Vector Boson Scattering: Status and Prospects for the Large Hadron Collider and Beyond

Vrije Universiteit Brussel – Seminar

Richard Ruiz

Institute of Nuclear Physics – Polish Academy of Science (IFJ PAN)

Thank you for the invitation!

A real cosmic muon (μ) passing through the CMS detector at the LHC

Since $|\vec{B}| = 4$ T and radius $\neq 0, \infty \implies \mu$ is massive and charged!

R. Ruiz - IFJ PAN VBS@LHC - VUB 3 / 59

Particle Physics: Then and Now

Since the late 20th, a chief goal of particle physics has been to establish the **spectrum of particles**, their **structures**, and their **properties**

possible with many tools, e.g., production at colliders, tabletop measurements of fundamental symm., and rare decays

Particle Physics: Then and Now

Since the late 20th, a chief goal of particle physics has been to establish the **spectrum of particles**, their **structures**, and their **properties**

possible with many tools, e.g., production at colliders, tabletop measurements of fundamental symm., and rare decays

The Standard Model (SM) of particle physics

position indicates quantum numbers/ charges

(just like in chemistry!)

e.g., spin, weak isospin,
 color, electromagnetic, weak
 hyper charge

credit: I. Bigaran

Today's goals include understanding the origin of the SM itself

Undoubtedly, the SM is incredibly successful...

incredible TH & EX agreement ... but not perfect (we will return to this point!)

first a few ingredients

Nuclear β decay¹

$$\mathcal{L}_{\mathrm{Fermi}} = G_F \left[\overline{\mathcal{N}} \gamma^{\mu} P_L \mathcal{P} \right] \cdot \left[\overline{\nu_e} \gamma_{\mu} P_L e \right]$$

Fermi('31)

R. Ruiz - IFJ PAN VBS@LHC - VUB

¹For non-experts: Action = $S = \int dt \ L = \int d^4x \ \mathcal{L}$. \leftarrow HEP uses Lagrangian density with four-vectors x^μ , k^μ

Inverting ν_e leg \implies inverse β decay (ν -nucleus scattering!)

$$-i\mathcal{M}(\nu_{e}\mathcal{N}\rightarrow e^{-}\mathcal{P})\sim G_{F}\left[\overline{u}(k_{\mathcal{P}})\gamma^{\mu}P_{L}u(k_{\mathcal{N}})\right]\cdot\left[\overline{u}(k_{e})\gamma_{\mu}P_{L}u(k_{\nu_{e}})\right]\sim G_{F}\ E^{2}$$

$$\implies \sigma(\nu_e \mathcal{N} \to e^- \mathcal{P}) \sim \frac{1}{(\mathrm{flux})} \oint_{\mathrm{dof}} (\mathrm{phase \ space}) \times |\mathcal{M}|^2 \sim G_F^2 \frac{E^4}{\pi E^2}$$

| ◀□▶ ◀圖▶ ◀蓋▶ ◀蓋▶ 臺灣 釣魚@

R. Ruiz - IFJ PAN

VBS@LHC - VUB

Inverting ν_e leg \implies inverse β decay (ν -nucleus scattering!)

$$-i\mathcal{M}(\nu_{e}\mathcal{N}\rightarrow \underline{e}^{-}\mathcal{P})\sim G_{F}\left[\overline{u}(k_{\mathcal{P}})\gamma^{\mu}P_{L}u(k_{\mathcal{N}})\right]\cdot\left[\overline{u}(k_{e})\gamma_{\mu}P_{L}u(k_{\nu_{e}})\right]\sim G_{F}\ E^{2}$$

$$\implies \sigma(\nu_e \mathcal{N} \to e^- \mathcal{P}) \sim \frac{1}{(\mathrm{flux})} \ \ \text{$\rlap/$$} \underline{f}_\mathrm{dof} \ \ \text{(phase space)} \times |\mathcal{M}|^2 \sim G_F^2 \frac{E^4}{\pi E^2}$$

 \implies scatt. rate (σ) grows with scatt. energy but without limit

 \implies violation of unitarity in scattering theory, i.e., $\sum (prob) \le 1$

R. Ruiz - IFJ PAN VBS@LHC - VUB 10 / 59

Inverse β decay is a charged-current interaction!

Fermi thry is the low-energy manifestation of the electroweak thry

$$\left(\frac{g_W}{\sqrt{2}}\right)^2 \times \left(\frac{g_{\mu\nu} - \frac{q_{\mu}q_{\nu}}{M_W^2}}{q^2 - M_W^2 + i\Gamma_W M_W}\right) \xrightarrow{|q^2| \ll M_W^2} \frac{-g_W^2}{2M_W^2} = -2\sqrt{2}G_F$$

$$\implies \sigma(\nu_e \mathcal{N} \to e^- \mathcal{P}) \sim \frac{g_W^4}{\pi} \frac{E^2}{(E^2 - M_W^2)^2} \leftarrow \text{high-} E \text{ behavior is regulated}$$

(finite

R. Ruiz - IFJ PAN VBS@LHC – VUB 11 / 59

Rotating graph $\implies W^{\pm}$ boson production

predicted by Glashow, Weinberg, Salam ('68); + ('79); discovered by UA1,UA2('83); ('84)

Electroweak sector of Standard Model is powerful:

- explains β decay
- explains inverse
 ^β decay
- predicts W^{\pm} production in pp collisions
- some inputs needed, e.g., G_F , M_W

Transverse mass distribution for all W \rightarrow e ν events recorded by UA1

R. Ruiz - IFJ PAN

VBS@LHC - VUB

A little surgery with diagrams $\implies W^+W^-$ pair production

(why make one W^\pm when you can make W^+W^- pairs?)

$$-i\mathcal{M}(e^-e^+\xrightarrow{\nu}W^+W^-)\sim g_W^2\times E\times\left(\frac{-E}{E^2}\right)\times\left(\frac{E}{M_W}\right)^2\sim -g_W^2\frac{E^4}{E^2M_W^2}$$

R. Ruiz - IFJ PAN

VBS@LHC - VUB

A little surgery with diagrams $\implies W^+W^-$ pair production

(why make one W^{\pm} when you can make $W^{+}W^{-}$ pairs?)

$$-i\mathcal{M}(e^-e^+\xrightarrow{\nu}W^+W^-)\sim g_W^2\times E\times\left(\frac{-E}{E^2}\right)\times\left(\frac{E}{M_W}\right)^2\sim -g_W^2\frac{E^4}{E^2M_W^2}$$

 \implies scattering amplitude (\mathcal{M}) grows with scattering energy!

⇒ violation of unitarity in scattering theory!

<ロト <個ト < 重ト < 重ト 至 = 1 = り Q C

R. Ruiz - IFJ PAN

VBS@LHC - VUB

A little surgery with diagrams $\implies W^+W^-$ pair production

(why make one W^{\pm} when you can make $W^{+}W^{-}$ pairs?)

$$-i\mathcal{M}(e^{-}e^{+} \xrightarrow{\nu} W^{+}W^{-}) \sim g_{W}^{2} \times E \times \left(\frac{-E}{E^{2}}\right) \times \left(\frac{E}{M_{W}}\right)^{2} \sim -g_{W}^{2} \frac{E^{4}}{E^{2}M_{W}^{2}}$$
$$-i\mathcal{M}(e^{-}e^{+} \xrightarrow{Z} W^{+}W^{-}) \sim \left(\frac{g_{W}}{\cos\theta_{W}}\right) \left(g_{W}\cos\theta_{W}\right) \times (+E) \times \cdots \sim +g_{W}^{2} \frac{E^{4}}{E^{2}M_{W}^{2}}$$

Delicate (structural) cancellations when all particles are included!

◆ロ → ◆ 母 → ◆ 喜 → ◆ 喜 ト 亳 | 章 * 夕 Q ○
UB 14 / 59

R. Ruiz - IFJ PAN

VBS@LHC - VUB

Diagram fun \implies **Z** boson production

predicted by Glashow, Weinberg, Salam ('68); + ('79); discovered by UA1,UA2('83); ('84)

Electroweak sector of Standard Model is powerful:

- explains β decay
- explains inverse β decay
- predicts Z production in pp collisions
- some inputs needed, eg, G_F , M_W , M_Z

Invariant mass distribution of all e⁺e⁻ pairs recorded by UA1

R. Ruiz - IFJ PAN

The Standard Model toolbox

- W^{\pm} , Z, γ all exist!
- effective field theories break down at high energies ©
- unitarity violation = bad ☺
- breakdown of theory ⇒ unitarity violation ⊕
- missing contributions ⇒ unitarity violation ☺
- small mis-cancellations from new contributions
 - \implies *E*-enhanced scattering rates \odot

vector boson scattering (VBS) / fusion (VBF)

Cut, rotate, glue, etc. sub-graphs $\implies W^+W^+ \rightarrow W^+W^+$ scattering

(why make W^+W^- pairs when you can scatter them?)

Just one of many examples:

- $-W^+W^-$, $W^\pm Z$, $W^\pm \gamma$, $\gamma \gamma$, ZZ, $Z\gamma$ scattering are all possible
- $-W^+W^- \rightarrow ZZ$, $W^{\pm}\gamma \rightarrow W^{\pm}Z$, etc., are also possible

R. Ruiz - IFJ PAN VBS@LHC – VUB 18 / 59

Cut, rotate, glue, etc. sub-graphs $\implies W^+W^+ \rightarrow W^+W^+$ scattering

(why make W^+W^- pairs when you can scatter them?)

$$W^{+} \longrightarrow W^{+} \longrightarrow W^{+$$

$$-i\mathcal{M}\big(\frac{W^+W^+}{W^+} \to W^+W^+\big) \sim \left(\frac{E}{M_W}\right)^4 \times \left(\frac{-M_W^2}{E^2}\right) \times g_W^2\big(s_\theta^2 + c_\theta^2\big) \sim \frac{-g_W^2 E^2}{M_W^2}$$

 \implies scattering amplitude (\mathcal{M}) grows with scattering energy!

⇒ violation of unitarity in scattering theory!

R. Ruiz - IFJ PAN VBS@LHC - VUB 19 / 59

Cut, rotate, glue, etc. sub-graphs $\implies W^+W^+ \rightarrow W^+W^+$ scattering

(why make W^+W^- pairs when you can scatter them?)

$$-i\mathcal{M}(W^+W^+ \to W^+W^+) \sim \left(\frac{E}{M_W}\right)^4 \times \left(\frac{-M_W^2}{E^2}\right) \times g_W^2(s_\theta^2 + c_\theta^2) \sim \frac{-g_W^2 E^2}{M_W^2}$$
$$-i\mathcal{M}(W^+W^+ \xrightarrow{h} W^+W^+) \sim \left(\frac{E}{M_W}\right)^4 \times \left(\frac{1}{E^2}\right) \times (g_W M_W)^2 \sim \frac{+g_W^2 E^2}{M_W^2}$$

Delicate (structural) cancellations when all particles are included!

Lee, Quigg, and Thacker ('77x2); Chanowitz and Gaillard ('84,'85)

(ㅁ▶◀鬪▶◀돌▶◀돌▶ 臺|ㅌ 쒸٩♡

R. Ruiz - IFJ PAN

VBS@LHC – VUB

Cut, rotate, glue, etc. sub-graphs $\implies W^+W^+ \rightarrow W^+W^+$ scattering

(why make W^+W^- pairs when you can scatter them?)

$$W^{+} \bigvee_{\gamma} W^{+} \bigvee_{Z} W^{+} \bigvee_{Z} W^{+} \bigvee_{h} \bigvee_{h} W^{+} \bigvee_{h$$

$$-i\mathcal{M}(W^+W^+ \to W^+W^+) \sim \left(\frac{E}{M_W}\right)^4 \times \left(\frac{-M_W^2}{E^2}\right) \times g_W^2(s_\theta^2 + c_\theta^2) \sim \frac{-g_W^2 E^2}{M_W^2}$$
$$-i\mathcal{M}(W^+W^+ \xrightarrow{h} W^+W^+) \sim \left(\frac{E}{M_W}\right)^4 \times \left(\frac{1}{E^2}\right) \times (g_W M_W)^2 \sim \frac{+g_W^2 E^2}{M_W^2}$$

Delicate (structural) cancellations when all particles are included!

Lee, Quigg, and Thacker ('77x2); Chanowitz and Gaillard ('84,'85)

 \implies modified h - V - V couplings can disrupt cancellations

R. Ruiz - IFJ PAN VBS@LHC - VUB 20 / 59

Too many contributions?

It is possible that Higgs with $m_h = 125$ GeV is one of several in nature

add'l scalars appears in Two Higgs Doublet Models, Supersymmetry, scalar-singlet dark matter, composite Higgs

$$\underbrace{\left| h_{\rm SM} \right\rangle}_{\rm interaction\ eigenstate} = \underbrace{\cos \psi \mid h_{125\ {\rm GeV}} \right\rangle}_{\rm mass\ eigenstate} + \underbrace{\sin \psi \mid H_{\rm several\ TeV} \right)}_{\rm mass\ eigenstate}$$

$$\sum_{W^{+}} \sum_{W^{+}} \sum_{W$$

$$-i\mathcal{M}(W^+W^+\xrightarrow{h/H}W^+W^+) \sim \underbrace{\frac{g_W^2E^4}{M_W^2(E^2-\psi_h^2)}}_{\mathcal{O}(1)}\underbrace{\cos^2\psi}_{\mathcal{O}(1)} + \underbrace{\frac{g_W^2E^4}{M_W^2(\mathbf{E}^2-m_H^2)}}_{\ll 1}\underbrace{\sin^2\psi}_{\ll 1}$$

 $\Longrightarrow \mathcal{M}$ grows with scattering energy for $E_{(\sim 1 \text{ TeV})} \ll m_{H^{(\text{several TeV})}}!$

R. Ruiz - IFJ PAN VBS@LHC - VUB 21 / 59

big idea: studying VBS = studying Higgs sector

The LHC is the **largest**, **etc.** hadron collider (pp, pA, AA) at $\sqrt{s} = 13.6$ TeV, with a **broad particle and nuclear physics program**

The ATLAS and CMS detectors at the LHC were designed to study VBS

LHC's long-term plan includes using VBS to measure SM physics with high precision and search for new phenomena

Buarque (ed.), Gallinaro (ed.), RR (ed.), et al, Rev. Physics ('22) [arXiv:2106.01393]

R. Ruiz - IFJ PAN VBS@LHC - VUB 23 / 59

R. Ruiz - IFJ PAN VBS@LHC - VUB 24 / 59

R. Ruiz - IFJ PAN VBS@LHC - VUB 25 / 59

VBS observed for first time during LHC's Run II [CMS('18),ATLAS('19)]

- VBS at the LHC probes multi-TeV energy scales
- First measurements of VBS within 20% of SM predictions

R. Ruiz - IFJ PAN VBS@LHC - VUB 26 / 59

polarization

- 2 transverse polarizations (L,R)
- 1 longitudinal polarization (0)

polarizations of vector bosons imprint on kinematics!

Plotted: angle of outgoing W^- in $pp \rightarrow W^+W_{\lambda}^- jj$ via VBS

ATLAS [ATL-PHYS-PUB-2018-023]

- 2 transverse polarizations (L,R)
- 1 longitudinal polarization (0)

polarizations also imprint on kinematics of decay products!

Buarque Franzosi, RR, et al [(JHEP'20)]

<ロト <個ト < 重ト < 重ト 至| 単| で への ♡

- 2 transverse polarizations (L,R)
- 1 longitudinal polarization (0)

polarizations also imprint on kinematics of decay products!

First measurement of polarization

in $W^{\pm}W^{\pm}$ scattering CMS (PLB'20)

Process	$\sigma \mathcal{B}$ (fb)	Theoretical prediction (fb)
$W_L^{\pm}W_L^{\pm}$	$0.32^{+0.42}_{-0.40}$	0.44 ± 0.05
$W_X^\pm W_{\mathrm{T}}^\pm$	$0.32^{+0.42}_{-0.40} \ 3.06^{+0.51}_{-0.48}$	3.13 ± 0.35
$W_{\rm L}^\pm W_X^\pm$	$1.20^{+0.56}_{-0.53}$ $2.11^{+0.49}_{-0.47}$	1.63 ± 0.18
$W_{\mathrm{T}}^{\pm}W_{\mathrm{T}}^{\pm}$	$2.11^{+0.49}_{-0.47}$	1.94 ± 0.21

uncertainties sizable but will improve with time

First measurement of polarization fractions (f_{λ}) in $W^{\pm}Z$ scattering

ATLAS [PLB('23)]

- 2 transverse polarizations (L,R)
- 1 longitudinal polarization (0)

polarization also imprints on kinematics of decay products!

calculating scattering rates for helicity-polarized particles

Calculating helicity-polarized cross sections is delicate business

loss of Lorentz invariance, etc!

$$\Pi^{V}_{\mu\nu}(q) = \frac{-i\left(g_{\mu\nu} - q_{\mu}q_{\nu}/M_{V}^{2}\right)}{q^{2} - M_{V}^{2} + iM_{V}\Gamma_{V}} = \sum_{\lambda \in \left\{0, \pm 1, A\right\}} \eta_{\lambda} \left(\frac{-i\varepsilon_{\mu}(q, \lambda) \ \varepsilon_{\nu}^{*}(q, \lambda)}{q^{2} - M_{V}^{2} + iM_{V}\Gamma_{V}}\right)$$

Different treatments of weak boson propagators

double-pole approximation/on-shell projection

Aeppli, et al ('93,'94); Denner, et al ('00); others

spin-truncated propagator [MadGraph]

w/ Buarque Franzosi, Mattelaer, Shil [1912.01725]

• full NLO in QCD+EW for VV' production and decay [PowHEG]

Denner, Pelliccioli [2107.06579]; Pelliccioli, et al [2311.16031], others

partial NLO in QCD for arbitrary processes [Sherpa]

Hoppe, et al [2310.14803]

◆ロト ◆個ト ◆差ト ◆差ト 差性 釣り○

R. Ruiz - IFJ PAN

calculating scattering rates for helicity-polarized particles

Calculating helicity-polarized cross sections is delicate business

$$\frac{-i \ \varepsilon_{\mu}(q,\lambda) \ \varepsilon_{\nu}^{*}(q,\lambda)}{q^{2}-M_{V}^{2}} = \ \bigvee_{V_{\lambda}\left(q\right)}$$

• NEW! helicity polarization as a Feynman rule w/ Javurkova, et al [2401.17365]

Projected sensitivity to pol. for (L) $gg \rightarrow Z_{\lambda}Z_{\lambda'}$ and (R) $VV \rightarrow Z_{\lambda}Z_{\lambda'}$

singly and doubly charged scalars

New Higgs bosons?

It is possible that Higgs with $m_h = 125$ GeV is one of several in nature

add'l scalars appears in Two Higgs Doublet Models, Supersymmetry, scalar-singlet dark matter, composite Higgs

$$\underbrace{|h_{\rm SM}\rangle}_{\rm interaction\ eigenstate} = \underbrace{\cos\psi\ |h_{125\ {\rm GeV}}\rangle}_{\rm mass\ eigenstate} + \underbrace{\sin\psi\ |H_{\rm several\ TeV}\rangle}_{\rm mass\ eigenstate}$$

New Higgs bosons?

It is possible that Higgs with $m_h = 125$ GeV is one of several in nature

add'l scalars appears in Two Higgs Doublet Models, Supersymmetry, scalar-singlet dark matter, composite Higgs

$$\underbrace{\left|h_{\mathrm{SM}}\right\rangle}_{\mathrm{interaction\ eigenstate}} = \underbrace{\cos\psi\mid h_{125\ \mathrm{GeV}}\right\rangle}_{\mathrm{mass\ eigenstate}} + \underbrace{\sin\psi\mid H_{\mathrm{several\ TeV}}\right\rangle}_{\mathrm{mass\ eigenstate}}$$

It is also possible new Higgses are not arbitrary but belong to a group

e.g., Type II Seesaw model for neutrino masses:
$$\Delta \mathcal{L} = y \overline{L} \cdot \Delta L^c \rightarrow (yv_2) \ \overline{\nu_L} \nu_L^c$$

$$\Phi_{\mathrm{SM}} = \frac{1}{\sqrt{2}} \begin{pmatrix} i\sqrt{2}G^+ \\ v_1 + h_{\mathrm{SM}}^0 + iG^0 \end{pmatrix}$$

New Higgs bosons?

It is possible that Higgs with $m_h = 125$ GeV is one of several in nature

add'l scalars appears in Two Higgs Doublet Models, Supersymmetry, scalar-singlet dark matter, composite Higgs

$$\underbrace{\left| h_{\rm SM} \right\rangle }_{\rm interaction\ eigenstate} = \underbrace{\cos \psi \, \left| h_{125\ {\rm GeV}} \right\rangle }_{\rm mass\ eigenstate} + \underbrace{\sin \psi \, \left| H_{\rm several\ TeV} \right\rangle }_{\rm mass\ eigenstate}$$

It is also possible new Higgses are not arbitrary but belong to a group

e.g., Type II Seesaw model for neutrino masses: $\Delta \mathcal{L} = y \overline{L} \cdot \Delta L^c \rightarrow (yv_2) \ \overline{\nu_L} \nu_L^c$

$$\Phi_{\rm SM} = \frac{1}{\sqrt{2}} \begin{pmatrix} i\sqrt{2}G^+ \\ v_1 + h_{\rm SM}^0 + iG^0 \end{pmatrix} \qquad \Delta_{\rm Type~II} = \frac{1}{\sqrt{2}} \begin{pmatrix} H^+ & \sqrt{2}H^{++} \\ v_2 + H^0 + i\xi^0 & -H^+ \end{pmatrix}$$

 \implies if h^0 and H^0 are accessible with VBS, then also H^{\pm} and $H^{\pm\pm}$

35 / 59

R. Ruiz - IFJ PAN VBS@LHC – VUB

Searches for H^{\pm} in $W^{\pm}Z$ scattering with early Run II data gave suggestive hints of something new \odot !

Plotted: invariant mass of (WZ)-system in $pp \to W^{\pm}(\to jj)Z(\to \ell^+\ell^-)jj$

R. Ruiz - IFJ PAN

Singly (H^{\pm}) and doubly $(H^{\pm\pm})$ charged scalars are predicted in several popular models

Searches for H^{\pm} in $W^{\pm}Z$ scattering with early Run II data gave suggestive hints of something new ©!

Plotted: excluded upperlimit on scattering rate of $pp \rightarrow W^{\pm}Zii$ via H^{\pm} as a function of m_{μ}^{\pm}

Two Higgs Doublet Models, Supersymmetry, Type II Seesaw, Georgi-Machacek model

Searches for H^{\pm} in $W^{\pm}Z$ scattering with all Run II data shows "bump" just a statistical fluctuation \odot

Plotted: excluded upperlimit on scattering rate of $pp \rightarrow W^{\pm}Zjj$ via H^{\pm} as a function of m_H^{\pm} cms [EPJC('21)]

heavy (Majorana) fermions²

(UB 39 / 59

 $^{^2}$ For reviews at colliders, see Cai, Han, Li, RR [1711.02180] and Pascoli, RR, Weiland [1812.08750]

for non-experts: adding ν_R to the SM (1 slide)

To generate Dirac masses for ν like other SM fermions, we need ν_R

$$\mathcal{L}_{\nu \text{ Yuk.}} = -y_{\nu} \overline{L} \tilde{\Phi} \nu_{R} + H.c. = -y_{\nu} \left(\overline{\nu_{L}} \right) \begin{pmatrix} \langle \Phi \rangle + h \\ 0 \end{pmatrix} \nu_{R} + H.c.$$

$$= \underbrace{-y_{\nu} \langle \Phi \rangle}_{=m_{R}} \overline{\nu_{L}} \nu_{R} + H.c. + ...$$

 ν_R do not exist in the SM, so pretend that they do and $\nu_R = \nu_R^c$:

$$\implies \mathcal{L}_{\text{mass}} = \frac{-1}{2} \underbrace{\left(\overline{\nu_L} \quad \overline{\nu_R^c}\right)}_{\text{chiral state}} \underbrace{\left(\begin{matrix} 0 & m_D \\ m_D & \mu_{\underline{I}} \end{matrix}\right)}_{\text{chiral state}} \underbrace{\left(\begin{matrix} \nu_L \\ \nu_R^c \end{matrix}\right)}_{\text{chiral state}}$$

mass matrix (chiral basis)

(sizes of $\textit{m}_\textit{D}$ & $\mu_{\textit{L}}$ have major impact on pheno; see Pascoli, et al [1712.07611])

After diagonalizing the mass matrix, identify ν_L (chiral eigenstate) in the SM as a linear combination of mass eigenstates:

$$\frac{|\nu_L\rangle}{|\nu_L\rangle} = \cos\theta |\nu\rangle + \sin\theta |N\rangle$$
chiral state light mass state heavy mass state (this is a prediction!)

R. Ruiz - IFJ PAN VBS@LHC - VUB 40 / 59

 γW^{\pm} and $W^{\pm}W^{\pm}$ scattering drive high-mass scattering rates!

Search for $W^{\pm}W^{\pm} \rightarrow \ell^{\pm}\ell'^{\pm}$ quickly adopted by LHC groups!

ATLAS ('23) [2305.14931]

 $ee/e\mu$ channels at Moriond

← CMS ('22) [2206.08956]

a future beyond the LHC

Many physics and technical discussions are taking place over the successor of the LHC (beyond '30s-'40s)

Multi-stage 100 TeV e^+e^-pp collider at CERN (FCC program) and 14-30 TeV $\mu^+\mu^-$ at Fermilab are most supported

European Strategy for Particle Physics [1910.11775,CERN-ESU-013, Mid-term review ('24)];

Black (ed.), Jindariani (ed.), Li (ed.), F. Maltoni (ed.), et al, [2209.01318]

R. Ruiz - IFJ PAN VBS@LHC - VUB 44 / 59

Why?³ Situation where scattering formalism is theoretically interesting

Partonic collisions at $Q \sim \mathcal{O}(10)$ TeV explore when **electroweak (EW)** symmetry is nearly restored, i.e., $(M_{W/Z/H}^2/Q^2) \rightarrow 0$

See C. Bauer, et al ('16,'17,'18); T. Han, et al ('16,'20,'21); A. Manohar, et al ('14,'18) + others

When momentum transfers reach $Q \sim \mathcal{O}(10)$ TeV, vector boson scattering (VBS/VBF) acts a bit... funny w/ A. Costantini, et al [JHEP('20)]

R. Ruiz - IFJ PAN VBS@LHC - VUB 45 / 59

some examples of VBS at higher energies

Quick interlude: s-channel annihilation vs VBS

More legs \implies more propagators $\implies \int dk^2/(k^2 - M_W^2) \sim \log(\Lambda^2/M_W^2)$ Larger $s \implies$ larger $(M_{WW}^2/M_W^2) \implies$ collinear V compensate for g

R. Ruiz - IFJ PAN VBS@LHC - VUB 47 / 59

Higgs production

cross sections (σ) vs \sqrt{s} for s-channel annihilation (dash) vs VBS (solid)

- Eventually, $\sigma^{VBF} > \sigma^{s-channel}$ since
 - $\sigma^{s-channel} \sim 1/s$

R. Ruiz - IFJ PAN VBS@LHC - VUB 49 / 59

Top production

• Do you notice a pattern?

Many-boson production⁴

⁴My favorite! I find these processes really neat!

• VBF is the dominant production vehicle for many processes

- ◀ □ ▶ ◀ @ ▶ ◀ 볼 ▶ 를 lla : 쒸 및 @

R. Ruiz - IFJ PAN

VBS@LHC - VUB

53 / 59

Is this obvious? (not to me at first!) Is there intuition for this? (yes!)

w/ A. Costantini, et al [JHEP('20,'21)]

Is this obvious? (not to me at first!) Is there intuition for this? (yes!)

w/ A. Costantini, et al [JHEP('20,'21)]

idea: increasing σ^{VBS} is manifestation of growing partonic content

- 4 ㅁㅏ 4@ㅏ 4 ㅌㅏ 4 ㅌㅏ 오[ㅌ 쒸٩@

R. Ruiz - IFJ PAN VBS@LHC - VUB 54 / 59

Is this obvious? (not to me at first!) Is there intuition for this? (yes!)

w/ A. Costantini, et al [JHEP('20,'21)]

Is this obvious? (not to me at first!) Is there intuition for this? (yes!)

w/ A. Costantini, et al [JHEP('20,'21)]

Idea: crudely compare the production of X by writing generically

$$\sigma^{s-ch.} \sim \frac{(s-M_X^2)}{(s-M_V^2)^2} \sim \frac{(s-M_X^2)}{s^2} \leftarrow \text{assumes } s \gg M_V^2$$

$$\frac{d\sigma^{VBF}}{dz_1 dz_2} \sim \underbrace{f_V \Big(z_1\Big) f_{V'} \Big(z_2\Big)}_{\text{``μPDFs''}} \underbrace{\frac{\Big(M_{VV'}^2 - M_X^2\Big)}{\Big(M_{VV'}^2 - M_V^2\Big)^2}}_{M_{VV'}^2 = z_1 z_2 s \gg M_V^2} \\ \sim f_V \Big(z_1\Big) f_{V'} \Big(z_2\Big) \frac{(z_1 z_2 s - M_X^2)}{(z_1 z_2)^2} \underbrace{(s - M_X^2)}_{(s - M_X^2)}$$

R. Ruiz - IFJ PAN

VBS@LHC - VUB

55 / 59

Is this obvious? (not to me at first!) Is there intuition for this? (yes!)

w/ A. Costantini, et al [JHEP('20,'21)]

Idea: crudely compare the production of X by writing generically

$$\sigma^{s-ch.} \sim \frac{(s-M_X^2)}{(s-M_V^2)^2} \sim \frac{(s-M_X^2)}{s^2} \leftarrow \text{assumes } s \gg M_V^2$$

$$\frac{d\sigma^{VBF}}{dz_1 dz_2} \sim \underbrace{f_V \Big(z_1\Big) f_{V'} \Big(z_2\Big)}_{\text{``μPDFs''}} \underbrace{\frac{\Big(M_{VV'}^2 - M_X^2\Big)}{\Big(M_{VV'}^2 - M_V^2\Big)^2}}_{M_{VV'}^2 = z_1 z_2 s \gg M_V^2} \\ \sim f_V \Big(z_1\Big) f_{V'} \Big(z_2\Big) \frac{(z_1 z_2 s - M_X^2) \ \sigma^{s-ch.}}{(z_1 z_2)^2 \ (s - M_X^2)}$$

PDFs are largest when $z = E_V/E_{\mu} \ll 1$ but $E_V \sim \sqrt{s} \gg M_V$

$$\implies f_V(z_i) \sim \frac{g_W^2}{4\pi} \frac{1}{z_i} \log \left(\frac{s}{M_V^2}\right) \leftarrow \text{crude approximation}$$

| ◀□▶ ◀圖▶ ◀蓋▶ ◀蓋▶ 臺灣 釣魚@

R. Ruiz - IFJ PAN

VBS@LHC - VUB

55 / 59

Is this obvious? (not to me at first!) Is there intuition for this? (yes!)

w/ A. Costantini, et al [JHEP('20,'21)]

Idea: crudely compare the production of X by writing generically

$$\sigma^{s-ch.} \sim \frac{(s-M_X^2)}{(s-M_V^2)^2} \sim \frac{(s-M_X^2)}{s^2} \leftarrow \text{assumes } s \gg M_V^2$$

$$\frac{d\sigma^{VBF}}{dz_1 dz_2} \sim \underbrace{f_V (z_1) f_{V'} (z_2)}_{\text{"μPDFs"}} \underbrace{\frac{(M_{VV'}^2 - M_X^2)}{(M_{VV'}^2 - M_V^2)^2}}_{M_{VV'}^2 = z_1 z_2 s \gg M_V^2} \sim f_V (z_1) f_{V'} (z_2) \frac{(z_1 z_2 s - M_X^2) \ \sigma^{s-ch.}}{(z_1 z_2)^2 \ (s - M_X^2)}$$

PDFs are largest when $z = E_V/E_{\mu} \ll 1$ but $E_V \sim \sqrt{s} \gg M_V$

$$\implies f_V(z_i) \sim \frac{g_W^2}{4\pi} \frac{1}{z_i} \log \left(\frac{s}{M_V^2}\right) \leftarrow \text{crude approximation}$$

Observation: $\sigma^{VBF} = \sigma^{s-ch.} \times \int dz_1 dz_2 \dots$ is solvable for $M_{VV'} \gg M_X!$

 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ -□ □ ▼) Q (*)

 UB
 55 / 59

R. Ruiz - IFJ PAN

Universal behavior: when production of X by VBS and annihilation are driven by same physics, VBS **dominates** when \sqrt{s} satisfies

$$\frac{\sigma^{\text{VBF}}}{\sigma^{s-ch.}} \sim \mathcal{S}\left(\frac{g_W^2}{4\pi}\right)^2 \left(\frac{s}{M_X^2}\right) \log^2 \frac{s}{M_V^2} \log \frac{s}{M_X^2} > 1$$

Scaling estimate not so bad if $M_X \gg M_V$. Difference is about $\mathcal{O}(10\%)$

mass (M_X) [TeV]	SZ (Singlet)	H_2Z (2HDM)	$t'\overline{t'}$ (VLQ)	$\tilde{t}\tilde{t}$ (MSSM)	$\tilde{\chi}^0 \tilde{\chi}^0$ (MSSM)	$\tilde{\chi}^+\tilde{\chi}^-$ (MSSM)	Scaling (Eq. 7.7)
400 GeV	2.1 TeV	$2.1 \mathrm{TeV}$	$11~{ m TeV}$	2.9 TeV	$3.2 \mathrm{TeV}$	7.5 TeV	1.0 (1.7) TeV
$600~{ m GeV}$	2.5 TeV	2.5 TeV	$16~{\rm TeV}$	$3.8~{ m TeV}$	$3.8 \mathrm{TeV}$	$8.1 \mathrm{TeV}$	1.3 (2.4) TeV
$800~{ m GeV}$	2.8 TeV	2.8 TeV	$22~{\rm TeV}$	4.3 TeV	4.3 TeV	8.5 TeV	1.7 (3.1) TeV
2.0 TeV	4.0 TeV	4.0 TeV	>30 TeV	7.8 TeV	$6.9 \mathrm{TeV}$	11 TeV	3.7 (6.8) TeV
3.0 TeV	4.8 TeV	4.8 TeV	>30 TeV	10 TeV	$9.0 \mathrm{TeV}$	13 TeV	5.3 (9.8) TeV
4.0 TeV	5.5 TeV	5.5 TeV	>30 TeV	13 TeV	11 TeV	15 TeV	6.8 (13) TeV

Table 9. For representative processes and inputs, the required muon collider energy \sqrt{s} [TeV] at which the VBF production cross section surpasses the s-channel, annihilation cross section, as shown in figure 17. Also shown are the cross over energies as estimated from the scaling relationship in equation (7.7) assuming a mass scale M_X ($2M_X$).

◀□▶◀圖▶◀불▶◀불▶ 활1章 쒸요○

R. Ruiz - IFJ PAN

summary and outlook

Vector boson scattering is a powerful probe of the Standard Model and new phenomena

Long-predicted but observed first during Run I/II of LHC!

- With Run II data, first measurements of VBS and key test of SM
- Run III (now-'25): VBS as new probe of new phenomena
- Run IV ('30-'40) legacy precision measurements + novel exploration of SM at high energies

 Buarque (ed.), Gallinaro (ed.), RR (ed.), et al, Rev. Physics ('22) [arXiv:2106.01393]

backup

Diagram games $\implies h$ boson production

predicted by Brout, Engler ('64), Higgs ('64); + Nobel ('14); discovered by ATLAS and CMS ('12)

Electroweak sector of Standard Model is powerful:

- explains β decay
- explains inverse β decay
- explains masses of W^{\pm} , Z, e, others
- inputs needed, eg, G_F , M_W , M_Z , m_h

Invariant mass distribution of all e⁺e⁻ pairs recorded by UA1

neutrino masses

For the experts (1 slide)

To generate m_{ν} via the Higgs mechanism, we need ν_R

$$\mathcal{L}_{\nu \text{ Yuk.}} = -y_{\nu} \overline{L} \tilde{\Phi} \nu_{R} + \dots = -y_{\nu} \left(\overline{\nu_{L}} \quad \overline{\ell_{L}} \right) \begin{pmatrix} \langle \Phi \rangle + h \\ 0 \end{pmatrix} \nu_{R} + \dots$$
$$= \underbrace{-y_{\nu} \langle \Phi \rangle}_{\equiv m_{\nu}} \nu_{R} + \dots$$

 ν_R do not exist in the SM, so $m_{\nu} = 0!$

Dilemma: postulating ν_R requires either new conservation laws or violation of lepton number and/or lepton flavor number symmetries

(expected but no evidence! suggestive that there is more to the picture)

□ > <
 □ > <
 □ >
 □ >
 □ >
 □ >
 □ =
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 <li

R. Ruiz - IFJ PAN

neutrinoless $\beta\beta$ decay (at d=5) at the LHC

The helicity amplitude for the $0\nu\beta\beta$ process $q\overline{q'} \rightarrow \ell_1^+\ell_2^+\overline{f}f'$ is

$$\mathcal{M}_{LNV} = J^{\mu}_{f_1 f'_1} J^{\nu}_{f_2 f'_2} \Delta^{W}_{\mu \alpha} \Delta^{W}_{\nu \beta} \underbrace{T^{\alpha \beta}_{LNV} \mathcal{D}(p_{\nu})}_{\text{lepton current}}$$

Difficult to simulate since Weinberg op. modifies propagator of u_{ℓ}

modern Monte Carlo tools work in mass basis and do not like the idea of modifying $\langle 0|\overline{\nu_{\ell'}}\nu_{\ell}|0\rangle$

$$= \underbrace{\frac{\nu_{\ell}(p)}{p^2}}_{p} \underbrace{\frac{\nu_{\ell'}^c(-p)}{p^2}}_{p^2} = \underbrace{\frac{ip'}{p^2}}_{p} \underbrace{\frac{-iC_5^{\ell\ell'}v^2}{\Lambda}}_{p} \underbrace{\frac{ip'}{p^2}}_{p^2} = \underbrace{\frac{im_{\ell\ell'}}{p^2}}_{p}$$

Solution: Treat vertex as a particle! Invent unphysical Majorana fermion with (small) mass $m_{\ell\ell}$ that couples to all lepton flavors recovers right behavior!

$$T_{LNV}^{\alpha\beta}\mathcal{D}(p_{\nu}) \propto \gamma^{\alpha} P_{L} \frac{i(/p + m_{\ell\ell'})}{p^{2} - m_{\ell\ell'}^{2}} \gamma^{\beta} P_{R} = \gamma^{\alpha} P_{L} \frac{i m_{\ell\ell'}}{p^{2}} P_{L} \gamma^{\beta} \times \left[1 + \mathcal{O}\left(\left|\frac{m_{\ell\ell'}^{2}}{p^{2}}\right|\right) \right]$$

R. Ruiz - IFJ PAN VBS@LHC - VUB 6 / 8

Plotted: Normalized production rate ($C_5 = 1$) vs scale (Λ)

w/ Fuks, Neundorf, Peters, Saimpert [2012.09882]

Full $2 \rightarrow 4$ calculation at NLO(+PS) in QCD is more involved

Used mg5amc + NEW SMWeinberg UFO libraries

Driven by $W_0^+ W_0^+$ scattering $\hat{\sigma}(W^+ W^+ \to \ell^+ \ell^+) \sim \frac{|C_5^{\ell\ell}|^2}{18\pi\Lambda^2}$

Once σ is obtained for a "high" scale, i.e., $C_5^{\ell\ell'}=1, \Lambda=200$ TeV, rescale for other Λ/C_5 .

 C_5^{ee}/Λ is heavily constrainted. What can the LHC say about $C_5^{\ell\ell'}$?

For the first time collider searches for Weinberg operator constrains

$$\Lambda/C_5^{\mu\mu}\gtrsim 5~{\rm TeV}$$

w/ Fuks, Neundorf, Peters, Saimpert [PRD('21, '21)] CMS [PRL('22)]

R. Ruiz - IFJ PAN