

Selected cases of exotic neutron rich systems

R. Lazauskas (IPHC), E. Hiyama (Sendai U., RIKEN), J. Carbonell (IJCLab)

Bound multineutron: no way?

² n is allready resonant in ¹ S _o state						
	AV18	ινογ	Reíd93	Exp		
ann (fm)	-18.49	-18.60	-17.54	-18.5(4)		
r_{o} (fm)	2.84	2.82	2.84	2.80(11)		
$r(\vee_{min})$	0.874		0.930	-		
$\gamma_{\rm S}$	1.080	1.102	1.087	-		

*Enhancement factor $\gamma_s \sim 1.09 \ (v_\gamma = \gamma v_{nn})$ is enough to bind ²n in ¹S₀ state

³ He- ³ He	Azíz
a (Å)	-7.61
r _o (Å)	13.5
r(∨ _{mín})	2.97
γ_{s}	1.299

$(^{3}\text{He})_{A}$ is bound for A>34

R. Guardíola, J. Navarro, Phys. Rev. Lett. 84 (2001) 1144

at 1mK

Bound light multineutron: no way!

.. apart from some unsound speculations Th. Faestermann *et al.,* Phys. Lett. **B 824**, 136799 (2022)

- No any significant experimental evidence
- Theory (in unison): no way for ³n-⁸n!
 - S. Píeper, PRL 90, 252501 (2003)
 - C. Bertulaní & V. Zelevínsky, J. Phys. G 29 2431 (2003)
 - N.K. Tímofeyuk, <u>arXív:nucl-th/0203003</u>
 - R.L., PhD thesis Université Joseph Fourrier (2003)

...

- Símplístic NN interactions
- Realistic NN interactions

Resonant multineutron: how we define it?

- Experiment : some rapid variation (preferentially rise) of cross section in a process related with ^An production... OK, BUT not every hill is a mountain ⇒ Signal from X+^An - resonance from X, ^An or +?
 - ⇒ Rapid cross section variations are also produced in repulsive systems!

Resonant multineutron: experimental results

As searching for Lochness monster

As in most experiments of this sort, however, a negative result cannot be regarded as conclusive and further experiments are needed to give additional weight to our result.

P. Schiffer and R. Vandenbosch,``Search for a Particle-Stable TetraNeutron,'' Phys. Lett.5 292 (1963)

- ⁴ He(γ, 2π⁺)⁴n
- 4 He $(\pi^{-}, \pi^{+})^{4}$ n

T. P. Gorrínge et al., Phys. Rev. C 40, 2390 (1989)

FL(π⁻, ³He)⁴n

Y.A.Batusov et al., Sov.J.Nucl.Phys. 26, 129 (1977)

⁷Lí(⁷Lí, ¹⁰C)⁴n

D.V.Aleksandrov, Yad.Fíz. 47, 3 (1988)

- 7Lí(9Be, 12N)4n
- ⁷Lí(¹¹B, ¹⁴O)⁴n
- 9Be(9Be, ¹⁴0)⁴n

RL, J. Carbonell, E. Hiyama

Belozyorov et al., Nucl . Phys. A 477 (1988) 131

- ¹⁴Be→¹⁰Be+⁴n: 6 events
 F.M. Marqués et al: Phys. Rev. C 65
 (2002) 044006 et arxív:nuclex/0504009
- <u>⁴He(⁸He, ⁸Be)⁴ n: 4 events</u>
 K. Kísamorí, S. Shímoura et al.,

Phys. Rev. Lett. 116 (2016) 052501

⁸He(p,p⁴He)⁴ n
 M.Duer,..., S. Shímoura et al. Nature
 606 (2022) 678

PRL 116, 052501 (2016) PHYSICAL REVIEW LETTERS

Candidate Resonant Tetraneutron State Populated by the ⁴He(⁸He,⁸Be) Reaction

Selected for a Viewpoint in Physics

K. Kisamoni,¹² S. Shimoura,¹ H. Miya,¹² S. Michimasa,¹ S. Oku,¹ M. Assie,¹ H. Baba,² T. Baba,⁴ D. M. Dozono,⁵ T. Fujii,¹² N. Fukuda,² S. Goi,¹² F. Hammache,² E. Ideguchi,¹ N. Inabe,⁴ M. Indu,⁵ D. Kamed K. M. Kobayashi, Y. Kondo,³ T. Kubo,⁵ X. Kibota,² M. Konita-Nishimmara,² C. S. Lee,¹ H. Matsubara,² X. Shika,⁴ T. Nishi,² S. Noji,¹⁰ S. Sakagachi,¹² H. Sakai,² Y. Saamoto,¹ M. Sarata-Nishimmara,² C. S. Lee,¹ H. Matsubara,² X. Stoli,¹⁰ H. Zuzuki,¹ H. Takaki,¹ H. Takeda,² S. Takacuki,¹ A. Takada,¹ H. Tamara,¹ T. Uesaka,² K. Yanagisawa,² R. Yokoyama,¹ and K. Yoshida,¹ Conter for Nuclear Sungh, The University of Toky, 7-3. Kikos,¹⁰ S. Takayath,¹ A. Takada,¹⁰ K. Yanagisawa,² R. Yokoyama,¹ and K. Yoshida,¹⁰ Conter for Nuclear Sungh, The University of Toky, 7-3. Hongo, Bankor, Takya I Hoorg, Dankya, F. Inaver, and J. Hongo, Bankya, F. Inaver, and J. Hango, K. Jakawa, Saitama 331-0198, Japan ¹ Bryamment of Physics, Kyaso University, Yoshida-Honeh, Satya, Kyaso 206, Japan ¹⁰ Province Corner for Nachae Physico, Outdo, University, Yoshida-Honeh, Satya, Kyaso 206, 70017, ¹⁰ Rescent Physico, Satya, Kyaso 206, 70017, ¹⁰ Kanga, Kanga Kata, Japan ¹⁰ Province, Yanda University, Yoshida-Honeh, Satya, Kyaso 206, 70017, ¹⁰ Physica, Rawa Charlear Physico, Satuka University, Toshida-Honeh, Satya, Kyaso 206, 70017, ¹⁰ Neteron Physico, Nataku University, Toshida-Honeh, Satya, Kyaso 206, 70017, ¹⁰ Physica, Physica, Wata, Wanga, Satu Martan, Jona Satya, Kyaso 206, 70017, ¹⁰ Neteron Physico, Nataku University, Toshida-Honeh, Satya, Kyaso 206, 70017, ¹⁰ Physica, Physica, Physica, Wata, Wata, Yanga, Physica, Physica

³Research Center for Naclear Physics, Oucla University, 10-1 Milogoula, Baraki, Ouclas 507-007, ⁴Cyclorom and Radiostoney Center, Tokolas University, 6-3 Abode, Aramaki, Adve. As, Senda, Miyogi 90-9 Department of Physics, Tokyo Institute of Technology, 2-12-1 O-Okyawan, Maguor, Tokyo 132-8550, ⁴Faculty of Degineering, University of Myssaki, 1-I Gakane, Kantandariehid, Myssaki 889-192, Jr. ³Department of Physics, The University of Tokyo, 7-3-1 Hongs, Bankyo, Tokyo 113-003, Japan ⁴National Superconducting Cyclemon Laboratory, Michigen State University, 604 5 Shaw, Eane, East Laming, Mech ⁴Department of Physics, Kuydua University, 6-10-1 Holoszaki, Higashi, Fakuoka 812-858, Japan ⁴National University of Indiogenal Sciences and Participation Contemporation and Partment ¹⁹Department of Physics, Kuydua University, 6-10-1 Holoszaki, Higashi, Fakuoka 812-858, Japan ¹⁰Department of Physics, Kuydua University, 6-10-1 Holoszaki, Higashi, Fakuoka 812-858, Japan

¹³National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage, Chiba, Japan Received 30 July 2015; revised manascript received 11 October 2015; published 3 February 2016.

week ending 5 FEBRUARY 201

nature

nature > articles > article

	-1	 	50	
UC		101	11-	

Article Open Access Published: 22 June 2022

Observation of a correlated free four-neutron system

M. Duer 🖾, T. Aumann, R. Gernhäuser, V. Panin, S. Paschalis, D. M. Rossi, N. L. Achouri, D. Ahn, H.

Resonant multineutron: how we define it?

- Theory: pole of the scattering amplitude in the vicinity of the ^An physical region... not much better, if not even worse...
- Mathematical object in 2D-manifold, verified by physical observable in 1D
 ⇒ Possibility to manipulate poles create false ones
 ⇒ Rapid variations of cross section without poles in the scattering amplitude (calucci q., Ghirardil c, Phys. Rev. 169 (1968) 1339)
 ⇒ Poles, which has no link (evolve) to bound states (see repulsive square well example)

in nuclear physics resonances are associated with 'almost' bound structures?!

Resonant Multineutron: theoretical results

Rigorous treatment of the continuum:

No observable ³n resonant states:

A. Csótó et al., Phys. Rev. C 53, 1589 (1996)
H. Wítala et al., Phys. Rev. C 60, 024002 (1999)
A. Hemmdan et al., Phys. Rev. C 66, 054001 (2002)

R.L et al., Phys. Rev. C **71**, 044004 (2005) A. Deltuva, Phys. Rev. C **97**, 034001 (2018) S. Ishíkawa, Phys. Rev. C **102**, 034002 (2020)

No observable ⁴n resonant states:

S. A. Sofianos et al., J. Phys. G 23, 1619 (1997)

K. *Araí, Phys. Rev.* **C 68**, 034303 (2003) R.L et al., Phys. Rev. **C 72**, 034003 (2005);

E. Híyama et al., Phys. Rev. **C93**, 044004 (2016); PTEP 2017, 073D03 (2017)

A. Deltuva et al., *Phys. Lett.* B 782, 238-241
(2018); *Phys. Rev.* C 100, 044002 (2019)
K. Fossez et al., *Phys. Rev. Lett.* 119, 032501
M.D. Higgins et al., *Phys. Rev. Lett.* 125.5, 052501 (2020).

1 interactions Interactions

Observable ³n & ⁴n resonant states:

S. Gandolfi et al., Phys. Rev. Lett. **118**, 232501 (2017) J. G. Lí, Phys. Rev. **C 100**, 054313 (2019)

Observable *n resonant states:

Non-rigorous continuum:

S. Píeper, Phys. Rev. Lett. **90** (2003), 252501 M. Shírokov et al., Phys. Rev. Lett. **117**, 182502 (2016)

RL, J. Carbonell, E. Hiyama

fppt.com

Resonant Multineutron: theoretical results

Rigorous treatment of the continuum:

No observable ³n resonant states:

A. Csótó et al., Phys. Rev. C 53, 1589 (1996)
H. Wítala et al., Phys. Rev. C 60, 024002 (1999)
A. Hemmdan et al., Phys. Rev. C 66, 054001 (2002)

R.L et al., Phys. Rev. C **71**, 044004 (2005) A. Deltuva, Phys. Rev. C **97**, 034001 (2018) S. Ishíkawa, Phys. Rev. C **102**, 034002 (2020)

No observable ⁴n resonant states:

S. A. Sofianos et al., J. Phys. G 23, 1619 (1997)

K. *Araí, Phys. Rev.* **C 68**, 034303 (2003) R.L et al., Phys. Rev. **C 72**, 034003 (2005);

E. Híyama et al., Phys. Rev. **C93**, 044004 (2016); PTEP 2017, 073D03 (2017)

A. Deltuva et al., *Phys. Lett.* **B 782**, 238-241 (2018); *Phys. Rev.* **C 100**, 044002 (2019) K. Fossez et al., *Phys. Rev. Lett.* **119**, 032501 M.D. Higgins et al., *Phys. Rev. Let* 052501 (2020).

1 interactions .nteractions

Observable ³n & ⁴n resonant states:

S. Gandolfí et al., Phys. Rev. Lett. **118**, 232501 (2017) J. G. Lí, Phys. Rev. **C 100**, 054313 (2019)

Observable ⁴n resonant states:

Non-rigorous continuum:

S. Píeper, Phys. Rev. Lett. **90** (2003), 252501 M. Shírokov et al., Phys. Rev. Lett. **117**, 182502 (2016)

RL, J. Carbonell, E. Hiyama

fppt.com

Resonant Multineutron: theoretical results

Rigorous treatment of the continuum:

No observable ³n resonant states:

A. Csótó et al., Phys. Rev. C 53, 1589 (1996)
H. Wítala et al., Phys. Rev. C 60, 024002 (1999)
A. Hemmdan et al., Phys. Rev. C 66, 054001 (2002)

R.L et al., Phys. Rev. **C 71**, 044004 (2005) A. Deltuva, Phys. Rev. **C 97**, 034001 (2018) S. Ishíkawa, Phys. Rev.**C 102**, 034002 (2020)

No observable ⁴n resonant states:

S. A. Sofianos et al., J. Phys. **G 23**, 1619 (1997)

- The most favorable state to form tetraneutron is 0⁺
- For trineutrons 3/2 state is found to be the most favorable.
- All the studies agree on:
 - ✓ the dominance of V_{nn} (¹S₀) in multineutron systems.
 - ✓ Minor role of V_{nn} P-waves : moreover ³PF₂ is attractive, ³P₁ is repulsive, ³P₀ is moderate
 - ✓ Negligible contribution of 3nF (3n never gets close to each other)

Non-rigorous continuum:

Observable ³n E⁴n resonant states:

S. Gandolfi et al., Phys. Rev. Lett. **118**, 232501 (2017) J. G. Lí, Phys. Rev. **C 100**, 054313 (2019)

Observable ⁴n resonant states:

S. Píeper, Phys. Rev. Lett. **90** (2003), 252501 M. Shírokov et al., Phys. Rev. Lett. **117**, 182502 (2016)

Theory is ruthless for ³n & ⁴n

²n is allready resonant in ${}^{1}S_{0}$ state

	AV18	ινογ	Reíd93	Ехр
ann (fm)	-18.49	-18.60	-17.54	-18.5(4)
r_{o} (fm)	2.84	2.82	2.84	2.80(11)
$r(V_{min})$	0.874		0.930	-
γ_{s}	1.080	1.102	1.087	-

* Enhancement factor $\gamma_s \sim 1.09$ ($\nabla_{\gamma} = \gamma \nabla_{nn}$) is enough to bind 2n in 1S_o state

- Special case of physics treated by Effective field theory (EFT) : since $a_{nn} >> r_o$, at low energies this system is insensitive to the details of the interaction and depends solely on a_{nn}
- Now let promote multineutron by making its interaction in ${}^{1}S_{0}$ wave slightly moe attractive, just to bind dineutron with $B = -E = +\varepsilon$ ($a_{nn} = +\infty$), for this case we get universal prediction of EFT: D. S. Petrov, C. Salomon, and G. V. Shlyapnikov Phys

$$a_{ff} \rightarrow +\infty: a_{ff,ff} = 0.5986(5) a_{ff} (j=0^{+}) a_{f,ff} = 1.18 a_{ff} (j=1/2^{+}) a_{f,ff} = -0.952 a_{ff}^{3} (j=1/2^{-},3/2^{-}),$$

- D. S. Petrov, C. Salomon, and G. V. Shlyapníkov Phys. Rev. Lett. **93**, 090404
- A. Deltuva, Phys. Rev. A 96 (2017) 022701
- S. Endo et al., Few-body Syst. 51 (2011) 207
- ... G.V. Skorníakov and K.A. Ter-Martírosían, Z.h. Eksp.

Teor. Phys. 31, 775 (1956) [Sov. Phys. JETP 4, 648 (1957)]

Theory is ruthless for ³n & ⁴n

• Now let promote multineutron by making its interaction in ${}^{1}S_{o}$ wave slightly more attractive, just to bind dineutron with $B = -E = +\varepsilon$ ($a_{nn} = +\infty$), for this case we get universal prediction of EFT:

Case	J ^π ,Ι	(a _{n-nn} /a _{nn}) ^{2l+1}		EFT (r ₀ =0)
n-(nn)	¹ / ₂ ⁺ ,0	1.19(1) ^{INOY}	1.18(1) ^{AV18}	1.18
	¹ / ₂ ⁻ ,1	-0.96(1) INOY	-0.95(1) AV18	-0.952
	³ / ₂ ⁻ ,1	-0.96(1) INOY	-0.95(1) AV18	-0.952
(nn)-(nn)	0+,0	0.599 ^{CDBonn}		0.5986(5)

D. S. Petrov et al, Phys. Rev. Lett. **93**, 090404, A. Deltuva, Phys. Rev. A **96** (2017) 022701, S. Endo et al., Few-body Syst. **51** (2011) 207

A. Deltuva, Phys. Rev. A 96 (2017) 022701

Theory is ruthless for ³n & ⁴n

Presence of ³n g ⁴n resonant states is not compatible with QM!

Results of Duer et. al.

How to explain the left peak?

Drawbacks of COSMA

Fig. 11. Continuum response of the ⁴n system in the MWS with a "Gaussian" source (13). Solid, dashed and dotted curves correspond to rms hyperradius $\langle \rho_{\rm sour} \rangle$ of the source equal to 8.9, 7.3, and 5.6 fm, respectively. Panels are calculated with (a) no final-state interaction, (b) RT potential (the correct *n*-*n* scattering length). All calculations are normalized to unity at the peak.

V. Grígorenko et al., Eur. Phys. J. **A 19** (2004) 187

- Why consider free 4n distribution in the final state?
 n's are strongly correlated.
- There is no consistency between the final and the initial states of 4n
- ⁸He wave function is very complex, since valence neutrons are strongly correlated. Lowest HO shell largely fails to account for the complexity of ⁸He.

M. Vorrabí et al., Phys. Rev. **C 97**, 034314 (2018), //indico.ectstar.eu/event/1/contributions/48/attachments/36/42/Vorabbi.pdf

Model

fppt.com

Low energy peak is well reproduced without any ⁴n resonance

No forbidden states:

r_0 (fm)	V_0 (MeV)	$W_0 \; (MeV \; fm^{-1})$	$< r_{nn}^2 > \frac{1}{2}$ (fm)
2.0	-2.4038	-0.3345	4.12
2.5	-1.9055	-0.2005	4.77
3.0	-1.6113	-0.1351	5.39
[33]			3.5-3.6

TABLE 1: Strength parameters of the phenomenological α -core neutron interactions (described in section II) as a function of interaction range r_0 , adjusted to reproduce binding of neutron halos in ⁶He and ⁸He nuclei. In the last column calculated halo neutron radii in ⁶He are presented and compared with an estimation from *ab-initio* calculation of ref. [33] using expression of eq. (9).

With Pauli blocking of HO states:

ρ_0 (fm)	$V_0 ~({\rm MeV})$	$W_0 \; ({\rm MeV \; fm^{-1}})$	$\langle r_n^2 \rangle^{\frac{1}{2}} (^6He)$ (fm)	$\langle r_n^2 \rangle^{\frac{1}{2}} (^8He) (fm)$
1.5	-118.60	-2.553	2.55	2.92
2.5	-61.757	-0.2125	2.66	3.05
4.0	-22.114	-0.0507	3.12	3.72
			2.90(8) [43], 2.72(7) [37]	2.92(4) [43], $2.67(7)$ [37]

R.L et al., Phys.Rev.Lett. 130 (2023) 10

RL, J. Carbonell, E. Hiyama

fppt.com

Independence of nn interaction

- Low energy response does not depend on the details of nn(n) interaction, only ann!
- · Consistent with EFT arguments

R.L. et al., Phys.Rev.Lett. 130 (2023) 10

fppt.com

Importance of 2n+2n correlations

FIG. 2: Low energy four-neutron response functions calculated with the AV18 nn interaction and $\rho_0=2.5$ fm. Different transition operators \hat{O} were considered in order to visualize the effect of the core-recoil corrections. The olive-dashed curve corresponds $\hat{O} = \sum_{i}^{4} r_i^2 Y_2(\hat{r}_i)$; red-dotted together with the dashed-dotted curves are for $\hat{O} = \sum_{i} \{\vec{r}_i \otimes \vec{\sigma}_i\}_g$ operators, solid-black curve represents the reference result with $\hat{O}=1$.

FIG. 3: Low energy four-neutron response functions for the scaled nn MT13 potential adjusted to reproduce different scattering lengths values.

R.L et al., Phys.Rev.Lett. 130 (2023) 10

fppt.com

Bound multineutron: no way?

H isotopes

	n	н	E (MeV)	
	1	² H	-2.22	
	2	³ H	-8.48	n
	3	³ H+n	Broad resonant states	n 1-
	4	⁵⁻ H	?	150
<u> </u>			⁴ H) E(⁴ H)-E(³ H)	(MeV) n

J ^{π(4} H)	E(⁴H)-E(³H) (MeV)
2⁻	1.2-2.0í
1-	1.0-20í
0-	0.8-4.1í
1-	0.2-2.51

⁵H case

TABLE I. Summary of experimental results for ⁵H. Resonance energies are given relative to ${}^{3}H + 2n$.

n n 3H

014310-2

- [17] P. G. Young, Richard H. Stokes, and Gerald G. Ohlsen, Phys. Rev. 173, 949 (1968).
- [18] A. A. Korsheninnikov, M. S. Golovkov, I. Tanihata, A. M. Rodin, A. S. Fomichev, S. I. Sidorchuk, S. V. Stepantsov, M. L. Chelnokov, V. A. Gorshkov, D. D. Bogdanov, R. Wolski, G. M. Ter-Akopian *et al.*, Phys. Rev. Lett. 87, 092501 (2001).
- [19] M. S. Golovkov, Yu. Ts. Oganessian, D. D. Bogdanov, A. S. Fomichev, A. M. Rodin, S. I. Sidorchuk, R. S. Slepnev, S. V. Stepantsov, G. M. Ter-Akopian, R. Wolski *et al.*, Phys. Lett. B 566, 70 (2003).
- [21] M. S. Golovkov, L. V. Grigorenko, A. S. Fomichev, S. A. Krupko, Yu. Ts. Oganessian, A. M. Rodin, S. I. Sidorchuk, R. S. Slepnev, S. V. Stepantsov, G. M. Ter-Akopian *et al.*, Phys. Rev. Lett. **93**, 262501 (2004).
- [22] M. S. Golovkov, L. V. Grigorenko, A. S. Fomichev, S. A. Krupko, Yu. Ts. Oganessian, A. M. Rodin, S. I. Sidorchuk, R. S. Slepnev, S. V. Stepantsov, G. M. Ter-Akopian *et al.*, Phys. Rev. C 72, 064612 (2005).

- [24] M. Meister, L. V. Chulkov, H. Simon, T. Aumann, M. J. G. Borge, Th. W. Elze, H. Emling, H. Geissel, M. Hellstrom, B. Jonson *et al.*, Phys. Rev. Lett. **91**, 162504 (2003).
- [25] S. I. Sidorchuk, D. D. Bogdanov, A. S. Fomichev, M. S. Golovkov, Yu. Ts. Oganessian, A. M. Rodin, R. S. Slepnev, S. V. Stepantsov, G. M. Ter-Akopian, R. Wolski *et al.*, Nucl. Phys. A 719, C229 (2003).
- [26] S. V. Stepantsov, M. S. Golovkov, A. S. Fomichev, A. M. Rodin, S. I. Sidorchuk, R. S. Slepnev, G. M. Ter-Akopian, M. L. Chelnokov, V. A. Gorshkov, Yu. Ts. Oganessian *et al.*, Nucl. Phys. A 738, 436 (2004).
- [27] G. M. Ter-Akopian, A. S. Fomichev, M. S. Golovkov, L. V. Grigorenko, S. A. Krupko, Yu. Ts. Oganessian, A. M. Rodin, S. I. Sidorchuk, R. S. Slepnev, S. V. Stepantsov *et al.*, Eur. Phys. J. A 25, 315 (2005).
- [28] Yu. B. Gurov, M. N. Behr, D. V. Aleshkin, B. A. Chernyshev, S. V. Lapushkin, P. V. Morokhov, V. A. Pechkurov, N. O. Poroshin, V. G. Sandukovsky, and M. V. Telkushev, Eur. Phys. J. A 24, 231 (2005).

⁵H case

TABLE II. Summary of some theoretical results for ⁵ H. Resonance energies are given relative to ${}^{3}\text{H} + 2n$.					
Reference	Method	E_R (MeV)	Γ (MeV)		
[7]	Cluster, model with source	2–3	4–6		
[23]	Three-body cluster	2.5–3	3-4		
[31,35]	Cluster, J-matrix, resonating group model	1.39	1.60		
[36]	Cluster, complex scaling adiabatic expansion	1.57	1.53		
[32]	Cluster, generator coordinate method	≈3	$\approx 1-4$		
[33]	Cluster, complex scaling	1.59	2.48		
[34]	Cluster, analytic coupling in continuum constant	1.9 ± 0.2	0.6 ± 0.2		

- [7] L. V. Grigorenko, N. K. Timofeyuk, and M. V. Zhukov, Eur. Phys. J. A 19, 187 (2004).
- [31] A. V. Nesterov, F. Arickx, J. Broeckhove, and V. S. Vasilevsky, Phys. Part. Nucl. 41, 716 (2010).
- [32] P. Descouvemont and A. Kharbach, Phys. Rev. C 63, 027001 (2001).
- [33] K. Arai, Phys. Rev. C 68, 034303 (2003).
- [34] A. Adachour and P. Descouvemont, Nucl. Phys. A 813, 252 (2008).
- [35] J. Broeckhove, F. Arickx, P. Hellinckx, V. S. Vasilevsky, and A. V. Nesterov, J. Phys. G 34, 1955 (2007).
- [36] R. de Diego, E. Garrido, D. V. Fedorov, and A. S. Jensen, Nucl. Phys. A 786, 71 (2007).

Cluster models, involvig approximations for 5-body dynamics

- ³H+n+n models: without n-antisymetrization between the core gvalence
- ³H+n+n models: including n-antisymmetrization, however by freezing ³H core

⁵H case

SECSM: 1.8(1)-11.2(1)

SECSM: 1.85(10)- 11.20(5)

To compare with 4 H resonances $J=2^{-1}$:

 $E(^{4}H)-E(^{3}H)=1.31(3)-2.08(2)$

 $E(^{4}H)-E(^{3}H)=1.17(3)-1.99(3)$

R.L. et al., Phys.Lett.B 791 (2019) 335

⁷H case

5-body cluster model 4n+3H:

- Paulí blocking between valence neutrons § ones within 3H core mimicked by projecting out forbidden HO states
- n-³H potential adjusted to n-³H scattering
- Gaussían expansion method to solve bound state problem ξ stabilization technique to estimate resonance position

E. Hiyama et al., Phys. Lett. B 833 (2022) 137367

In conflict with: H.H. Lí et al., Phys. Rev. C 104 (2021) 6, L061306

Conclusions

- Presence of 3n and 4n resonant states is not compatible with QM
- Very striking dynamical phenomena was observed by Duer et al., where sharp low-energy peak appears naturally without any underlying ⁴n resonant state
- Presence of the peak is independent of nn/3n interaction and is consequence of weakly bound 4n being in the initial state (halo nucleus), enhancing 2n+2n structures
- Effect should manifest in similar atomic or nuclear systems: 4n
 Halo nuclei are priviledged place to look for.
- We confirm existence of a pronounced resonant state in ⁵H.
 However we do not expect to find narrow resonances in heavier hydrogen isotopes.