RADAR ECHO TELESCOPE

Enrique Huesca Santiago on behalf of the RET Collaboration

erc

The Goal of the Radar Echo Telescope

Probing the >10 PeV cosmic neutrino flux with the radar echo telescope for neutrinos

- IceCube's measured flux reaches up to 10 PeV, while Askaryan detectors become effective at 100 PeV.
- We need a different method to bridge the gap between the two detection systems.

Credit: Rose Stanley

Enrique Huesca Santiago - VUB

Enrique Huesca Santiago - VUB

Radar echoes have been confirmed in the lab!

T576 experiments @ SLAC (2018 - 2019)

PHYSICAL REVIEW LETTERS 124, 091101 (2020)

Observation of Radar Echoes from High-Energy Particle Cascades

S. Prohira⁽⁰⁾,^{1,*} K. D. de Vries⁽⁰⁾,² P. Allison,¹ J. Beatty⁽⁰⁾,¹ D. Besson⁽⁰⁾,^{3,4} A. Connolly⁽⁰⁾,¹ N. van Eijndhoven⁽⁰⁾,² C. Hast⁽⁰⁾,⁵ C.-Y. Kuo,⁶ U. A. Latif⁽⁰⁾,³ T. Meures,⁷ J. Nam,⁶ A. Nozdrina⁽⁰⁾,³ J. P. Ralston,³ Z. Riesen⁽⁰⁾,⁸ C. Sbrocco,¹ J. Torres⁽⁰⁾,¹ and S. Wissel⁸

Enrique Huesca Santiago - VUB

From the lab to the field: Cosmic Rays

- Cosmic rays are more <u>abundant</u>, and <u>well characterised</u> with radio antennas (CODALEMA, LOFAR, AERA) and scintillators (KASKADE, IceTop).
- A CR-induced extensive air shower impacting a high-altitude ice sheet will also leave an ionisation trail (secondary cascade).
 - **RET-CR:** A shallow radar setup can be set alongside a surface detection system composed of radio antennas and scintillators. Search for coincident signatures of radar echoes and surface.

DAQ

Amp

IIHE modelling efforts towards RET-CR

Credit: Simon de Kockere

Enrique Huesca Santiago - VUB

IIHE modelling efforts towards RET-CR

Rose Stanley:

Sensitivity studies on the surface component of RET-CR.

Final RET-CR design

- Central station: TX (phased array) and DAQ
- 2) In-ice radio antenna
- 3) IceTop scintillators
- 4) Surface Radio Antennas: SKALA's LPDA + CODALEMA's DAQ
- 5) Solar array and batteries

RET-CR Greenland deployment (May 2023)

Enrique Huesca Santiago - VUB

RET-CR Greenland deployment (May 2023)

Enrique Huesca Santiago - VUB

IIHE experimental efforts towards RET-CR

Enrique Huesca Santiago - VUB

RET-CR in Greenland

RET-CR Performance

This is the first publicly released data (ICRC 2023) about the deployed system.

From RET-CR to RET-N

(PRELIMINARY) RET - N

RET-N stations will be deeper than RET-CR, O(1 km) vs O(10 m); and much more sparse.

Enrique Huesca Santiago - VUB

How can we simulate the radar scatter?

MARES: A Macroscopic Approach to the Radar Echo Scatter

How can we simulate the radar scatter?

MARES: A Macroscopic Approach to the Radar Echo Scatter

The Goal of the Radar Echo Telescope

Probing the >10 PeV cosmic neutrino flux with the radar echo telescope for neutrinos

- RET-N (red highlight) will have comparable sensitivity with other experiments.
- RET-N will have a broad energy range, therefore making it <u>complementary</u> with current and planned experiments.

Adapted from "High-Energy and Ultra-High-Energy Neutrinos: A Snowmass White Paper" arXiv:2203.08096, RET-N curve highlighted in thickened dashed red line

Outlook

THANK YOU FOR LISTENING

Enrique Huesca Santiago - VUB

RET Collaboration

24

Let's go have lunch!

Extra slides

Why MARES?

MARES: A Macroscopic Approach to the Radar Echo Scatter

- 1. Are radar systems not well understood already?
 - The particle cascade is a *relativistic, non-uniform, non-perfect conductor*.
- 2. Can you not simulate the event?
 - Sure! Radioscatter (2017). (arXiv:1710.02883)
 - ▶ Particle-level simulations are difficult: $O(10^{13} \text{ e}^{-})$ @ 1 PeV.
- 3. What else is there to gain?
 - We want a complementary, deterministic approach to the existing method.
 - A deeper understanding of the radar scatter features from the global cascade properties → Event reconstruction.

Key concept 1: Radar cross section

How does radar work?

Key concept 2: Collisional electron plasma

The radar scatter

How can we describe the cascade's core?

Simon de Kockere, et al. : Air shower cores from CR that propagate through ice (arXiv:2202.09211)

Enrique Huesca Santiago - VUB

MARES: The macroscopic scatter model

The line approximation

The radar cross section

$$E_{sc,i} = rac{\sqrt{2ZP_TG_T}}{4\pi R_{T,i}R_{R,i}}\sqrt{\sigma_{RCS,i}}$$

$$egin{aligned} \sigma_{RCS,i} &= \sigma_{RCS,e^-} \cdot N_e^2 \cdot \mathfrak{T} \cdot \left[\Theta(t-t_0)e^{-2t/ au_e}
ight]_{t=t_{ret}} \ \sigma_{RCS,e^-} &\simeq \sigma_{Thomson} \cdot \left(rac{\omega}{\omega_c}
ight)^2 \cdot G_{Hertz} \ 6.65 \cdot 10^{-25} cm^2 &\sim 10^{-13}
ightarrow 10^{-10} & rac{3}{2} \mathrm{sin}^2(heta) \end{aligned}$$

The radial integration

The transparency

Results: What does the signal look like?

The MARES received signal

The effect of the free electron lifetime

Enrique Huesca Santiago - VUB

Analytic estimate of N_e

The line approximation

The line approximation

