1 0 0
0 1 0
0 0 −2







Fundamental Representation

• There are N2-1 generators which for N=3 
gives the 8 ti‘s we have written down.

• As we would expect these matrices satisfy 
the expected commutation relations, 

• The fABC are the structure constants of the 
group.

• We have normalised these generators so that,
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�
tA, tB

�
= ifABCtC

Tr tAtB = TRδAB , TR =
1
2



Adjoint Representation
• An alternative representation that will be useful is the Adjoint 

representation.

• This is built using the structure constants in the following way,

• Again this representation of the generators satisfies a similar  
commutation relation,

• As well as,

• Also we have the Casimir Operator,
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(TA)BC = −ifABC

�
TA, TB

�
= ifABCTC

TrTCTD =
�

A,B

fABCfABD = CAδCD, CA = N

�

A

tAabt
A
bc = CF δac, CF =

N2 − 1
2N



Local Invariance

• In the abelian case we were forced to introduce a 
new field (the photon) that transformed in a certain 
way under the local gauge transformation and 
introduce a covariant derivative to guarantee local 
invariance.

• In the non-abelian case we will have to introduce one 
new field for each generator of the symmetry group.

• For QCD N=3 and so there are 8 generators and 
hence 8 new fields. 

• These will be the gluon fields.
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The Gluon Fields
• These new gluon fields are introduced into the  

covariant derivative as,

• Each gluon field AA is multiplied by a generator of 
the Lie Group in the Fundamental representation. 

• We also have what will become the coupling 
constant g.

• After we introduce the kinetic term for the fields 
we will see that these really are gluons.
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Dα = (∂α + ig
�

A

tAA
�A
α )



Covariant Derivative

• The quarks are spinors and so we want the 
covariant derivative of them to transform under 
the local transformation in the same way,

• Performing this transformation we have,
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DaΨ(x)→ D�
aΨ�(x) = U(x)DaΨ(x)

= (∂αU(x)) Ψ(x) + U(x)∂αΨ(x) + ig
�

A

tAA
�A
α U(x)Ψ(x)

D�
αΨ�(x) = (∂α + ig

�

A

tAA
�A
α )U(x)Ψ(x)

Dα = (∂α + ig
�

A

tAA
�A
α )



Covariant Derivative

• The quarks are spinors and so we want the 
covariant derivative of them to transform under 
the local transformation in the same way,

• Performing this transformation we have,

13

DaΨ(x)→ D�
aΨ�(x) = U(x)DaΨ(x)

= (∂αU(x)) Ψ(x) + U(x)∂αΨ(x) + ig
�

A

tAA
�A
α U(x)Ψ(x)

D�
αΨ�(x) = (∂α + ig

�

A

tAA
�A
α )U(x)Ψ(x)

Dα = (∂α + ig
�

A

tAA
�A
α )

Additional term



Gluon Transformation
• To satisfy this transformation property then we 

must demand that the gluon fields, AA, transform 
to cancel these additional terms,

• Using this transformation we see that the extra 
terms will cancel,

• So,
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�

A

tAA
�A
α =

�

A

tAU(x)AA
αU−1(x) +

i

g
(∂αU(x))U−1(x)

ig
�

A

tAA
�A
α U(x)Ψ(x) = ig

�

A

tAU(x)AA
αU−1(x)U(x)Ψ(x)

+(ig)
i

g
(∂αU(x))U−1(x)U(x)Ψ(x)

= (∂αU(x)) Ψ(x) + U(x)∂αΨ(x) + ig
�

A

tAA
�A
α U(x)Ψ(x)

= U(x)

�
∂α + ig

�

A

tAA
�A
α

�
Ψ(x)



Kinetic Terms
• Again we have introduced interacting fields but 

not defined a kinetic term for them.

• As in QED we can only pick a kinetic term that 
transforms in the correct way under the gauge 
transformation.

• The only such object is written as,

• The non-abelian field strength tensor is given by,
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FA
µν(x) = ∂µAA

ν (x)− ∂νAA
µ (x) + gfABCAB

µ (x)AC
ν (x)

−1
4
FAµνFA

µν



Fµν Transformations
• The field strength tensor will also transform under 

the gauge transformation,

• These results can also be derived from the identity,

• We cannot write down an invariant term for the 
mass and so the gluon fields are massless.

• For example the following is not invariant,
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F
�A
µν (x) = U(x)FA

µν(x)U−1(x)

[Dµ, Dν ] = igtAFA
µν

m2AµAµ



QCD
• Combining all these pieces together we get 

the QCD Lagrangian written in a compact 
form,

• We see that the quarks carry an index, a, with 
a running over 1,2,3. 

• This labels the colour each quark now carries.

• The quarks also have a flavour index as there 
is one quark field for each flavour f=u,d,c,s,b,t.
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LQCD = −1
4
(F b

µν)2 +
�

f

Ψa,f (i /D −m)Ψa,f



Quark-Gluon Interactions

• What interactions does this Lagrangian 
contain?

• Let us first look at the coupling of two quarks 
to a gluon.

• This term comes from the covariant 
derivative,

• We have dropped the colour index from the 
gluon and the quark.
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iΨ /DΨ = iΨ/∂Ψ− g
�

A

tAΨ/AAΨ

Colour Flow

qr qg

grg



Gluon-Gluon Interactions

• One on the defining features of a non-
abelian gauge theory is the presence of 
interaction terms between the gauge bosons.

• Unlike in QED we will have interactions 
between the gluons.

• These interactions come from the additional 
term in the Field strength tensor.
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FA
µν(x) = ∂µAA

ν (x)− ∂νAA
µ (x) + gfABCAB

µ (x)AC
ν (x)



Three Gluon Interactions

• In the Fμν Fμν term we will have pieces of the type,

• So we have three gluon fields interacting at a point 
with a coupling constant g.

• This coupling is also multiplied by an fabc structure 
constant, and so the colour flow will be,
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grb ggb

grg

gfABC(∂µAA
ν (x))AµBAνC



Four Gluon Interactions

• There is a second type of term that will arise from 
the Fμν Fμν term,

• Here we have four gluon fields interacting at a point 
with a coupling constant g2.

• This coupling is also multiplied by an fabcfcde 
structure constant, and so the colour flow will be,
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grb ggb

grr

g2fABCfCDEAµBAνCAD
µ AE

ν

grg



Final Points

• We can now proceed to quantise this theory.

• To do this we will have to add a gauge fixing term as 
we did in QED.

• So our Feynman diagrams are going to be gauge 
dependant.

• In general we must also add in a term for what are 
called “ghost” fields these are required to preserve 
Unitarity when we quantise the theory.

• After quantisation we can write down a number of 
Feynman rules. 
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LQCD = −1
4
(F b

µν) +
�

f

Ψa,f (i /D −m)Ψa,f + Lgauge + Lghost



Feynman Rules

• The Feynman rules for propagators in QCD are given by,
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Feynman Rules for QCD

Propagators:

k
i j i δij

(/k + m)

k2 −m2 + i�

✲

k
a
µ

b
ν

−i δab

k2 + i�

�
gµν − (1− η)

kµkν

k2

�

k
a b −i δab

k2 + i�
,

η fixes the gauge: η =

�
1, Feynman gauge
0, Landau gauge

Vertices:

i

j
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ν
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ρ
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q
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−gsf
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µ
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ν
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acef bde (gρµgνσ − gρσgµν)
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adef cbe (gρνgµσ − gρµgσν)

Four-momentum conservation is fulfilled at each vertex.

=
i(/k + m)

k2 −m2 + i�
δij
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Feynman Rules

• The Feynman rules for the vertices are given by,
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Feynman Rules

• The Feynman rules for the vertices are given by,
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External States

• For fermions external states are given by,

• For gluon external states,
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p
= u(p) for incoming quarks

p
=         for outgoing quarks

p
= v(p) for incoming antiquarks

p
=         for outgoing quarks

u(p)

v(p)

p,λ
= ε*µ(p,λ) for incoming gluons

p,λ
= εµ(p,λ) for outgoing gluons



External States

• For fermions external states are given by,

• For gluon external states,
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p
= u(p) for incoming quarks

p
=         for outgoing quarks

p
= v(p) for incoming antiquarks

p
=         for outgoing quarks

u(p)

v(p)

p,λ
= ε*µ(p,λ) for incoming gluons

p,λ
= εµ(p,λ) for outgoing gluons

λ is either + or - 
depending upon the 

helicity.



QCD Computations
• Computations seem similar to QED, draw all 

Feynman diagrams and compute etc.

• QCD Feynman diagrams are similar to QED 
diagrams but we now have colour information 
flowing through them.

• Unlike QED with electrons and photons where they 
can be observed we never see quarks and gluons.

• Quarks and Gluons are confined.

• What we see a spectrum of bound state particles, 
such as Pion’s etc.
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DIS
• The process e-p+→e-+X is known as Deeply Inelastic 

Scattering (DIS)

• The electron interacts via a photon with the proton.

• We can derive the contribution from this part using 
the Feynman rules for QED.

• Which one of the partons (quarks) in the proton does 
the photon interact with?

28

p
X

e

e



Partons

• Assume that the proton is made up of a non-
interacting set of partons.

• Each parton contains a fraction xi (0<xi<1) of the 
total proton momentum.

• The probability of  “finding” parton i in the proton 
with a momentum between xi and xi+dxi is then 
given by,

• The function fi/P(xi) is known as a “parton 
distribution function” or “parton density”

29

fi/P (xi)dxi



Parton Distribution Functions

• They contain all the complicated information 
about the behaviour of the partons in the 
protons.

• Commonly known as “Soft” physics as it 
occurs at much lower energies than the 
collision.

• There are PDF’s for every flavour of quark as 
well as for gluons (which can also be present).

• Each PDF is universal and independent of the 
scattering process.
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Computing PDF’s

• We do not know how to construct them from first 
principles as they depend upon non-perturbative 
physics.

• Use experimental data combined with an ansatz for 
their structure to compute them. [MRST, CTEQ]

• Some newer approaches use neural networks. 
[NNPDF]

• Different experiments provide data in different regions 
of x.

31

xfi/P (x) = Aax∆a(1− x)ηa(1 + �a
√

x + γax)



Parton Distribution Functions

• For example the MSTW 2008 pdf set at 
NLO looks like,
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Introduction HERA Tevatron LHC Summary

Example of PDFs obtained from global analysis
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Summary

• We have seen how non-abelian local 
symmetries introduce new interaction 
terms.

• We have seen how a local SU(N) gauge 
symmetry leads to QCD.

• We have started investigating the 
properties of QCD computations including 
the use of PDF’s.
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Lecture 8

• Learn about the Factorisation theorem and 
how this allows us to compute QCD 
amplitudes.

• Go through a simple example, including 
computing the cross section.

• Asymptotic Freedom.

• Investigate the properties of higher order 
quantum predictions.
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DIS
• The process e-p+→e-+X is known as Deeply 

Inelastic Scattering (DIS)

• We can derive the contribution from this part 
using the Feynman rules for QED.

• The quark PDF is used to compute which quark 
interacts with the photon.

35
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Splitting the Computation
• We can write the cross section computation as

• This splits off the soft QCD physics related to a quark in 
the proton.

• The remaining piece is computed as though the quark 
was a free particle with a modified momentum.

•                                                is therefore the hard 
scattering cross section. 

• Can we justify this division which is based (in part) on 
the assumption that the partons in the proton are non-
interacting?
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σ(e−(k)p(P )→ e−(k�) + X) =
� 1

0
dx

�

f

ff/P (x)σ(e−(k)qf (xP )→ e−(k�) + qf (P �))

σ(e−(k)qf (xP )→ e−(k�) + qf (P �))



 Infinite Momentum Frame
• One of our assumptions when computing the 

scattering process is that at infinity the fields 
become well separated.

• How does this assumption apply when our final 
state particles are confined?

• To understand this we need to select a reference 
frame that simplifies the problem we are looking 
at.

• Rather than computing in the lab frame we 
switch to the proton “Infinite momentum frame”.
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“Stationary” Partons
• From the point of view of the interacting photon 

interactions in the proton will be time-dilated by a factor 
of,

• Furthermore if we were to imagine the proton having a 
radius in its rest frame of rproton then from the point of 
view of the photon the proton is Lorentz contracted into 
a “pancake” of thickness 2rproton/γ.

• To the photon the proton looks like a non-interacting 
collection of stationary partons.

38

γ =
1�

1− v2
proton/c2



Asymptotic Freedom
• Why do the particles in the proton behave as though they 

were free at high energies while they remain bound into 
hadrons at low energies?

• Asymptotic Freedom.

• In the early 70’s it was discovered that coupling constants 
were not constants!

• Typically in theories like QED the interaction grew stronger 
as the energy scale increased.

• For QCD though the interaction grows weaker as the 
energy scale is increased.

39

g → g(µ)
This is the renormalisation scale 
which we will discuss in the next 

lecture.



Scale Dependance

• Schematically for QED we have,

40

Low High
μ

g(μ)



Scale Dependance

• Schematically for QED we have,

40

Low High
μ

g(μ)

For non-abelian theories, such as QCD



A Factorised Result

• Our computation now reduces to finding the hard 
scattering cross section.

• Using the parton model we assume that the states were 
initially well separated and we will assume that they will 
be again in the far future so that we can use Feynman 
diagram techniques.

• The hard scattering is then computable directly using 
Feynman diagrams. 

• The in and out states are made up of familiar quarks, 
gluons, photons and electrons.
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σ(e−(k)p(P )→ e−(k�) + X) =
� 1

0
dx
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Hadron Collisions

• Consider the collision of two protons.

• Let us assume that we can generalise our previous result 
for the  differential cross section,

• This can be visualised as
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A

B
X

i

j

F

dσAB→F+X(p, p�) =
�

partons i,j

� 1

0
dxdx�fi/A(x)fj/B(x)

×dσ̂ij→F+X(xp, x�p�, . . .)



• Can we justify this? Can we really separate two PDF’s 
from the hard scattering?

• We now have two complicated protons that are 
colliding. 

• A more sophisticated argument will be needed than for 
DIS, where we could go to the infinite momentum 
frame for the electron.

• After careful analysis and use of gauge theory we can 
show this is true this is the QCD Factorisation Theorem.

Factorisation

43



Factorisation
• The differential cross section can be written as (additional terms 

are suppressed by inverse powers of the hard scale.)

• We have introduced a factorisation scale µF.

• We can “view” this as the energy scale below which an interaction 
would be included in the PDF rather than the hard scattering 
element.

• The PDF’s and the hard scattering cross section both have a 
dependance on this scale, which we can compute.
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×dσ̂ij→F+X(xp, x�p�, . . . , µF )

dσAB→F+X(p, p�) =
�

partons i,j

� 1

0
dxdx�fi/A(x, µF )fj/B(x, µF )

+ . . .

u

f

u

f
E<µF E>µF



An Example: Drell-Yan

• As an example we will work out the cross section 
in detail for the Drell-Yan process at leading order,

• To simplify things we compute what would be a 
photon propagator as though it was an external 
particle.
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q1(p1) + q2(p2)→ γ∗(k)

p1 + p2 = k

p1

p2

k
-ie



The Amplitude

• The Feynman diagram for this process 
gives,

• We want to compute |A|2 so we also need,

• Next we will combine these two 
expressions.
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p1

p2

k
-ie

A∗ = A† = ie (us1(p1)γνvs2(p2)) �ν(k,λ)

A = −ie (vs2(p2)γµus1(p1)) �∗µ(k,λ)



The Amplitude2

• We will contract all vectors and spinor chains 
when we “square” the amplitude,

• Summing over both photon and spinor helicities 
we have,
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�

s1s2λ

|A|2 =
�

s1s2λ

e2 (v2γ
µu1) (u1γ

νv2) �∗µ(k,λ)�ν(k, λ)



The Details

• Now use our understanding of spinors and 
polarisation tensors to simplify this,
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�

s1s2λ

|A|2 =
�

s1s2λ

e2 (v2γ
µu1) (u1γ

νv2) �∗µ(k,λ)�ν(k, λ)

/p1/p2

= e2Tr
�
/p2

γµ/p1
γν

� �
−gµν +

kµkν

k2

�
−gµν +

kµkν

k2



The Result

• Contracting the Lorentz indices gives,
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= e2Tr
�
/p2

γµ/p1
γν

� �
−gµν +

kµkν

k2

�

= −e2Tr
�
/p2

γµ/p1
γµ

�
+

e2

k2
Tr

�
/p2

/k/p1
/k
�



The Result

• Contracting the Lorentz indices gives,
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= e2Tr
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/p2

γµ/p1
γν

� �
−gµν +

kµkν

k2

�

= −e2Tr
�
/p2

γµ/p1
γµ

�
+

e2

k2
Tr

�
/p2

/k/p1
/k
�

=0



The Result

• Contracting the Lorentz indices gives,

49

= e2Tr
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/p2
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kµkν
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+
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Tr
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= −4/p2/p1
+ 2/p2/p1

= −2/p2/p1



The Result

• Contracting the Lorentz indices gives,
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γµ/p1
γν
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kµkν

k2

�

= −e2Tr
�
/p2

γµ/p1
γµ

�
+

e2

k2
Tr

�
/p2

/k/p1
/k
�

=0
−/p2

γµγµ/p1
+ /p2
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= −4/p2/p1
+ 2/p2/p1

= −2/p2/p1

= 2e2Tr
�
/p2/p1

�
= 2e2 4(p1 · p2) = 2e22s



The Cross Section
• We can now insert our result for the 

amplitude squared into the formula for the 
cross section,

• This is given in this case by,

• The phase space integral is given by,
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�
|A|2 = 2e22s

1
2s

1
22

1
N2

c

NC

�
dΠ1

�
|A|2

�
dΠ1 =

2π

s
δ

�
1− k2

s

�



The Final Result
• Putting all of this together gives us,

• If p1 and p2 had come from two protons with momenta 
P1 and P2 then we would have to multiply this by the 
PDF’s and the hard cross section would be written as,

• Where S is the Mandelstam variable s for the incoming 
protons and x1 and x2 are the momentum fractions of the 
quarks. 
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e2 = 4πασ =
1
s

4π2α

3

σ̂ =
1

x1x2S

4π2α

3



Higher-Order Effects

• We have set up techniques for computing an 
observable as a perturbative series,

• So far we have looked at tree-level 
computations.

• Let us now look at one-loop amplitudes.

• One-loop level is the first time that we have 
quantum corrections. 
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O = αSC1 + α2
SC2 + α3

SC3 + . . .



One-loop integrals

• We will start with a generic one-loop graph 
in Φ3 theory,

• The Feynman rules are,

53

L =
1
2

(∂µφ)2 − 1
2
m2φ2 − λ

3!
φ3

1
p2 −m2 + i� λ



One-loop integrals
• Compute the self-energy diagram,

• Using the Feynman rules this gives,

• There is still a 4D integral to perform.

• This integral measure can be rewritten as
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= λ2

�
d4p

(2π)4
1

p2 −m2 + i�

1
(p + k)2 −m2 + i�

k k
p

p+k

� ∞

0
|�p|3d|�p|

�
dΩ3



UV Divergences
• Examining the integral in the limit that   

becomes large we see that we have,

• This is an example of a UV divergence.

• To deal with this divergence we will need to 
regulate it.

• First we could consider a cut-off regulator,
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|�p|

�
dΩ3

� ∞

0

|�p|3d|�p|
|�p|4 = C

� ∞

0

d|�p|
|�p| → ln(∞)

� Λ

0

d|�p|
|�p| → ln(Λ) + finite



Regulators
• The problem with this regulator is that it 

brakes Lorentz Invariance.

• A more ideal regulator would preserve this.

• The most common regulator is known as 
Dimensional regularisation.

• We perform the integral in D≠4 
dimensions,
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�
d4p→

�
dDp



Dimensional Regularisation

• The integral is regulated by performing it in 
a dimension in which it is finite. 

• The regulation parameter will then be the 
difference in dimension from the usual 4.

• Typically we write the dimensional as D=4-ε.

• The integral then becomes,
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�
dΩ3−�

� ∞

0

|�p|3−�d|�p|
|�p|4 = C

� ∞

a
d|�p||�p|−1−� =

1
�
a−� =

1
�
e−� ln a =

1
�
− ln a + . . .



Renormalisation

• The divergence now appears as a pole in ε.

• When performing a higher-order computation we 
compute all the pieces and then set the regulator to 
zero at the end. 

• The final result should be independent of ε.

• At the moment we still have an ε dependance.

• To remove this divergence we will need to 
renormalise our result. We will do this in the next 
lecture.
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1
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QCD Computations

• Compute QCD amplitudes in a similar way to 
QED.

• We compute a partonic cross section to some 
order in αS using Feynman diagram techniques. 

• The incoming legs are then convoluted with 
universal PDF functions, which relate the incoming 
legs to the incoming particles.

• Use some experimental data to fit the PDF’s in the 
first place.
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Summary

• Learnt about the Factorisation theorem and 
how this allows us to compute QCD 
amplitudes.

• Gone through a simple example, including 
computing the cross section.

• Asymptotic Freedom.

• Investigated the properties of higher order 
quantum predictions.
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