

Neutrino physics with JUNO and SoLid

Pierre-Alexandre Petitjean

Université Libre de Bruxelles (ULB)

November 15th 2023

<u>JUNO</u>

- Pr., Dr., B. Clerbaux (Group leader)
- Dr., Ir., Y. Yang (Electronics engineer)
- Dr., M. Colomer (Post-doc started in 10/2020)
- Dr., F. Gao (Post-doc started in 10/2022)
- P.-A Petitjean (PhD started in 10/2018)
- T. Guide (Master thesis defended in August 2023)

SoLid

- Pr., Dr. , J. D'hont (Group leader)
- Dr., R. Keloth (Post-doc started in 10/2020)

JUNO

JUNO Rich Physics Program

1. JUNO experiment

4/

THE

JUNO electronics

0

·····

The JUNO electronics

3. JUNO electronics

P.-A. Petitjean

The JUNO electronics

3. JUNO electronics

Back-end electronics

- LPMT electronics is composed with two main subsystems: underwater electronics and dry electronics.
- IIHE is involved in the BEC development and production.
- A total of 180 BEC were produced for the different systems of the JUNO experiment. All have been tested successfully.
- All the BEC for JUNO central detector have been installed in the two electronics room.
- The BEC are for the moment under commissioning and tested with their corresponding GCU following the installation of the underwater electronics.

Atmospheric neutrino

- Precise measurement of atmospheric neutrino
- Independent NMO measurement from reactor antineutrinos
- Combine the data from atmospheric and rector sensitivity up to 3σ in 4.2 year.

Challenges for atmo- ν :

- 1. \sim 4 muons per second VS \sim 4 neutrinos per day
 - $\rightarrow\,$ Reduce the background level by $\sim\,$ 5 orders of magnitude
- 2. Good energy (\sim 10%) and direction (\sim 20°) reconstruction
 - → High energy deposited in a small detector, non-contained events

4. Atmospheric

P.-A. Petitjean

RUX

ШU

œ

JNIVERS

 $\frac{\text{Challenge 1:}}{\sim 4 \text{ muons per second VS}}$

- The remaining muon contamination: ~ 0.001%.
- ► The neutrinos eff: 78.5%

Challenge 2: Good energy and direction reconstruction

- Use PMT detection light pattern to reconstruct the light emission probability map
- \rightarrow Particle direction reconstruction uncertainty $<1^\circ$ for muon.

PoS(ICRC2023)1189

Supernova neutrino with JUNO

- JUNO has a great potential to observe several astronomical events in neutrinos:
 - Supernovae such as Core-Collapse Supernova (CCSN)
 - Neutron star mergers
 - 🕨 Gamma ray bursts
- A CCSN releases 99% of its energy in neutrinos and antineutrinos of all flavors.
- Rate of CCSN in the Milky Way is 1.63 ± 0.46 per century [New Astronomy Vol.83, 101498]
- JUNO with 20 kt LS has excellent capability of detecting all neutrino flavors through Charge current (CC), Neutral current (NC) and Elastic scatering (ES)
- ► Good energy and time resolution and flavor classification → constrain CCSN physics by measuring :
 - CCSN neutrino spectrum
 - CCSN lightcurve

Туре	detailed process	Event number	
туре	detailed process	at 10 kpc	
CC (IBD)	$\overline{\nu_e} + p ightarrow e^+ + n$	~ 5000	
eES	$\nu + e \rightarrow \nu + e$	~ 300	
pES	$\nu + p \rightarrow \nu + p$	~ 2000	
NC	$\nu + {}^{12}C \rightarrow \nu + {}^{12}C^*$	~ 300	
сс	$\nu + {}^{12}C \rightarrow \nu + {}^{12}N$ $\nu + {}^{12}C \rightarrow \nu + {}^{12}B$	~ 200	

m Table: JUNO physics and detector, 10.1016/j.ppnp.2021.103927 5. Supernova neutrino with JUNO

Events rate for inverse-beta decay event for two different CCSM models.

Resu	ts:
------	-----

true model	Bollig	Fornax	Nakazato	Sukhbold	Tamborra	Warren
Bollig	69%	0.0 %	0.0 %	2.3 %	12.2 %	16.5 %
Fornax	0.1 %	99.8 %	0.0 %	0.0 %	0.1 %	0.0 %
Nakazato	0.0 %	0.0 %	100%	0.0%	0.0 %	0.0%
Sukhbold	2.6 %	0.0%	0.0%	92.3 %	0.3 %	4.8 %
Tamborra	11.3 %	0.2 %	0.0 %	0.4 %	81.5 %	6.6 %
Warren	21.3 %	0.0 %	0.0 %	4.1 %	8.1 %	66.5 %

Table: Binned ΔL for a distance $\pm 40 kpc$

5. Supernova neutrino with JUNO

ULB

- JUNO will be sensitive to more flavor than water Cherenkov experiment => more interaction channel.
- Thanks to CCSN flux, we want to determine the NMO thanks matter effect inside the star.
- Main advantage: in case of explosion detected by JUNO, we don't need to wait 10 year of data taking from reactor anti-neutrino to be able to discriminate between the two NMO.
- Method used χ^2 test using Asimov method, sensitivity $\sim 3\sigma$.

SoLid experiment

The SoLid experiment

- Short-baseline neutrino oscillation experiment (vs medium baseline for JUNO)
- Investigates reactor antineutrino anomaly (RAA)
- 1.6 ton detector constructed 2016-2017 (vs 20 kt for JUNO)
- Solid-state scintillator design (vs liquid scintillator for Juno)
- Utilizes dense, segmented PVT-based scintillators
- Data collection: July 2018–June 2020

- Probe the reactor neutrino anomaly at close distance
- Very precise measurement of the ²³⁵ U spectrum.
- Very preliminary result, yet statistically dominated
- Signal over background improvement: went now from 1/5 to 1/3 with same efficiency
- Preparation of the final release with full dataset ongoing → results soon

Thank you for your attention

- CD: Acrylic sphere with steel truss containing the LS (20 kton): large volume for gaining statistics.
- Double calorimetry : 17612 20 inch PMTs cover 75% of the surface and 25600 3 inch cover 2.5% of the surface. Large coverage and double calorimetry to improve energy resolution.
- Muon veto : uses the OPERA tracker layers. Provides a tagged muon sample to study muon reconstruction and background contamination in the CD
- Calibration : 4-complementary systems: Automatic calibration unit (1D- centralaxis scan), Cable loop and guide tube calibration systems (2D), remotely operated vehicules (3D) – radiative sources (photon, positrons, neutrons)

Neutrino mass ordering study with JUNO

 Reactors anti-neutrinos are detected via inverse beta decay (1) where delayed signal comes from neutron capture on H (2):

$$\overline{
u}_e + p
ightarrow e^+ + n$$
 (1)

$$n + p \rightarrow d + \gamma$$
 (2)

- the prompt-delayed signal spatial and temporal coincidence works as a huge background suppressor.
- energy range of the anti-neutrino detected 2-8 MeV

P.-A. Petitiean

Statistics

7. Solid at IIHE

Neutrino Physics with JUNO

JUNO have a rich physics potential :

- ▶ Neutrino mass ordering with reactor $\overline{\nu_e}$
- Earth's atmospheric neutrino
- Solar neutrino from ⁸B
- Core collapse supernova (CCSN) neutrino studies → this talk
- Supernova diffuse neutrino background studies → this talk
- Geo-neutrinos coming from desegregation of Uranium (U) and Thorium (Th) in the mantle and the crust → this talk

Summary of the expected number of event with JUNO for the different neutrino sources :

Source	signal rate	Energy range	
React or	\sim 47 events/ <i>day</i>	0-12 MeV	
Sun ⁸ B	O(100) events/year	0-16 MeV	
Earth's atm.	$\sim 400 {\rm events}/{\it year}$	0.1-100 GeV	
SN burst	$\sim 10^4~{ m events}{ m @10}$ kpc	0-80 MeV	
SN Background	2 - 4 events/ <i>year</i>	10-40 MeV	
Earth (geo- $ u$)	\sim 400 ${ m events}/{ m year}$	0-3 MeV	

7. Solid at IIHE

UXELLES

œ

BRE DE B

RS

IVE

z

∍

JUNO atmospheric sensitivity on NMO

iihe BRUXELLES BRUSSEN

- No detector effect included (ideal case)
- Statistical limit (Asimov method)
- Results:

Figure: Expected NMO sensitivity using 10 year of data

7. Solid at IIHE

Atmsphere neutrino oscillation

Figure