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Introduction

Calorimeter measures the 
energy of

Charged and neutral particles
ÅOnly means to measure 

neutrals!

Jets
ÅComposed of charged and 

neutral hadrons
ÅSecondary leptons
ÅOnly means to measure the total 

energy of a jet!

Requirements
Linear response with the energy
Good energy resolution
Spatial resolution

Particle identification
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Physics with Calorimeters

Energy measurements of different particle types 
(leptons, hadrons, jets) required by physics

Standard Model physics
ÅW and t-quark mass

Higgs search
ÅSignatures of production and decay

ÅCouplings

No-Higgs models
ÅStudy in detail W and Z-events to understand symmetry breaking

New physics
ÅOften undetectable particles in the final state (e.g. SUSY) 

ÅRequires good measurement of missing energy

ÅCover full solid angle and measure ALL particles
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LHC: Search for the Higgs
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LHC: Search for the Higgs (2)
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Distinguish signal and background by signatures 
during production

Associated production of Higgs with W and Z

ÅLepton(s) in the final state from WŸlɜor ZŸl+l- decay

ÅConstraint from W (MT) or Z mass

Vector-Boson Fusion

ÅAdditional jets at small angle

Utilize decay signatures
Decay of b-quarks: Jets+secondaryvertex

Decay to photons: isolated hieghenergetic photons

Decay to W or Z: leptons in the final state
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Higgs: Requirements for Calorimetry
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Hermeticity
Calorimeter should cover (nearly) the full solid angle
Typical coverage up to ́ Ґ р  όлΣуÁto the beam axis)

Good electron identification 
Utilize the difference in the shower shapebetween electron/hadron
Requires high longitudinale/ lateralegranularity

Good energy resolution for photons/electrons
Very good Sampling-Calorimeteror
Homogeneouscalorimeter

Good resolution for missing transverse momentum
Vectorialenergy sum (granularity)
Good jet energy resolution
Good hadroniccalorimeter
Essential for new physics signatures like SUSY !



Standard Model Physics
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Measurement of the  W mass
Important for the indirect measurement of the Higgs 
mass through loop corrections

Aim at LHC: ɲaW ~ 15MeV/c2 

Signature: leptons in the final state

æ Precise elektromagneticenergy scale of0.02% !

Measurement of the top-quark mass
Signature: 4 Jets

Aim: ɲatop ~ 1GeV/c2 

æVery good hadronicenergy measurement

æ1% precision for jetc energy scale

Requires very good calibration of the calorimeters 
with known decays

example ½ҦŜ+e-
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Different Calorimeters

Nuclear Physics

Detectors for Gamma-spectroscopy
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High Energy Physics
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CMS Experiment

Very different materials, read-out, sizes

ATLAS Experiment



electron

Energy Measurement

Energy measurement of particles
Absorption of a particle in a block of 
material
Measure the energy loss 
Åso-called deposited energy
ÅOnly charged particles produce a direct 

and measureable signal 
ÅSignal consists of 

ï Charge from ionization 
ï Light from scintillation or Cerenkov effect

Measureable signal depends 
substantially
ÅMaterial choice
ÅType of detector
ÅEnergy spectrum of secondary particles
ÅType of particle

Measured signal is proportional to the 
energy of the particle
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Passage of Particles through Matter
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ElectromageticInteractions in Matter

Energy Loss

Continuous energy loss in the medium due to

ÅExcitation

ÅIonization

Happens for all charged particles

Example

ÅArgon gas
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Average Energy Loss (Ionization)
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Heavy charged particles

Bethe-Bloch formula 

 potential ionization :16 ; radiuselectron  classical :
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Average Energy Loss (2)
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For electrons is the energy transfer different
Different energy loss  

Positrons 
slightly different energy loss wrt electrons

Stopped positrons will annihilate to two photons with 511keV

Dependence of the energy loss
Proportional to z² (charge of the particle)

tǊƻǇƻǊǘƛƻƴŀƭ ǘƻ мκʲч ŦƻǊ ǎƭƻǿ ǇŀǊǘƛŎƭŜǎ

Minimal energy loss at approx ɓῊɔ=P/m=4

Parametrization

MIP: Miniminal IonisingParticle
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Bremsstrahlung
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High energetic charged particle in the Coulomb 
field of a nucleus

Energy loss is 

Åproportional to E and z²

Åmaterial dependent : Z²/A

Åproportional to 1/m²
ïOnly important for light particles (electron)

ïFor e± dominant at high energies

  1/137constant  structure fine :

mass atomic and charge :, ;number  Avogadros :
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Radiation Length
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Bremsstrahlungfor electrons
Parametrization(valid for high energy)

Radiation length X0
ÅThe energy of an electron is reduced to E/e within 1X0 due to Bremsstrahlung

ÅDepends only on the material  (A/Z²)

1/E energy spectrum of the photons

Radiation length allows for a material independent description of 
absorption processes for e± and photons

Examples
Al ςX0=18.8cm

Fe ςX0=1.76cm

PbςX0=0.56cm
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Energy Loss vs. Energy
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Critical Energy Ec
Equal energy loss due to ionization and Bremsstrahlung

Material dependent
ÅParametrization
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-hParticle in air 

Example for E=500MeV in water
ωProton : 150cm
ωKaon   :  200cm
ωPion    :  300cm

Range of heavy chargedparticles



Fluctuations of the energy loss
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Energy loss [keV]
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Energy loss is varying
substantially

Statistical fluctuationof the energy 
transfer to the electron

In thin detectors a Landau 
distribution represents the energy 
loss

In thick layers of material the 
distribution will converge to a 
Gaussian due to the central limit 
theorem



Multiple Scattering
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Coulomb scattering

Many scatterings with small energy transfer

Rarely large energy transfers (-ɻelectrons)

Asymmetric dE/dx-distribution (Landau-fluctuations)

aƻǎǘ ǎŎŀǘǘŜǊƛƴƎǎ ƘŀǇǇŜƴ ǳƴŘŜǊ ǎƳŀƭƭ ŀƴƎƭŜ όʻ-4 dependence)

Parametrizationof the width of the scattering angle ̒as 
function of the thickness x 

Charged particle track will deviate from the straight line
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Interaction of Photons in Matter
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Photon interacts with the electric 
field of the atoms (nucleus) or the 
electrons in the shell

Pair-production in matter
ÅThreshold: 2 x electron mass = 1 MeV

ÅThe intensity of a photon beam is reduced to 
1/e within 9/7 X0

Compton Scattering
ÅScattering off a bound electron in the shell

ÅElectron is liberated

ÅCross section is proportional to Z and me/E 
(for E above the electron mass)

ÅMaximal energy of electron
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K-shell

Interaction of Photons in Matter (2)
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Photoeffect
ÅPhoton is absorbed by an electron in the 

shell

ÅElectron is liberated 

ÅCross section is proportional to Z5 !!

Rayleigh Scattering
ÅScattering off an electron in the shell 

without energy loss

ÅOnly the direction of the photon is 
changed 

Different effects have different 
material dependence


