Calorimetry and

Jet reconstruction

C. Zeitnitz

Bergische Universität Wuppertal

Content

Introduction

- What is calorimetry
- Interaction of particles with matter
 - Charged particles
 - Neutral particles
 - Hadrons
- Electromagnetic and hadronic Cascades
- Response of Calorimeters
 - Homogeneous
 - Sampling
- Energy and spatial resolution
- Examples

New Developments

- Dual Readout
- Particle Flow
- Jet Reconstruction
- Simulation

Literature

- Richard Wigmans, Calorimetry, Oxford University Press
 - most pictures taken from this book
- Detector Physics text books

Introduction

Calorimeter measures the energy of

Charged and neutral particles

• Only means to measure neutrals!

Jets

- Composed of charged and neutral hadrons
- Secondary leptons
- Only means to measure the total energy of a jet!

Requirements

- Linear response with the energy
- Good energy resolution
- Spatial resolution
- Particle identification

Physics with Calorimeters

Energy measurements of different particle types (leptons, hadrons, jets) required by physics

- Standard Model physics
 - W and t-quark mass

Higgs search

- Signatures of production and decay
- Couplings

No-Higgs models

• Study in detail W and Z-events to understand symmetry breaking

New physics

- Often undetectable particles in the final state (e.g. SUSY)
- Requires good measurement of **missing energy**
- Cover full solid angle and measure ALL particles

LHC: Search for the Higgs

C. Zeitnitz - Calorimetry

LHC: Search for the Higgs (2)

Distinguish signal and background by signatures during production

- Associated production of Higgs with W and Z
 - Lepton(s) in the final state from $W \rightarrow lv$ or $Z \rightarrow l^+l^-$ decay
 - Constraint from W (M_T) or Z mass
- Vector-Boson Fusion
 - Additional jets at small angle

Utilize decay signatures

- Decay of b-quarks: Jets+secondary vertex
- Decay to photons: isolated hiegh energetic photons
- Decay to W or Z: leptons in the final state

Higgs: Requirements for Calorimetry

Hermeticity

- Calorimeter should cover (nearly) the full solid angle
- Typical coverage up to $\eta = 5$ (0,8° to the beam axis)

Good electron identification

- Utilize the difference in the **shower shape** between electron/hadron
- Requires high longitudinale/laterale granularity

Good energy resolution for photons/electrons

- Very good Sampling-Calorimeter or
- Homogeneous calorimeter

Good resolution for missing transverse momentum

- Vectorial energy sum (granularity)
- Good jet energy resolution
- Good hadronic calorimeter
- Essential for new physics signatures like SUSY !

Standard Model Physics

C. Zeitnitz - Kalorimeter am LHC und LC

W transverse mass (GeV)

Different Calorimeters

Nuclear Physics

Detectors for Gamma-spectroscopy

C. Zeitnitz - Calorimetry

High Energy Physics

Very different materials, read-out, sizes

C. Zeitnitz - Calorimetr

Energy Measurement

Energy measurement of particles

- Absorption of a particle in a block of material
- Measure the energy loss
 - so-called *deposited energy*
 - Only charged particles produce a direct electron and measureable signal
 - Signal consists of
 - Charge from ionization
 - Light from scintillation or Cerenkov effect
- Measureable signal depends substantially
 - Material choice
 - Type of detector
 - Energy spectrum of secondary particles
 - Type of particle
- Measured signal is proportional to the energy of the particle

Passage of Particles through Matter

Electromagetic Interactions in Matter

Energy Loss

Continuous energy loss in the medium due to

• Excitation

$$e^{-} + atom \rightarrow e^{-} + atom^{*} \rightarrow e^{-} + atom + \gamma$$

Ionization

$$e^{-} + atom \rightarrow e^{-} + atom^{+} + e^{-}$$

Happens for all charged particles

- Example
 - Argon gas

$$\frac{dE}{dx} \approx -2 \frac{MeV}{g/cm^2} \qquad \rho = 1.8 \cdot 10^{-3} \frac{g}{cm^3}$$
$$\Rightarrow \frac{dE}{dx} = -3600 \frac{eV}{cm}$$
need W = 26eV per e⁻ - ion pair $\Rightarrow ~ 140 e^{-}$ - ion pairs/cm

Average Energy Loss (Ionization)

Heavy charged particles

Bethe-Bloch formula

$$-\frac{dE}{dx} = 4\pi N_A \cdot r_e \cdot m_e c^2 z^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\ln\left(\frac{2m_e c^2 \beta^2 \gamma^2}{I}\right) - \beta^2 - \frac{\delta}{2} \right]$$

 N_A : Avogadros number; Z, A: charge and atmic mass

 r_e : classical electron radius; $I = Z^{0.9} \cdot 16eV$: ionization potential

Average Energy Loss (2)

For electrons is the energy transfer different

Different energy loss

$$-\frac{dE}{dx} = 4\pi N_A \cdot r_e \cdot m_e c^2 z^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\ln \left(\frac{\gamma m_e c^2 \beta \sqrt{\gamma - 1}}{\sqrt{2}I} \right) - \frac{1}{2} (1 - \beta^2) - \frac{2\gamma - 1}{2\gamma^2} \ln 2 + \frac{1}{16} \left(\frac{\gamma - 1}{\gamma} \right)^2 \right]$$

Positrons

- slightly different energy loss wrt electrons
- Stopped positrons will annihilate to two photons with 511keV

Dependence of the energy loss

- Proportional to z² (charge of the particle)
- Proportional to $1/\beta^2$ for slow particles

Minimal energy loss at approx $\beta^{-}\gamma = P/m = 4$

Parametrization

$$\frac{dE}{dx} = 6\frac{Z}{A} - 1.25\frac{MeV}{g/cm^2}$$
 (10% for Z > 4)

Bremsstrahlung

High energetic charged particle in the Coulomb field of a nucleus

$$-\frac{dE}{dx} = 4\alpha N_A \left(\frac{1}{4\pi\varepsilon_0}\frac{e^2}{mc^2}\right)^2 z^2 \frac{Z^2}{A} E \cdot \ln\frac{183}{Z^{1/3}}$$

 N_A : Avogadros number; Z, A: charge and atomic mass α : fine structure constant 1/137

Energy loss is

- proportional to E and z²
- material dependent : Z²/A
- proportional to 1/m²
 - Only important for light particles (electron)
 - For e[±] dominant at high energies

Radiation Length

Bremsstrahlung for electrons

- Parametrization (valid for high energy)
- Radiation length X₀

$$E = E_0 \cdot e^{-x/X_0}$$

- Depends only on the material (A/Z²)
- 1/E energy spectrum of the photons
- Radiation length allows for a material independent description of absorption processes for e[±] and photons

Examples

- Al X₀=18.8cm
- Fe X₀=1.76cm
- Pb X₀=0.56cm

Parametrization

$$X_0 = \frac{716.4 \cdot A}{Z(Z+1)\ln(287/\sqrt{Z})} \left[\frac{g}{cm^2}\right]$$

 $\left. -\frac{dE}{dx} \right|_{Rrom} = \frac{E}{X_0}$

Energy Loss vs. Energy

Critical Energy E_c

Equal energy loss due to ionization and Bremsstrahlung

Range of heavy charged particles

Fluctuations of the energy loss

Energy loss is varying substantially

- Statistical fluctuation of the energy transfer to the electron
- In thin detectors a Landau distribution represents the energy loss
- In thick layers of material the distribution will converge to a Gaussian due to the central limit theorem

Multiple Scattering

Coulomb scattering

- Many scatterings with small energy transfer
- Rarely large energy transfers (δ-electrons)
- Asymmetric dE/dx-distribution (Landau-fluctuations)
- Most scatterings happen under small angle (θ⁻⁴ dependence)
- Parametrization of the width of the scattering angle θ as function of the thickness x

$$\phi_{rms} \approx \frac{13.6}{\beta cp} \sqrt{\frac{x}{X_0}}$$

Charged particle track will deviate from the straight line

Interaction of Photons in Matter

Photon interacts with the electric field of the atoms (nucleus) or the electrons in the shell

Pair-production in matter

- Threshold: 2 x electron mass = 1 MeV
- The intensity of a photon beam is reduced to 1/e within $9/7 X_0$

Compton Scattering

- Scattering off a bound electron in the shell
- Electron is liberated
- Cross section is proportional to Z and m_e/E (for E above the electron mass)
- Maximal energy of electron

C. Zeitnitz - Calorimetry

Interaction of Photons in Matter (2)

Photoeffect

- Photon is absorbed by an electron in the shell
- Electron is liberated
- Cross section is proportional to Z⁵ !!

$$\sigma_{Photo} = 4\pi \cdot r_e^2 \cdot Z^5 \cdot \alpha^4 \cdot \frac{m_e}{E_{\gamma}}$$

Rayleigh Scattering

- Scattering off an electron in the shell without energy loss
- Only the direction of the photon is changed

Different effects have different material dependence

Electromagnetic Cascade

Simple Model of an em shower

- An electron entering a block of material will radiate a photon after 1 X₀ due to Bremsstrahlung
 - The electron and photon carry half the energy
- One X₀ later the photon will produce an e⁺e⁻ pair, each with ½ of the energy and the electron radiates another photon
- In each step the number of particles doubles and the energy of the particles is halved
- The process stops, when the energy is reduced to the critical energy

Attributes of em Showers

Simple model yields the following features

- Only logarithmic dependence of the shower maximum with E₀
- Number of produced particles is proportional to the energy of the primary particle N=E₀/E_c
- Energy spectrum of particles reduces quickly with depth

Reality

- Energy of particles is differently distributed
 - Bremsstrahlung creates 1/E spectrum
 - Pair production, compton and photo effect produce wide range of electron (positron) energies
 - Most charged particles (~90%) are electrons
- Material dependence breaks exact X₀ scaling
 - Shower max shifted for high Z
 - Slow decay in high Z materials

Attributes of em Showers

Simple model yields the following features

• Slow decay in high Z materials

Attributes of em Showers

Simple model yields the following features

Containment of em shower

Composition of em shower

Lateral Shower Shape

Angular distribution in scattering (pair production)

- Spread of the particles perpendicular to the direction of the incoming particle
- The energy carried by particles falls exponentially wrt. the shower axis
- The width depends on the shower depth

Parameter: Molière Radius

$$\rho_{M} = m_{e}c^{2}\sqrt{4\pi/\alpha}\frac{X_{0}}{E_{c}} = 21.2MeV\frac{X_{0}}{E_{c}}$$

- 90% energy is deposited in a cylinder with radius ρ_M around the shower axis
- Molière radius has no real physical meaning!

Examples Al – ρ_0 =4.7cm Fe – ρ_0 =1.8cm Pb – ρ_0 =1.6cm

Lateral Shower Shape

C. Zeitnitz - Calorimetry

30

Myons

Nearly no Bremsstrahlung (1/40000 of e⁻)

- Energy loss of μ mainly due to ionization
- High energetic μ pass through thick layers of material
- Myons with high energies are close to minimal ionizing (mip)
- Example: 2m Pb
 - Minimal energy loss

$$-\frac{dE}{dx} = 1.13 \frac{MeV}{g/cm^2} \cdot \rho_{Pb} \Longrightarrow -dE \approx 13 \cdot 200 MeV = 2.6 GeV$$

At very high energies Bremsstrahlung get important

E_c is as high as 200GeV!

Myon energy NOT measureable in calorimeters with limited size

Need for µ spectrometer

Myons

- Charged hadrons loose energy continuously due to ionization/excitation of atoms
- Inelastic Interactions (spallation)
 - Hadron interacts with a nucleon within the nucleus
 - Momentum transfer leads to subsequent scatterings off other nucleons
 - Intranuclear Cascade
 - Nucleons might leave the nucleus
 - slow Protons stopped quickly
 - Secondary particles are produced
 - mainly pions, rarely kaons
 - Electromagnetic component from neutral pion decays
 - Residual nucleus will very likely evaporate nucleons and emit photons

Residual nucleus will very likely evaporate nucleons and emit photons

- Charged hadrons loose energy continuously due to ionization/excitation of atoms
- Inelastic Interactions (spallation)

Residual nucleus will very likely evaporate nucleons and emit photons

Residual nucleus will very likely evapo nucleons and emit photons

Hadronic Interactions (2)

Secondary particles

- Energy is required to generate secondaries
 - Approx. 1.3 GeV (0.7GeV) for a single pion in Pb (Fe)
- Composition of particles depends on the type of the primary particle and the material
- Large fluctuations of number of secondaries and particle types
- Extreme case is the charge exchange reaction

$$\pi^+ n \rightarrow \pi^0 p$$

- Nearly no energy into nucleons and no charged hadrons
- The neutral pion decays to two photons

Lost energy

- Spallation with the emission of nucleons leads to lighter nuclei
 - Binding energy is lost
- Neutrons and decay products (myons & neutrinos) might escape the volume of the calorimeter
 - Pion and Kaon decays

Hadronic Interaction Length

Mean free Path Length

Distance a proton travels on average without having a hadronic interaction

$$\lambda_{\text{int}} = N_A \cdot \rho \frac{A}{\sigma_{\text{inel}}} \quad \text{with} \, \sigma_{\text{inel}} \propto A^{2/3}$$
$$\Rightarrow \lambda_{\text{int}} \propto A^{1/3}$$

- Parametrization for Protons
 - Larger for pions!

$$\lambda_{\rm int} = 20 \cdot A^{0.4} + 32 \left[\frac{g}{cm^2} \right]$$

Examples

- Be- λ_{int} = 42.10cm (X₀= 35.3cm)
- AI λ_{int} = 39.70cm (X₀=18.8cm)
- Fe $-\lambda_{int}$ = 16.77cm (X₀=1.76cm)
- Pb λ_{int} = 17.59cm (X₀=0.56cm)

For small A is the mean free path length nearly the same for hadrons and electrons

Interaction of Neutrons

Inelastic hadronic interactions

- Same as for charged hadrons for high energies
- Strong energy and material dependence for energies in the MeV range

Elastic scattering (1eV < E < 1MeV)</pre>

- Energy loss due to elastic scattering depends heavily on the material
 - Average per collision
 - Target: H 50% , Fe 3.4% , Pb 1%
- Hydrogen rich materials very good for slowing neutron down (thermalization)
- Mean free path length in high A materials can be huge

Low energy neutrons (E < 1eV)</p>

- Capture
 - High cross section for very low energies (thermal)
 - Very high cross section for some materials (e.g. Cd, B)
 - Example Hydrogen

$$n + p \rightarrow D + \gamma(2.2 MeV)$$

Hadronic Cascades

The absorption of a hadron will start with an inelastic interaction (spallation)

- The further development depends crucially on this first interaction
 - Number of produced neutral pions (electromagnetic component f_{em})
 - Number of produced charged pions
 - Energy going into neutrons
 - Number of slow protons
- The multiplicities depend on the target nucleus as well as the projectile
 - Cascade development different for pion and proton!
 - Baryon conservation reduces the pion production for protons

Subsequent collisions of secondary high energetic hadrons lead to a cascade or shower of particles

Center of mass energy is decreasing rapidly within the cascade

Hadronic Cascades

The absorption of a hadron will start with an inelastic interaction (spallation)

Hadronic Shower Composition

Hadronic Part: Example Pb and Fe

Lead Iron Energy deposit (loss) for the 19% 21% Ionization by pions non-electromagnetic Ionization by protons 53% 37% component Total ionization 56% 74% Pions • Equal number of π^+ , π^- , π^0 Nuclear binding energy loss 32% 16% Target recoil 2% 5% Nucleons Total invisible energy 34% 21% Binding energy is smaller in Pb ٠ More neutrons in Pb due to • Kinetic energy evaporation neutrons 10% 5% Coulomb barrier for protons Number of charged pions 0.771.4 Number of protons 8 3.5 5 Number of cascade neutrons 5.4 Particles 5 31.5 Number of evaporation neutrons per GeV Total number of neutrons 36.9 10 10.5/1Neutrons/protons 1.3/1

Hadronic Shower Composition (2)

Electromagnetic component

Production of π^0

- Energy dependent (log increase)
- Material dependent
- Subject to large fluctuations
- $π^0$ decay to photons generates electromagentic subshower (scales with X₀ and NOT $λ_{int}$)
 - For high Z materials these are very different (Fe by a factor 10)!

Resolution of em component better than hadronic

Dominates resolution at very high energies

Hadronic Shower Composition (2)

Hadronic Shower Shape

Shower Shape can be studied by means of radio nuclide analysis

Detect radioactive isotopes produced in different depth of the material and distance from particle impact

Uranium well suited

- Fast neutrons induce fission (1.5MeV threshold) of ²³⁸U creates ⁹⁹Mo
- High energetic photons: $^{238}U(\gamma,n)$ ^{237}U
- Slow neutrons are captured $^{238}\text{U+n} \rightarrow ^{239}\text{U} \rightarrow ^{239}\text{Np}$

Longitudinal shower development

- Each individual shower will look very different
 - Fluctuation of the different shower components
- Average shape similar to em-shower
 - Scales with hadronic interaction length λ_{int}

Hadronic Shower Shape

Shower Shape can be studied by means of radio

C. Zeitnitz - Calorimetry

Hadronic Shower Shape

Shower Shape can be studied by means of radio nuclide analysis

Lateral Shower Shape

Particle composition depends on distance from shower axis

- Fast particles (neutrons, γ) found close to the axis
 - ²³⁷U samples the em component
 - ⁹⁹Mo samples fast neutrons
- Slow (thermalized) neutrons travel far off axis
 - ²³⁹Np samples thermal neutrons

Result from Uranium slab block

Exponential lateral shape, with a core of high energetic particles

Containment

Longitudinal containment

- Particles leaving the calorimeter (leakage) are lost for energy measurement
 - Large fluctuation of the lost particles event by event
 - Deteriorated energy resolution
- Each event has a different composition, which leads to a very different requirement for containment
- Energy dependence adds to the requirement for the depth

Containment

Longitudinal containment

- Particles leaving the calorimeter (leakage) are lost for energy measurement
 - Large fluctuation of the lost particles event by event
 - Deteriorated energy resolution
- Each event has a different composition, which leads to a very different

Summary of Showers

Electromagnetic

- Bremsstrahlung and Pair-production produces multitude of secondary particles
 - Electrons, positrons and photons down to very small energy
- Scales with X₀
 - Small X₀ for high Z materials
 - Requires roughly 25-30 X₀ for full containment (Pb ~ 17cm)

Hadronic

- Electromagnetic sub-showers originating from neutral pion decays
- Hadrons
 - Charges pions, charged and neutral kaons
 - Slow protons from inelastic interactions with nuclei
 - Fast and slow neutrons
- Energy lost due to binding energy and escaping particles
- Large fluctuations of different components
- Scales with λ_{int}
 - Small λ_{int} for high A material
 - Requires 8-9 λ_{int} for containment (Fe ~150cm)

Response of Calorimeters

Assumptions

- Absorb the particle in a dense medium (compact calorimeter)
- Infinite absorber size (no leakage)
- Ideal materials

How to measure the energy deposition in the absorber

- Absorber itself provides a signal (e.g. light or charge) which is proportional to the deposited energy
 - Liquid noble gas (LAr, LKr), dense crystals (Nal, Pb-glas, PbWO₄)

Homogeneous calorimeter

- "Sample" the deposited energy by interleaving absorber and an "active" medium
 - Only a fraction of the energy is measured \rightarrow reduced response and resolution
 - High Z and A materials as absorber
 - Standard particle detector as active medium (e.g. scintillator, semi conductor, gas ...)

Sampling calorimeter

Response of Calorimeters

CERN Labo 27 - E CMS: PbWO₄ calorimeter

ım (compact calorimeter)

ition in the absorber Ight or charge) which is

LHCb: Fe/scintillator calorimeter

on

"active" medium

- Only a fraction of the energ
- High Z and A materials as al
- Standard particle detector a gas ...)

Sampling calorimeter

C. Zeitr

Homogeneous Calorimeter Crystals

PbWO₄ crystal

- High density ρ=8.3 g/cm3
- Small radiation length X₀=8.9mm
- Small Molièreradius R_m=2.2cm
- Fast signal: 80% of the light in 25ns
- Radiation hard
- Excellent energy resolution

Disadvantages

- Small light yield: ca. 80 γ /MeV (NaI : 40000 γ /MeV)
- Temperature dependent yield (-1.9%/°C @ 18°C)

expensive

Homogeneous Calorimeter Crystals

Signal of a MIP

Energy deposition by a minimal ionizing particle (MIP)

- Energy loss given by minimum of Bethe-Bloch Formula
- Can easily be calculated for different material combinations

Example

• 20 layers of 5cm Fe+ 1cm scintillator

$$dE_{Fe} = 1.451 \frac{MeV}{g/cm^2} \cdot 7.8 \frac{g}{cm^3} \cdot 5cm \cdot 20 = 1131.8MeV$$
$$dE_{sci} = 1.936 \frac{MeV}{g/cm^2} \cdot 1.03 \frac{g}{cm^3} \cdot 1cm \cdot 20 = 39.9MeV$$
total energy loss $dE = 1171.7MeV$

In this case only 39.9MeV are actually measured in the scintillator
→ visible energy

Signal of a MIP (2)

MIP signal is commonly used as a reference for all other particles

- X/mip: signal of a particle X with energy equal the dE/dx of a MIP
- e/mip, γ /mip, n/mip, p/mip, π /mip
- Ratios are often energy dependent!

Measure the MIP signal

- Myons provide best estimate for a MIP
 - Needs correction (energy dependent)

The response of a calorimeter can be estimated from the known X/mip ratios

Homogeneous Calorimeter

- Practically only used in high energy physics for electromagnetic calorimeters
- Response
 - All the energy is deposited AND measured in the active volume
 - Intrinsically linear response
 - Reality: local ionization density leads to saturation
 - Readout usually not 100% efficient
 - Calibration with known energy required
 - Electrons with known energy

e/mip=1

- All energy measured for mip and electron
- Response identical!

Homogeneous Calorimeter

Practically only used in high energy physics for electromagnetic calorimeters

C. Zeitnitz - Calorimetry

Response of homogeneous Calorimeters

Response to hadrons (assume full containment)

∎ e/π >1

- Energy loss in hadronic showers (e.g. binding energy) reduces the visible energy
- Fraction of neutral pions (f_{em}) increases with energy $\rightarrow e/\pi$ decreases with E

Intrinsic pure hadronic response

- e/h (electron/hadronic) > 1
 - Pure hadronic consists of pions, kaons, neutrons, recoil nuclei
 - Response (nearly) energy independent
 - Lost energy leads to smaller response of hadrons

■ Range 1.5 < e/h < 2.5

Calorimeters with e/h≠1 are called "non-compensating"

Determination of e/h-ratio

Only e/\pi can be measured

Pion response depends on e/h

$$\begin{aligned} \pi &= f_{em} \cdot e + (1 - f_{em}) \cdot h \\ \frac{\pi}{e} &= f_{em} + (1 - f_{em}) \cdot \frac{h}{e} \\ \Rightarrow &\frac{e}{\pi} = \frac{e / h}{1 - f_{em} (1 - e / h)} \end{aligned}$$

- f_{em} depends logarithmically on the energy
 - e/π changes with energy and approaches 1 for very high energies

■ Pion response for e/h≠1 is NOT linear!

Determination of e/h-ratio

C. Zeitnitz - Calorimetry

Sampling Calorimeter

Absorber material (high Z) interleaved with active medium

Sampling fraction

- Fraction of energy deposited in active medium
 - Calculates for a MIP
 - Example again: 20 layers of 5cm Fe+ 1cm scintillator $f_{samp} = \frac{39.9}{11318 + 39.9} = 3.4\%$

Calibration

- Signal (ADC counts) to energy scaling
- MIP signal has to be scaled by 1/f_{samp} to get correct energy
- In addition scale with X/mip
 - Might depend on the energy itself!

Sampling Calorimeter

e/mip and γ /mip

■ For different Z of absorber and active layer with Z_{abs} > Z_{act}

- Most shower particles (e[±], γ) are produced in the high Z absorber with low energy (Bremsstrahlung, photo effect, Compton)
- Range of particles is smaller than thickness of absorber plates
- Particles do not reach the active layer
- e/mip < 1 and $\gamma/mip < 1$
- Depends on difference in Z
- Depends on shower depth (particles get softer)

For light absorbers (Al) and heavy active media

• e/mip > 1

Response depends on thickness of sampling layers

e/mip and γ /mip

Response depends on thickness of sampling layers

Response depends on thickness of sampling layers

Hadrons

Low energy hadrons (below 1GeV)

Mainly ionization loss (nearly MIP like)

High energy hadrons

For very high energies $e/\pi=1$ (as for homogeneous case)

Transition region up to 5GeV

70

e/h of Sampling Calorimeters

Intrinsic e/h is a constant!

Describes the response of non-electromagnetic part of the shower

■ ZEUS calorimeter (HERA experiment) achieved e/h=1 → "compensated" calorimeter

Most calorimeters are non-compensating

Wide range of e/h values

■ e/h≠1: energy response is not linear

 $\frac{\pi(E_1)}{\pi(E_2)} = \frac{f_{em}(E_1) + [1 - f_{em}(E_1)] \cdot e/h}{f_{em}(E_2) + [1 - f_{em}(E_2)] \cdot e/h} \neq 1$

Calculation of e/h requires the response of different hadronic shower components

Ionizing particles (pions, slow protons...), neutrons

e/h of Sampling Calorimeters

Pure hadronic response

All response components expressed wrt MIP
e/h calculation

 $\frac{e}{h} = \frac{e / mip}{f_{ion} \cdot ion / mip + f_n \cdot n / mip}$ $f_{ion} + f_n + f_{inv} = 1$

f_{ion} contains fast charged hadrons as well as slow protons

- Range of slow protons limited
- Might not reach active material
- Saturation effects in active medium reduces response
- Material, energy and plate thickness dependence

Neutron response

Depends substantially on material and energy

Pure hadronic response

All response components expressed wrt MIP e/h calculation

Depends substantially on material and energy

Response of a hadrons

Pure hadronic response + em response

$$\frac{\pi}{e} = f_{em} + (1 - f_{em}) \frac{f_{ion} \cdot ion / mip + f_n \cdot n / mip}{e / mip}$$

 $\blacksquare f_{em}$ is energy dependent \rightarrow response is non-linear

Response of Jets

Jet composition

Energy of a jet distributed over different particle types

- Baryons, mesons, neutrals
- f_{em} depends on the composition and particle multiplicity

Electromagnetic fraction for jets

- Initial photons from π^0 (from jet fragmentation)
- Intrinsic em fraction f_{em} from individual hadrons
- Depends substantially on the jet composition

Response

- ∎ e/jet > 1
- Resolution is usually worse than for single hadron
- Response is energy dependent

Compensation

Linear energy response only for e/h=1 Intrinsically compensating calorimeters

- Requires right choice of materials, sampling and readout
- Two possibilities
 - Reduce electron response (e/mip)
 - Recuperate f_{inv} (lost energy)

e/mip reduction

- Increased absorber (high Z) thickness reduces electron signal
 - Caused by range of low energetic shower particles in the absorber
 - Sampling fraction is reduced
- e/h=1 NOT achievable for all materials!
- Energy resolution gets worse

Compensation

Compensation (2)

Recuperate f_{inv}

- Neutron multiplicity correlated with the invisible energy
- Increase f_n
 - Use absorber with high neutron yield (Pb, U)
- Increase n/mip
 - Signal from neutrons comes late due to the required thermalization, capture and γ emission (~200nsec)
 - n/mip can be tuned by changing the integration time of the readout
 - ZEUS U/scintillator calorimeter from e/pi=1.12 (50nsec) down to 1.04 (600nsec)
- Best: do both

Optimally applied in the ZEUS calorimeter

- DU plates (3.3mm) cladded in stainless steel and scintillator (2.6mm) readout
 - Scintillator provides hydrogen for the effective thermalization of the neutrons
- 200nsec integration time
- Calorimeter with the best performance for hadrons up to date

Compensation (2)

Compensation (2)

Software Compensation

High granularity of a calorimeter allows to locate em subshowers

- em shower very localized with high energy density
 - Shower maximum within $10X_0$ and contained in $1R_m$
- Weighting of local em energy can correct e/mip to achieve e/π=1

Problem

- Weighting is energy dependent
- Weighting might depend on the location
- Complicated multi dimensional problem!
 - Leads to complicated weighting functions

Method pioneered by CDHS experiment at CERN (1981)

- Improved in the 1990s by H1 at HERA
- Further optimized by ATLAS at the LHC

Energy Resolution of Calorimeters

Intrinsic fluctuations

Signal in the active medium

- photo statistics, charge fluctuations
- Saturation effects, recombination
- Shower composition (hadrons)
- $e/h \neq 1$ in conjunction with the fluctuation of f_{em} (hadrons)

Sampling calorimeters

Fluctuation of the visible signal (sampling fluctuations)

Instrumental effects

- Inhomogeneities (e.g. variation of plate thickness)
- Incorrect calibrations of different channels (intercalibration)
 Electronic noise

Resolution of Calorimeters

- A calorimeter signal S is composed of multiple individual processes N
 - Photo electrons, electron-ion pairs ...
- Fluctuation of N can be described by Poisson statistics (stochastic term)
 - Relative resolution of the signal $\frac{\sigma_s}{S} = \frac{\sigma_E}{F} = \frac{\sqrt{N}}{N} = \frac{1}{\sqrt{N}}$

Signal
$$\frac{\sigma_s}{S} = \frac{\sigma_E}{E} = \frac{\sigma_V}{N}$$

assume linearity

$$E \rightarrow 2E \Longrightarrow N \rightarrow 2N \Longrightarrow \frac{\sigma_E}{E} = \frac{1}{\sqrt{2N}}$$

Relative resolution $\frac{\sigma_E}{E} = \frac{A}{\sqrt{E}}$

Resolution improves with energy

- Spectrometers always get worse with increasing momentum!
- Constant A gives the purely statistical fluctuations

More Fluctuations

Instrumental effects

Non-uniformities of the absorber/active layer

• Scales with energy ($\sigma_{uni} = C \cdot E$)

Electronic noise

- Depends on the number of considered electronic channels
- For constant number of channels it's a constant contribution (σ_{Noise} =B)

Adding the contributions in quadrature

$$\sigma_{samp}^{2} + \sigma_{noise}^{2} + \sigma_{uni}^{2} \Longrightarrow \frac{\sigma_{E}}{E} = \sqrt{\frac{A^{2}}{E} + \frac{B^{2}}{E^{2}} + C^{2}} = \frac{A}{\sqrt{E}} \oplus \frac{B}{E} \oplus C$$

Resolution and Sampling Fraction

Signal depends on low energy particles reaching the active material

Higher signal leads to smaller fluctuations

How to increase the signal

- Add more active layers with thickness d (increased) sampling frequency)
- Increase the thickness d of the active layers (increased sampling fraction f_{samp})

Resolution depends on d/f
samp
Empirical formula $\frac{\sigma_E}{E} = 2.7\% \frac{\sqrt{d/f_{samp}}}{\sqrt{E}} \Rightarrow A = 2.7\% \sqrt{d/f_{samp}}$ (Wigmans) Example ZEUS $f_{samp} = \frac{dE(sci)}{dE(sci) + dE(U)} = 7\%$ d(sci) = 2.6mm $\Rightarrow A = 16.5\% \sqrt{GeV}$ $A_{true} = 18\% \sqrt{GeV}$

Resolution and Sampling Fraction

Hadronic Calorimeters

Complexity of hadronic showers makes it difficult to estimate the resolution

Pure sampling fluctuations of hadronic part (ZEUS)

 $\frac{\sigma_E}{E} = \frac{11.5\%\sqrt{\Delta E}}{\sqrt{E}}$ where ΔE is the energy lost by a MIP in one sampling

Resolution often dominated by other effect!

Effects on the resolution (non-compensating)

- Fluctuations of the binding energy E_B
 - $\frac{\sigma_E}{E_B} = \frac{15\%}{\sqrt{E_B}}$ for high Z materials

Fluctuations of the em fraction f_{em}

- Substantial effect for pion induced shower
- Reduced effect for protons due to baryon number conservation (reduced pion production)

Hadronic Calorimeters

Complexity of hadronic showers makes it

300

100

0

200

Binding energy loss (MeV)

400

Hadronic Calorimeters

C. Zeitnitz - Calorimetry

Spatial Resolution

Spatial resolution based on energy sharing of neighboring cells

Calculate energy weighted average requires correction

$$\overline{x} = \frac{\sum_{i} x_i \cdot E_i}{\sum_{i} E_i}$$

- Cells size (Δx) smaller than characteristic width of shower
 - 1R_m for em-shower
 - $1\lambda_{int}$ for hadronic shower
- **Resolution scales with 1/\sqrt{E}**
 - Wigmans parameterization for em-shower (square cells)

$$\sigma_{x,y} \approx \frac{17.8\% \cdot \Delta x[mm]}{\sqrt{E[GeV]}} \Longrightarrow \sigma_{x,y} = \frac{17.8\% \cdot 30mm}{\sqrt{10GeV}} = 1.7mm$$

Angular resolution possible with longitudinal segmentation

Spatial Resolution

Spatial resolution based on energy sharing of neighborin

Spatial Resolution

Spatial resolution based on energy sharing of neighboring cells $\overline{x} = \frac{\sum_{i} x_i \cdot E_i}{\sum E_i}$

- Calculate energy weighted average requires correction
- \blacksquare Cells size (Δx) smaller than characteristic width of shower
 - 1R_m for em-shower
 - $1\lambda_{int}$ for hadronic shower
- **Resolution scales with 1/\sqrt{E}**
 - Wigmans parameterization for em-shower (square cells)

$$\sigma_{x,y} \approx \frac{17.8\% \cdot \Delta x[mm]}{\sqrt{E[GeV]}} \Longrightarrow \sigma_{x,y} = \frac{17.8\% \cdot 30mm}{\sqrt{10GeV}} = 1.7mm$$

Angular resolution possible with longitudinal segmentation

Example: homogeneous Calorimeter

Example: homogeneous Calorimeter

photo electron statistics

- Leakage
- Cracks between crystals

Beam Energy (GeV)

Example: em Sampling Calorimeter

Beam Energy (GeV)

Example: em Sampling Calorimeter

ATLAS Pb/LAr em calorimeter

- Complex geometry (accordion structure)
- 1.53mmPb (cladded with stainless)
- 2.1mm LAr
- Average impact angle 45° (simplified)
- Expected resolution

$$\frac{\sigma}{E} = 2.7\% \frac{\sqrt{d/f_{samp}}}{\sqrt{E}} = 2.7\% \frac{\sqrt{2.1mm/0.16}}{\sqrt{E}}$$
$$\Rightarrow A = 9.8\%$$

Measured

$$\frac{\sigma}{E} = \frac{9.4\%}{\sqrt{E}} \oplus 0.1\%$$

C. Zeitnitz - Calorimetry

Example: hadronic sampling Calorimeter

ZEUS U/scintillator

- Towers of DU (3.3mm) and scintillator plates (2.6mm)
- Intrinsically compensating e/h=1
- Best resolution obtained for hadrons up to now

Example: hadronic sampling Calorimeter

Overview

Comparison of single particle resolutions

Experiment		absorber	active	resolution	type
CMS	em	PbWO ₄	Scint.	2.8%/√E	homogeneous
CMS	had.	Fe	Scint.	77%/√E	sampling
ATLAS	em	Pb	LAr	10%/√E	sampling
ATLAS	had.	Cu	LAr	66%/√E	SW compensation 46%
NA48	em	LKr	LKr	3.5%/√E	homogeneous
BaBar	em	Csl	Csl	2.3%/E ^{1/4}	homogeneous

Energy Resolution of Jets

Electromagnetic fraction

- Neutral pions as primary particles
- em-fraction from hadronic interactions

Hadrons

- Mixture of pions, kaons, nucleons
- Multiplicity usually higher than for single particle with same energy as the whole jet
 - More interactions and less fluctuations
 - Would expect better resolution

Fluctuation of particle composition spoils resolution

- In most cases dominant and not easy to predict
- Depends strongly on the studied physics!

Material in front of calorimeter deteriorates the em resolution
 No simple rule of thumb

Calibration

Read-out calibration done electronically

Signal measured in charge or photo electrons and NOT energy

Need calibration constant or function

Relatively simple for single particles

Testbeam

- Electrons/pions/protons with known energy provide reference signal
- Transfer of calibration to the actual experiment not always easy (e.g. changes in electronics)

In-situ calibration

- Utilize momentum measurement in comparison with energy in calorimeter
- Reconstruct the mass of known particles

Calibration

• Reconstruct the mass of known particles

Calibration

Read-out calibration done electronically

- Utilize momentum measurement in comparison with energy in calorimeter
- Reconstruct the mass of known particles

Calibration (2)

Jet calibration

No universal calibration exists

- Depends on physics process (multiplicity and composition)
 - Need different calibration for different event types
- Depends on jet definition (algorithm)

In-situ calibration

- Example for Tevatron/LHC: Jets+γ events
 - Photon calibration known
 - Jets have to balance momentum in transverse plane
- Hadronic decays of Z and W into 2 jets

Calibration is usually dependent on η

Initially parton fragmentate to hadrons

- Multiple hadrons (Jet) enter the detectors
- Reconstruction of parton 4 vectors requires to find the hadrons belonging to the jet
- Jet clustering (find groups of particles)

Commonly used algorithms Cone kT clustering, anti-kT

Initially parton fragmentate to hadrons

C. Zeitnitz - Calorimetry

Example: ATLAS Detector

C. Zeitnitz - Calorimetry

Jet Finding in ATLAS

Calorimeter towers, cells and dead material

C. Zeitnitz - Calorimetry

Clustering

Signal in calorimeter

- In a cell, tower or cluster
- Cluster
 - Group of cells around a seed cell
 - Seed cell with E > $\sigma_{noise} \oplus \sigma_{pileup}$
 - Scan neighboring cells for energy above noise
 - Add cells together

Clustering

Signal in calorimeter

C. Zeitnitz - Calorimetry

Clustering (2)

Might have to split clusters, if local maxima found

Clustering (3)

Jets and Jet Energy

Found clusters used as input to Jet algorithm

Clusters are combined to a Jet

- Criterion for combination very different
 - Distance (cone), energy weighted distance ...
- Iteractive process (stop condition depends on jet algorithm)

Shape and number of jets depend on algorithm Measured energy

- Cell energy
 - Apply energy calibration
 - Weighting: em or hadronic energy

Cluster energy

- Corrections
 - Out of cluster energy
 - Dead material in front
 - Linear response

Jets and Jet Energy

S.D. Ellis, J. Huston, K. Hatakeyama, P. Loch, M. Toennesmann, Prog.Part.Nucl.Phys.60:484-551,2008

2009-12-14, 04:30 CET, Run 142308, Event 482137 http://atlas.web.cern.ch/Atlas/public/EVTDISPLAY/events.html

Topo Clusters as Input to Jets

Jet reconstruction and calibration can be divided in 4 steps

- 1. calorimeter tower/cluster reconstruction
- 2. jet making
- jet calibration from calorimeter to particle scale
- jet calibration from particle scale to the parton scale

S. Menke, MPP München

Jet Energy Scale

Jet energy should reflect the "true" energy

- "true" no really defined!
- Compare with parton energy

Uncertainty of energy scale is important

Top mass measurement

$$\frac{\Delta m_{top}}{m_{top}} < 1 GeV \Longrightarrow \frac{\Delta E_{Jet}}{E_{Jet}} < 1\%$$

Scale depends on multiple parameters

- Real signal composition (em/had)
- Pile-up events
- Noise
- Jet algorithm

Conclusions

Calorimeters cover a wide range of application

- Medicine PET (511keV)
- Nuclear physics (10keV range)
- HEP (TeV range)

Calorimetry is a main ingredient of HEP detectors

- Measurement of neutral and charged particles
- Measurement of jet energies
- Measurement of missing energy
- Measurement of the luminosity (small angle detectors)

High resolution calorimeters will be a central part of future experiments

Precise energy measurement required to measure properties of new particles (Higgs?)

Topics not covered in the lecture

New Concepts for hadron Calorimeters

Dual Readout (DREAM)

Measure the em-shower fraction separately

- Even low energetic electron/positron (1MeV) are fast (0.94c)
- Slow protons (1MeV) are really slow (0.05c)

Exploit Cerenkov detector to determine ${\rm f}_{\rm em}$ in each event

Atomic excitation more likely done by hadrons

Scintillation light more likely to come from hadrons

Requires material with scintillation and Cerenkov signal

- Special fibers, doped Pb-glas
- Sampling fraction not important

Results from testbeam measurements very promising

New Concepts for hadron Calorimeters

New Concepts for hadron Calorimeters

Particle Flow for Jets

Particle Flow for Jets

Combine different detectors

Method based on

- Momentum measurement of charegd particles (~65% E_{iet})
- Photons measured in em-calorimeter (~25% E_{iet})
- Neutral hadrons measured in hadronic calorimeter (~10% E_{iet})
- All fractions energy dependent!

Jet energy resolution

$$\sigma^2 = \sigma_{track}^2 + \sigma_{h_nutral}^2 + \sigma_{photon}^2 + \sigma_{mix}^2 = (0.14)^2 \cdot E_{Jet} + \sigma_{mix}^2 \approx (0.3)^2 \cdot E_{Jet}$$

- Dominant is the mix-up term $\sigma_{mix}!$

Requirements

- High granularity lateral/longitudinal
- ➡ Hadronic resolution ~40%/VE
- Elektromagnetic resolution ~10%/VE

Particle Flow Jet Resolution

Resolution scales no longer with 1/\sqrt{E}

CALICE Collaboration

CALorimeter for Linear Collider for Electrons

- Development of highly granular calorimeters with exceptional energy resolution
- Different read-out technologies are under investigation
 - Silicon for em- part
 - Silicon and scintillating tiles (SiPM readout) for hadronic part

ALICE zero degree calorimeter

- Extreme high energy
- Radiation hard
- Quartz fiber/tungsten and copper
- e/h=2
- Resolution 10% at 1TeV

$$\frac{\sigma_E}{E} = \frac{234\%}{\sqrt{E}}$$

And more

Luminosity calorimeters
Ice at the south pole
Athmosphere

ALICE zero degree calorimeter

- Extreme high energy
- Radiation hard
- Quartz fiber/tungsten and copper
- e/h=2
- Resolution 10% at 1TeV

ALICE zero degree calorimeter

- Extreme high energy
- Radiation hard
- Quartz fiber/tungsten and copper
- e/h=2
- Resolution 10% at 1TeV

$$\frac{\sigma_E}{E} = \frac{234\%}{\sqrt{E}}$$

And more

Luminosity calorimeters
Ice at the south pole
Athmosphere

ALICE zero degree calorimeter

ALICE zero degree calorimeter

- Extreme high energy
- Radiation hard
- Quartz fiber/tungsten and copper
- e/h=2
- Resolution 10% at 1TeV

$$\frac{\sigma_E}{E} = \frac{234\%}{\sqrt{E}}$$

And more

Luminosity calorimeters
Ice at the south pole
Athmosphere

Simulation

Electromagnetic Showers

- QED provides very precise decription of all processes
- Need detailed description of geometry and materials
- Simulation describes the measured calorimeter response well, but need a lot of CPU time
- Programs
 - EGS (THE reference)
 - GEANT 4 (em-Package)

Simulation of Hadrons

Hadronic Models

- Much more complicated due to complexity of hadronic interactions (nuclear physics), required measured crosssections
- Simulation of neutrons tricky
 - Requires precise description of material composition (elements)
- Comparison with data usually only reasonable

Programs

- GEANT 4
- FLUKA
- HETC (ORNL/LANL)
- Programs for special applications (shielding ...)

DØ-Detektor

