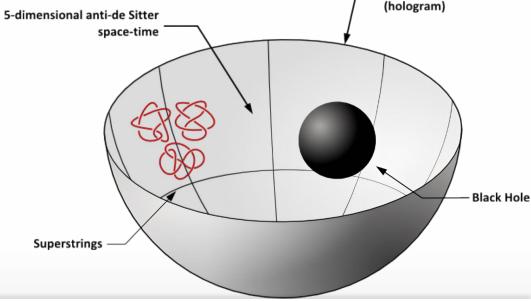


THEORETICAL HIGH ENERGY PHYSICS (TENA)


HTTPS://WE.VUB.AC.BE/NL/THEORETICAL-PARTICLE-PHYSICS

Alexander Sevrin

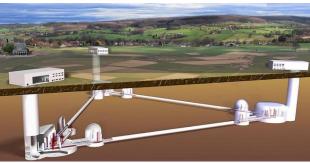
RESEARCH: TWO MAIN LINES OF RESEARCH

Quantum gravity

- General relativity + quantum mechanics = trouble
- Prime candidate for a theory of quantum gravity: string theory
- Particles are not necessarily point like objects but can be extended (strings, membranes, ...)
- Two main lines of research:
 - Holography a theory with gravity (black holes) = a theory without gravity in a lower dimension (see presentation Prof. Ben Craps)
 - Close connection to quantum information theory
 - Geometry: an extended object perceives the ambient geometry in a very different way compared to a point particle. (Alexander Sevrin)
 - Generalization of differential geometry

Titel van de presentatie 19-9-2022 | 2

4-dimensional space-time


RESEARCH: TWO TARGETS

• Gravitational Waves (see presentation Prof. Alberto Mariotti)

- Predicted in 1916 by Einstein, first observed in 2015 by the LIGO-Virgo collaboration
- We are active in Virgo (part of the LIGO-Virgo-Kagra collaboration) and the Einstein Telescope (ET)
- Group focusses on the stochastic gravitational wave background (SGWB). Can have two origins: astrophysical or cosmological
 - SGWB of astrophysical origin
 - Originates from numerous unresolved astrophysical sources, first observation expected in 2023
 - Development of data analysis techniques
 - Data analysis
 - SGWB of cosmological origin
 - Originates from cataclysmic events in the early universe
 - Theoretical modeling of sources (first order phase transitions, domain walls, ...)
- **Note** for those interested in applied physics: we are also involved in ETpathfinder, the R&D lab for ET and Cosmic Explorer -> close collaboration with TONA, engineering department

