The Radio Neutrino **Observatory - Greenland Tuning in on ultra-high-energy neutrinos from the norther** sky

Felix Schlüter for the RNO-G group @ IIHE

IIHE annual meeting - 15.11.23

Common Sources: Neutrinos are produced together with gamma rays from UHE cosmic rays

gamma rays y

neutrinosu

Gamma rays annihilate with CMB

Cosmic ray deflect in magnetic fields cosmic rays

Neutrinos are the ideal messenger...

... but challenging to measure!

Common Sources: Neutrinos are produced together with gamma rays from UHE cosmic rays

gamma rays y

neutrinosu

Gamma rays annihilate with CMB

Cosmic ray deflect in magnetic fields cosmic rays

> Neutrinos are the ideal messenger...

interaction with ice

neutrino v

Askanyan radiation

... but challenging to measure!

air

ice

Illustration by Karen Teveer

Common Sources: Neutrinos are produced together with gamma rays from UHE cosmic rays

gamma rays y

neutrinosu

Gamma rays annihilate with CMB

Cosmic ray deflect in magnetic fields cosmic rays

> Neutrinos are the ideal messenger...

Common Sources: Neutrinos are produced together with gamma rays from UHE cosmic rays

gamma rays y

neutrinosu

Gamma rays annihilate with CMB

Cosmic ray deflect in magnetic fields cosmic rays

> Neutrinos are the ideal messenger...

interaction Particle cascades with E 10 with ice

Pev produce radio emission

ice Attenuation length of radio 0(1 km)

neutrino v

... but challenging to measure!

Illustration by Karen Teveer

Ultra-high-energy neutrinos with RNO-G

- RNO-G targets 100 PeV 10 EeV
 - Cutoff in astrophysical spectrum
 - Test models of 2. astrophysical component
 - Test cosmogenic GZK neutrino flux

Ultra-high-energy neutrinos with RNO-G

- RNO-G targets 100 PeV 10 EeV
 - Cutoff in astrophysical spectrum
 - Test models of 2. astrophysical component
 - Test cosmogenic GZK neutrino flux
- UHE neutrinos in the Northern Hemisphere
 - Earth absorption matters above ~ 100 TeV
 - Complementary FOV to IceCube / South Pole
 - Extend energy range in Northern Hemisphere
 - Extend FOV for ultra-high energies to Northern Hemisphere

Ultra-high-energy neutrinos with RNO-G

- RNO-G targets 100 PeV 10 EeV
 - Cutoff in astrophysical spectrum
 - Test models of 2. astrophysical component
 - Test cosmogenic GZK neutrino flux
- UHE neutrinos in the Northern Hemisphere
 - Earth absorption matters above ~ 100 TeV
 - Complementary FOV to IceCube / South Pole
 - Extend energy range in Northern Hemisphere
 - Extend FOV for ultra-high energies to Northern Hemisphere

Hybrid station with 24 antennas

Hybrid station with 24 antennas

- Hybrid design with 24 antennas (3 different antenna types)
- Each station acts as independent detector

- Hybrid design with 24 antennas (3 different antenna types)
- Each station acts as independent detector

- communication

7 stations already in operation Fully funded (3 more seasons) Solar powered & wireless

- Hybrid design with 24 antennas (3 different antenna types)
- Each station acts as independent detector

- communication

7 stations already in operation Fully funded (3 more seasons) Solar powered & wireless

- +3km of natural clean ice
- Existing infrastructure
- 10 months of sunlight per year

M. Muzio for RNO-G, PoS (ICRC23) 1485

Assuming no background

M. Muzio for RNO-G, PoS (ICRC23) 1485

- Assuming no background
- World leading sensitivity @ 1 EeV
- Testing 2. (hard) astrophysical component

M. Muzio for RNO-G, PoS (ICRC23) 1485

- Assuming no background
- World leading sensitivity @ 1 EeV
- Testing 2. (hard) astrophysical component
- Testing optimistic cosmogenic GZK neutrino models

M. Muzio for RNO-G, PoS (ICRC23) 1485

- Assuming no background
- World leading sensitivity @ 1 EeV
- Testing 2. (hard) astrophysical component
- Testing optimistic cosmogenic GZK neutrino models
- Testing extension of astrophysical flux measured by IceCube

M. Muzio for RNO-G, PoS (ICRC23) 1485

First look into the data: Solar flares

S. Hallmann for RNO-G, Pos (ICRC23) 1043

- For 3 solar flares, reconstruct position of Sun
- Allowed correction / calibration of station geometry

IIHE Efforts: Production of RADIANT boards

- 24 channel, low power, 3.2 GHz digitiser board
- Producing boards here in Belgium
- Currently producing and testing ~15 boards for next season

IIHE Efforts: First look into the data

- Detecting the galactic emission with the upward facing antenn
 - Standard candle (only parts of plane visible at RNO-G)
 - Requires data cleaning and band-passing
 - Excess & modulation visible in the shallow upward facing antennas arou 100 MHz
- "Proof of concept"

IIHE Efforts: Simulation of air showers

- First in-ice signals we will see
- Can be used to validate our detector and analysis techniques
- Develop a brand-new MC simulation code for in-ice particle cascades

XXXXXX

- Based on existing in-air code
- Combine both code to simulated full event
- Overlap with RET-CR (next talk)

IIHE Efforts: Developing neutrino searches

- Lead of the Multi Messenger working group in RNO-G
- Develop a fast response analysis for transient alerts (as part of my FNRS) grant)
- Current efforts: Developing event filtering

Case study: RNO-G sensitivity to a particular bright GRB

IIHE Efforts: Developing neutrino searches

- Lead of the Multi Messenger working group in RNO-G
- Develop a fast response analysis for transient alerts (as part of my FNRS) grant)
- Current efforts: Developing event filtering

Case study: RNO-G sensitivity to a particular bright GRB

IIHE Efforts: Developing neutrino searches

- Lead of the Multi Messenger working group in RNO-G Develop a fast response analysis for transient alerts (as part of my FNRS)
- grant)
- Current efforts: Developing event filtering

Case study: RNO-G sensitivity to a particular bright GRB

Excellent FRIA application (waiting for the result)

PhD project workplan		
Scientific goal: Searching for ultra-high-energy neutrinos		
Implementing search algorithm (work package 1)		
Data processing	Simulation	Designing & implementing event filtering NoiseNeutrino flux/limits
2023 2024 2025 2026 2027		
Supplemented by technical tasks (work package 2)		
• In lab testing		
Deployment 1 event in 5 years all triggers		
8		

Ruben Camphyn

He already started! Data commissioning and calibration

IIHE Efforts: Deployment

- Past seasons: Uzair, Simon, Paramita Dasgupta, Katie Mulrey
- Next Season: Felix, Jethro

Summary

- For a station already in operation at Summit Station in Greenland and fully funded for in total 35 stations
- RNO-G will have world leading sensitivity for 1 EeV neutrinos
 - Potential to discover the first UHE neutrino!
- RNO-G will be contributing with UHE neutrino observation to multi-messenger campaigns in the Northern Hemisphere

- Strong group at IIHE lead by Nick & Simona
- Contributing to various activities:
 - Data analysis (Neutrino searches,)
 - Hardware production & testing
 - Deployment support
 - Commissioning

IIHE Efforts: Other tasks

- Data commissioning
- Coding
- Voltage calibration

Backup

Summary & Outlook

- RNO-G is currently deploying at Summit Station in Greenland
- When completed, RNO-G will have world leading sensitivity for 1 EeV neutrinos
 - Potential to discover the first UHE neutrino!
- RNO-G will be contributing with UHE neutrino observation to multi-messenger campaigns in the Northern Hemisphere
- Current efforts focus on calibration & commissioning
- We are preparing for neutrino searches!
 - Developing a rapid follow up analysis
 - We have developed reconstruction algorithms -
 - <u>10 contributions at ICRC23</u>

Particle cascade

Charge asymmetry produces "Askaryan" emission in MHz - GHz

Radio emission pattern has cone shape due to interference

Particle cascade

 E_{min} to detect radio emission $\gtrsim 1-10$ PeV

Charge asymmetry produces "Askaryan" emission in MHz - GHz

Radio emission pattern has cone shape due to interference

Bend trajectory due to refractive index of ice Attenuation length O(1 km)

Particle cascade

 $E_{min} \text{ to detect radio} \\ emission \gtrsim 1\text{--}10 \text{ PeV}$

Charge asymmetry produces "Askaryan" emission in MHz - GHz

Radio emission pattern has cone shape due to interference

Bend trajectory due to refractive index of ice

 $\theta_{\rm view} - \theta_{\rm Che}$

Attenuation length $\mathcal{O}(1\text{km})$

Particle cascade

Emin to detect radio emission \gtrsim 1-10 PeV

Charge asymmetry produces "Askaryan" emission in MHz - GHz

Radio emission pattern has cone shape due to interference

Bend trajectory due to refractive index of ice

 $\theta_{\rm view} - \theta_{\rm Che}$

Attenuation length $\mathcal{O}(1\text{km})$

Particle cascade

E_{min} to detect radio emission \gtrsim 1-10 PeV

Charge asymmetry produces "Askaryan" emission in MHz - GHz

Radio detection of neutrinos

Radio emission pattern has cone shape due to interference

Bend trajectory due to refractive index of ice

 $\theta_{\rm view} - \theta_{\rm Che}$

Attenuation length O(1 km)

Particle cascade

E_{min} to detect radio emission \gtrsim 1-10 PeV

Charge asymmetry produces "Askaryan" emission in MHz - GHz

- Developed reconstructions
 - Energy (EPJC 82, 147 (2022)) & Arrival direction (EPJC 83 (2023) 5)

Used to determine sensitivity

- Developed reconstructions
 - Energy (EPJC 82, 147 (2022)) & Arrival direction (EPJC 83 (2023) 5)

Used to determine sensitivity

- Developed reconstructions
 - Energy (EPJC 82, 147 (2022)) & Arrival direction (EPJC 83 (2023) 5)

Used to determine sensitivity

- Developed reconstructions
 - Energy (EPJC 82, 147 (2022)) & Arrival direction (EPJC 83 (2023) 5)

Used to determine sensitivity

Neutrinos from the northern sky

- Earth is opaque for UHE neutrinos
- Observatory in northern hemisphere relevant for multi-messenger observation!
- RNO-G eff. area for full 35 station array
- Largest aperture just above the horizon

Neutrinos from the northern sky

- Earth is opaque for UHE neutrinos
- Observatory in northern hemisphere relevant for multi-messenger observation!
- RNO-G eff. area for full 35 station array
- Largest aperture just above the horizon

GRB 20221009A in the FOV of RNO-G

- Extremely bright GRB
- Detector was off (winter mode) at that time!
 - But what if!
- Perfectly in FOV of RNO-G
 - 24h visible, alert at favourable zenith angle band 70 80 deg

Sensitivity: GRB 20221009A

RNO-G eff. area for 3h time window

Sensitivity: GRB 20221009A

- RNO-G eff. area for 3h time window
- Sensitivity on time integrated E⁻² flux over several decades in energy
 - RNO-G with competitive sensitivity at higher energies

over several decades in energy ner energies

First look into the data

S. Hallmann for RNO-G, Pos (ICRC23) 1043

J. Henrichs and A. Nelles for RNO-G, Pos (ICRC23) 259

Hardware performance

Deployment

Drilling 100m deep, 28 cm diameter hole

Shallow antennas are deployed in trenches ...

Completed stations

Testing wind turbines for all-year uptime

Radio detection of neutrinos

- Use natural glacier ice as target
- Radio waves are less attenuated in ice
 - A single radio station can monitor a cubic kilometer of ice
- Radio is a cost effective solution
 - In hardware & deployment (do not have to be deployed in 3 km depth; 100 - 200 m is sufficient)

First look into the data: Solar flares

S. Hallmann for RNO-G, Pos (ICRC23) 1043

- For 3 solar flares, reconstruct position of Sun
- Allowed correction / calibration of station geometry

Radio detection of neutrinos

- Polarisation of electric field allows localisation on cone
- Several possible ray trajactories

Radio detection of neutrinos

- Polarisation of electric field allows localisation on cone
- Several possible ray trajactories

The radio emission ... • is produced by >PeV cascades

- illuminates a spherical (Cherenkov) cone
- gets bend in shallow ice
- propagates over km distances
- Signal features (frequency spectrum polarisation) allow to reconstruct neutrino properties

direction from triangulation

Using cross-correlation to determine signal (time) in each antenna.

Using forward folding technique to determine vertex position / signal arrival direction.

Requires signals in several strings

S. Bouma for IceCube-Gen2, Pos (ICRC23) 1045

1. Reconstruct vertex position / signal arrival

Using cross-correlation to de

Using forward folding technic signal arrival direction.

Requires signals in several si

direction from triangulation 2. Reconstruct viewing angle from frequency spectrum

S. Bouma for IceCube-Gen2, Pos (ICRC23) 1045

1. Reconstruct vertex position / signal arrival direction from triangulation

S. Bouma for IceCube-Gen2, Pos (ICRC23) 1045

econstruct viewing angle from frequency

S. Bouma for IceCube-Gen2, Pos (ICRC23) 1045

Energy reconstruction

Shower energy

RNO-G, EPJC 82, 147 (2022) RNO-G, JINST 16 (2021) 03

Radio Neutrino Observatory - Greenland

- 35 stations on 1.25km grid
 - 7 already deployed & taking data
 - 3 4 more deployment seasons
- Stations are solar powered & communicate wireless

RNO-G Planned Layout

Z	2
0	
C	2
Ц)
G	2
0	j
Þ	

- 24 antennas
 - 3 types; 80 650 MHz
- 3 calibration pulsar
- Informed by pilot experiments (ARA & ARIANNA)
- Will inform IceCube-Gen2 radio array design

- 24 antennas
 - 3 types; 80 650 MHz
- 3 calibration pulsar
- Informed by pilot experiments (ARA & ARIANNA)
- Will inform IceCube-Gen2 radio array design

Shallow component

- Upward- & downwardfacing LPDA antennas
- CR detection + veto
- Accurate polarisation
 reconstruction
- Multiple coincidence
 threshold trigger

- 24 antennas
 - 3 types; 80 650 MHz
- 3 calibration pulsar
- Informed by pilot experiments (ARA & ARIANNA)
- Will inform IceCube-Gen2 radio array design

Shallow component

- Upward- & downwardfacing LPDA antennas
- CR detection + veto
- Accurate polarisation reconstruction
- Multiple coincidence
 threshold trigger

Deep component

- 100m deep
- "Overlook" larger volume
- Low threshold trigger

- 24 antennas
 - 3 types; 80 650 MHz
- 3 calibration pulsar
- Informed by pilot experiments (ARA & ARIANNA)
- Will inform IceCube-Gen2 radio array design

Phased array

 Signal of 4 Vpols combined by phasing into 8 beams in real time

Shallow component

- Upward- & downwardfacing LPDA antennas
- CR detection + veto
- Accurate polarisation
 reconstruction
- Multiple coincidence
 threshold trigger

Deep component

- 100m deep
- "Overlook" larger volume
- Low threshold trigger

Antenna sensitivity

LPDA is more sensitive but can not be deployed in borehole

- 2 orthogonal LPDAs \rightarrow Polarisation

LPDA

Hpol

Vpol

Combination of Vpol and Hpol gives polarisation

- Hpols is less sensitive because of narrow diameter of borehole

Calibration

The ice is part of our detector

- Refractive index profile of crucial importance
- See Talk by Bob Oeyen this afternoon

Expected number of neutrinos

Several models predict at least one neutrino when integrating over the energy

Background

1. Direct air shower emission

Different polarisation pattern, possible veto

2. Huge energy loss from high energy muon

Same signal signature as neutrino but different energy spectrum an arrival direction distribution

Background

L. Pyras et al. PoS (ICRC2023) 1076 + arxiv

Ice Properties

Part of the detector -> needs to be calibrated

Signals from secondary leptons

Phased array

- Trigger runs on lower bandwidth (< 250 MHz), 8 beams are formed</p>
- Design goal for threshold: amplitude_signal / sigma_noise = 2
- Technique demonstrated at South Pole by ARA ARA, PRD 105

50 MHz), 8 beams are formed _signal / sigma_noise = 2 ole by ARA <u>ARA, PRD 105</u>

Solar flare

LPM effect

Earth attenuation

