Recent progress in *ab-initio* studies of light nuclei and few-nucleon reactions

Laura E. Marcucci University of Pisa INFN-Pisa

Exploring low-energy nuclear properties: latest advances on reaction mechanisms with light nuclei

Workshop in honor of Pierre Descouvemont

Bruxelles, June 1, 2023

Laura E. Marcucci (Univ. Pisa & INFN-Pisa) Ab-initio studies of few-nucleon systems

1/1

Introduction

- Microscopic *ab-initio* approach
- Chiral effective field theory (χEFT) framework
- The Hyperspherical Harmonics (HH) ab-initio method

Selected results

- A = 2 reactions: *pp* weak capture, muon capture on deuteron
- A = 4 reactions of interest for Big Bang Nucleosynthesis (BBN)

Outlook

Introduction: microscopic ab-initio studies

Nuclear observable X

- Microscopic \rightarrow
 - Nucleus = system of A nucleons
 - $\bullet~$ interacting among themselves \rightarrow structure
 - $\bullet\,$ interacting with external electroweak probes $\rightarrow\,$ reactions
- Microscopic \rightarrow *ab-initio*
 - realistic description of nuclear interactions
 - realistic description of electroweak currents
 - exact¹ (ab-initio) method to solve the quantum-mechanical problem

 \Rightarrow True predictions for observable X

Ideal case: robust procedure to estimate the theoretical error

¹ exact \equiv no uncontrolled approximations

The nuclear Hamiltonian: H = T + V

Nuclear interaction: $V = V_{NN} + V_{NNN}$

Until \simeq 20–30 years ago: phenomenological potentials

- $V_{NN} + V_{NNN}$ semi-phenomenological
- V_{NN} with \simeq 40 parameters fitted to A=2 data $\rightarrow \chi^2/{
 m datum}\simeq 1$
- V_{NNN} with 2-3 parameters fitted to B(A = 3, 4)

Very common models: AV18+UIX, AV18+Illinois

Very successful, but

- many parameters
- no connection with QCD
- no estimate of theoretical uncertainty

The nuclear Hamiltonian: H = T + V

Nuclear interaction: $V = V_{NN} + V_{NNN}$

Until \simeq 20–30 years ago: phenomenological potentials

- $V_{NN} + V_{NNN}$ semi-phenomenological
- V_{NN} with \simeq 40 parameters fitted to A=2 data $\rightarrow \chi^2/{
 m datum}\simeq 1$
- V_{NNN} with 2-3 parameters fitted to B(A = 3, 4)

Very common models: AV18+UIX, AV18+Illinois

Chiral Effective Field Theory (χ EFT): a very short summary

- QCD \rightarrow quarks and gluons ("high-energy" d.o.f.)
- Nuclear physics → nucleons and pions ("low-energy" d.o.f.)
- EFT ightarrow processes with $E\simeq p\simeq m_\pi\ll\Lambda_{
 m QCD}\sim 1$ GeV
 - \star keep the "I-e" d.o.f.: π and N (and sometimes Δ 's $m_{\Delta}-m_{N}\sim$ 300 MeV)
 - ★ Lagrangians describing the interactions of $\pi N(\pi \Delta)$ are expanded in powers of $O(p/\Lambda_{QCD})^{\nu} \rightarrow$ perturbative expansion
 - $\star\,$ "h-e" d.o.f. integrated out \rightarrow contact interactions with "l-e" d.o.f. and low-energy constants (LECs) obtained from experiment
- $\chi \text{EFT} \rightarrow \text{EFT}$ with spontaneous breaking of QCD's χ -symmetry
- Regularization of short-range terms with cutoff function $\rightarrow \Lambda \simeq 400-600~\text{MeV}$

Disadvantage: limited to processes with $E \leq [2 \div 3] m_{\pi}$

Advantages

- nuclear force "hierarchy" \rightarrow accurate $V_{NN} + V_{NNN}$
- consistent framework for interactions + currents (just add electroweak field as d.o.f.)
- possibility to estimate the theoretical uncertainty (perturbative expansion)

Chiral Effective Field Theory (χ EFT): a very short summary

- QCD \rightarrow quarks and gluons ("high-energy" d.o.f.)
- Nuclear physics → nucleons and pions ("low-energy" d.o.f.)
- EFT ightarrow processes with $E\simeq p\simeq m_\pi\ll\Lambda_{
 m QCD}\sim 1$ GeV
 - \star keep the "I-e" d.o.f.: π and N (and sometimes Δ 's $m_{\Delta}-m_{N}\sim$ 300 MeV)
 - ★ Lagrangians describing the interactions of $\pi N(\pi \Delta)$ are expanded in powers of $O(p/\Lambda_{QCD})^{\nu} \rightarrow$ perturbative expansion
 - ★ "h-e" d.o.f. integrated out → contact interactions with "l-e" d.o.f. and low-energy constants (LECs) obtained from experiment
- $\chi \text{EFT} \rightarrow \text{EFT}$ with spontaneous breaking of QCD's χ -symmetry
- Regularization of short-range terms with cutoff function $\rightarrow \Lambda \simeq 400-600~\text{MeV}$

Disadvantage: limited to processes with $E \leq [2 \div 3] m_{\pi}$

Advantages

- nuclear force "hierarchy" \rightarrow accurate $V_{NN} + V_{NNN}$
- consistent framework for interactions + currents (just add electroweak field as d.o.f.)
- possibility to estimate the theoretical uncertainty (perturbative expansion)

$\chi {\rm EFT}$ potentials

- Idaho potentials: N3LO-Idaho ($\Lambda = 500 \text{ MeV}$) $\rightarrow \text{EMN}$ [D. Entem *et al.*, Front. Phys. **8**, 57 (2020)]
- Norfolk potentials (NV)
 [M. Piarulli and I. Tews, Front. Phys. 7, 245 (2019)]
- N2LOsim potentials

[B.D. Carlsson et al., Phys. Rev. X 6, 011019 (2016)]

 SMS-RS: semi-local regularization scheme (local for TPE and non-local for contact part) [P. Reinert, H. Krebs, E. Epelbaum, Eur. Phys. J. A 54, 86 (2018)]

Name	DOF	O_{χ}	$({\it R}_{ m S},{\it R}_{ m L})$ or Λ	E range	Space
NVIa	π, N, Δ	N3LO	(0.8, 1.2) fm	0-125 MeV	r
NVIb	π, N, Δ	N3LO	(0.7, 1.0) fm	0-125 MeV	r
NVIIa	π, N, Δ	N3LO	(0.8, 1.2) fm	0-200 MeV	r
NVIIb	π, N, Δ	N3LO	(0.7, 1.0) fm	0–200 MeV	r
EMN450	<i>π</i> , <i>N</i>	up to N4LO	450 MeV	0-300 MeV	р
EMN500	<i>π</i> , <i>Ν</i>	up to N4LO	500 MeV	0-300 MeV	р
EMN550	π, N	up to N4LO	550 MeV	0-300 MeV	р

For instance:

A. Gnech, L.E. Marcucci, M. Viviani, arXiv:2305.07568

$\chi {\rm EFT}$ potentials

- Idaho potentials: N3LO-Idaho ($\Lambda = 500 \text{ MeV}$) $\rightarrow \text{EMN}$ [D. Entem *et al.*, Front. Phys. **8**, 57 (2020)]
- Norfolk potentials (NV)
 [M. Piarulli and I. Tews, Front. Phys. 7, 245 (2019)]
- N2LOsim potentials

[B.D. Carlsson et al., Phys. Rev. X 6, 011019 (2016)]

 SMS-RS: semi-local regularization scheme (local for TPE and non-local for contact part) [P. Reinert, H. Krebs, E. Epelbaum, Eur. Phys. J. A 54, 86 (2018)]

Name	DOF	O_{χ}	$({\it R}_{ m S},{\it R}_{ m L})$ or Λ	E range	Space
NVIa	π, N, Δ	N3LO	(0.8, 1.2) fm	0-125 MeV	r
NVIb	π, N, Δ	N3LO	(0.7, 1.0) fm	0-125 MeV	r
NVIIa	π, N, Δ	N3LO	(0.8, 1.2) fm	0-200 MeV	r
NVIIb	π, N, Δ	N3LO	(0.7, 1.0) fm	0–200 MeV	r
EMN450	<i>π</i> , <i>Ν</i>	up to N4LO	450 MeV	0-300 MeV	р
EMN500	<i>π</i> , <i>Ν</i>	up to N4LO	500 MeV	0-300 MeV	р
EMN550	π, N	up to N4LO	550 MeV	0-300 MeV	р

For instance:

A. Gnech, L.E. Marcucci, M. Viviani, arXiv:2305.07568

 $V_{NNN} \rightarrow \text{see later}$

Electromagnetic current in χEFT

Axial current in χEFT

A. Baroni et al., Phys. Rev. C 98, 044003 (2018)

- Ignore pion-pole terms [(b), (d), (f), (h), (j), (l)]
- diagrams (g) and (h) vanish; diagram (e) → c₃^Δ; c₄^Δ (similar to c₃; c₄ of diagram (i))
 CTs in (i) and (k)

$$\mathbf{j}_{5,a}^{N3LO}(\mathbf{q};CT) = \mathbf{z}_0 e^{i\mathbf{q}\cdot R_{jj}} \frac{e^{-(r_j/R_S)^2}}{\pi^{3/2}} (\tau_i \times \tau_j)_a (\sigma_i \times \sigma_j)$$

$$\mathbf{z}_0 = \frac{g_A}{2} \frac{m_\pi^2}{f_\pi^2} \frac{1}{(m_\pi R_S)^3} \left[-\frac{1}{4} \frac{m_\pi}{g_A \Lambda_\chi} c_D + \frac{m_\pi}{3} (c_3 + 2c_4 + c_3^\Delta + 2c_4^\Delta) + \frac{m_\pi}{6m} \right]$$

 $z_0/d_R \leftrightarrow c_D$ (LEC in V_{NNN}) $\longrightarrow GT^{exp}$ in ³H β -decay

Factor -1/4 missing in many calculation (error spread in 2012-2018)

Interplay potential-current in χEFT

• NV2+3/nY: fit c_D & c_E to $B(^{3}\text{H})$ and $a_{nd}^{Exp} = (0.645 \pm 0.010)$ fm

M. Piarulli et al., Phys. Rev. Lett. 120, 052503 (2018)

 \rightarrow correlation $B(^{3}\text{H})/a_{nd}$

	NV2+3/Ia	NV2+3/Ib
cD	3.666	-2.061
c _E	-1.638	-0.982
GT	0.9885	0.9730
	NV2+3/Ia*	NV2+3/Ib*
cD	-0.635	-4.71
c _E	-0.09	0.55

 ${\rm GT}^{e\!xp} = 0.9511 \pm 0.0013$

A = 3, 4 HH binding energies and scattering lengths

Model	B(³ H)	B(³ He)	B(⁴ He)	$a_{nd}^{(2)}$	$a_{nd}^{(4)}$
NV2/Ia	8.718	7.090	25.15	1.119	6.326
NV2/Ib	7.599	6.885	23.96	1.307	6.327
NV2+3/Ia	8.475	7.735	28.33	0.645	6.327
NV2+3/Ib	8.475	7.737	28.30	0.645	6.327
NV2+3/Ia*	8.477	7.727	28.30	0.638	6.326
NV2+3/lb*	8.469	7.724	28.21	0.650	6.327
Exp.	8.475	7.725	28.30	0.645(10)	6.35(2)

L.E. Marcucci et al., Front. Phys. 8, 69 (2020)

The Hyperspherical Harmonics (HH) method

Bound states

$\Psi^{JJ_z} = \sum_\mu {m c}_\mu \Psi_\mu$

- $\Psi_{\mu} \rightarrow$ known functions (spin-isospin HH functions)
- Rayleigh-Ritz var. principle: $\delta_c \langle \Psi^{JJ_z} | H - E | \Psi^{JJ_z} \rangle = 0$ \Rightarrow Solve for E and c_{μ}

$\Psi_{LSJ} = \Psi_{core}^{LSJ} + \Psi_{asym}^{LSJ}$

•
$$\Psi_{core}^{LSJ} = \sum_{\mu} c_{\mu} \Psi_{\mu}$$

Scattering states

•
$$\Psi^{LSJ}_{asym} \propto \Omega^{R}_{LS} + \sum_{L'S'} R_{LL',SS'} \Omega'_{L'S'}$$

• Kohn var. principle: $[R_{LL',SS'}] = R_{LL',SS'} - \langle \Psi_{L'S'J} | H - E | \Psi_{LSJ} \rangle$ \Rightarrow Solve for c_{μ} and $R_{LL',SS'} \rightarrow$ phase-shifts and mixing angles

Strengthandweakness• very accurate• at present limited to A = 6• both r- and p-space• in prospective A = 8• both bound and scattering states• not much more ...

L.E. Marcucci et al., Front. Phys. 8, 69 (2020)

SELECTED RESULTS

• A = 2 reactions: pp and $\mu - d$ weak captures

Laura E. Marcucci (Univ. Pisa & INFN-Pisa) Ab-initio studies of few-nucleon systems

The *pp* fusion in χ EFT: an update

B. Acharya, L.E. Marcucci, L. Platter, arXiv:2304.03327

- updated constants (especially $g_A = 1.2754$)
- correct the -1/4 factor
- better techniques (Bayesian methods) to estimate the theoretical error
- benchmark of two approaches (Var. Method and Lippmann-Schwinger)
- various χEFT potentials

Model	Method	$1/m_N^2$ term	cD	Goal
SMS-RS	LS	excluded	from <i>nd</i> scatt.	$\Delta(\chi)$
N2LOsim	LS	excluded	from GT ^{exp}	update
LO N2LO [†]	LS	excluded	from GT ^{exp}	$\Delta(c_D)$
N3LO-Idaho	VM/LS	included/excluded	from GT ^{exp}	update + benchmark

Bayesian analysis of S. Wesolowski et al., Phys. Rev. C 104, 064001 (2021)

Order-by-order convergence (SMS-RS)

Order	<i>S</i> (0)	S'(0)/S(0)	S''(0)/S(0)	S'''(0)/S(0)
	$ imes 10^{-23}$ MeV fm ²	MeV^{-1}	MeV^{-2}	MeV ⁻³
LO	4.143	10.75	306.75	-5150
NLO	4.094	10.81	312.78	-5370
NNLO [N3LO]	4.100	10.83	313.72	-5382

Benchmark VM vs. LS (N3LO-Idaho)

$ft_{^{3}\mathrm{H}}$ -value s $^{-1}$	Method	$S(0) onumber {3} ext{ X10}^{-23} ext{ MeV fm}^2$	${S'(0)}/{S(0)} { m MeV^{-1}}$	${S''(0)}/{S(0)} { m MeV^{-2}}$	${S^{\prime\prime\prime}(0)}/{S(0)} { m MeV^{-3}}$
1134.6(3.1)	VM	4.115(4)	10.60	347.1	-6908
	LS	4.101(4)	10.83	313.8	-5382
1129.6(3.0)	VM	4.118(4)	10.60	347.1	-6907
	LS	4.104(4)	10.83	313.8	-5381
1132.1(4.3)	VM	4.117(4)	10.60	347.1	-6908
	LS	4.104(4)	10.83	313.8	-5382

 $S(0) = [4.100 \pm 0.024(syst) \pm 0.013(stat) \pm 0.008(g_A)] imes 10^{-23} \text{ MeV fm}^2$

The muon capture on deuteron in χ EFT (I)

A. Gnech, L.E. Marcucci, M. Viviani, arXiv:2305.07568

MuSun Collab. at PSI \rightarrow 1.5% exp. error

The muon capture on deuteron in χEFT (II)

$$\begin{split} \Gamma(E_1') &= \frac{G_V'^2}{\pi} |\psi_{1s}(0)|^2 E_1 p_1 \int d\cos\theta_1 \frac{E_2 k_\nu^2}{E_2 + k_\nu + p_1 \cos\theta_1} \sum_{s_1 s_2 h_\nu} \sum_{f_z} |M_{fi}(f_z, s_1, s_2, h_\nu; p_1, \cos\theta_1)|^2 \\ \Gamma &= \int_0^{E_1'^{\max}} dE_1' \, \Gamma(E_1') \end{split}$$

with $\cos \theta_1 = \mathbf{q} \cdot \mathbf{p}_1$

- update previous work with most recent potentials and currents
- provide $\Gamma(E'_1)$ to experimentalists (rather than $\Gamma(p)$)
- robust estimate of theoretical uncertainties

Theoretical uncertainties from:

- $g_A(q^2) = g_A \left(1 \frac{1}{6}r_A^2 q^2\right)$ with $r_A^2 = 0.46(16)$ fm² R.J. Hill *et al.*, Rep. Prog. Phys. **81**, 096301 (2018)
- chiral truncation of interaction and current (Bayesian analysis)
- model dependence

Bands= 2σ truncation error

Inter.	Г(comp)	$M_{k=3}^{C}$	$M_{k=4}^{I}$	Γ (∞)	$\sigma_{k=3}^{C}(68\% \text{ CL})$	$\sigma'_{k=4}(68\% \text{ CL})$	$\sigma_{\rm LECs}(68\%{\rm CL})$
NVIa	394.6	0.1	n.a.	394.7	0.8(0.7)	n.a.	3.9
NVIb	395.0	0.1	n.a.	395.1	1.4(0.8)	n.a.	3.9
NVIIa	393.6	0.1	n.a.	393.7	0.8(0.7)	n.a.	3.9
NVIIb	394.0	0.1	n.a.	394.1	1.5(0.8)	n.a.	3.9
EMN450	389.8	0.1	-0.2	389.7	0.8(0.7)	0.4(0.4)	3.8
EMN500	393.4	0.1	0.2	393.7	0.8(0.7)	0.3(0.2)	3.9
EMN550	395.2	0.1	0.2	395.5	0.8(0.7)	0.4(0.2)	3.9

$\Gamma = (393.8 \pm 4.4) \, { m s}^{-1}$ (68%CL)

Impact on the MuSun Experiment

• c_D -uncertainty \rightarrow minimal impact on Γ

• present r_A -uncertainty $\rightarrow \sim 1\%$ error on Γ

 \Rightarrow r_A-uncertainty $\sim 10\% \rightarrow$ error on Γ of 0.6% \ll MuSun quoted error (1.5%)

SELECTED RESULTS

• A = 4 reactions of interest for BBN

Laura E. Marcucci (Univ. Pisa & INFN-Pisa) Ab-initio studies of few-nucleon systems

The primordial deuterium abundance

 $10^{5}({\rm D/H})_{\rm exp} = 2.527 \pm 0.030$ R.J. Cooke *et al.*, Astrophys. J. **885**, 102 (2018) Crucial inputs for BBN

• $p(d, \gamma)^3$ He

• d(d, p)³H & d(d, n)³He

LUNA experiment for $p(d, \gamma)^3$ He

The ${}^{2}H(p,\gamma){}^{3}He$ reaction - The LUNA experiment

 $\begin{array}{rcl} 10^5 ({\rm D/H})_{\rm BBN} & = & 2.52 \pm 0.03 \pm 0.06 \\ & & {\rm vs.} \\ 10^5 ({\rm D/H})_{\rm exp} & = & 2.527 \pm 0.030 \end{array}$

____ Phenomenological approach (AV18/UIX)

 \rightarrow what is the theoretical uncertainty? $\Rightarrow \chi \text{EFT}$ (work in progress)

BBN error now dominated by $d(d, p)^3$ **H** & $d(d, n)^3$ **He**

V. Mossa et al., Nature 587, 210 (2020)

The $d(d, p)^3$ H and $d(d, n)^3$ He processes

M. Viviani et al., Phys. Rev. Lett. 130, 122501 (2023)

Nice agreement theory vs. experiment

The "quintic" suppression factor

 $\vec{d}(\vec{d},n)^3$ He & $\vec{d}(\vec{d},p)^3$ H suppressed in S-wave

Outlook

- HH method: systematic study of $A \ge 4$ bound- and scattering states
- Further *ab-initio* predictions in χEFT for
 - Reactions involved in the BBN network or stellar evolution
 - e^+e^- production in $p+^7$ Li (ATOMKI) (but also in $p+^2$ H)
 - Muon capture on A = 3, 4, 6 nuclei (work in progress)
 - β -decay of $6 \le A \le 8$ systems
- Low energies → "new" framework: **#EFT**

Pionless EFT (#EFT): going lower in energy ...

Advantages

- drastic simplification in the operatorial structure for both potentials and currents
- faster convergence in the HH expansion
- more direct match with lattice QCD calculations (performed at large m_π)
- large $a_{NN} \Rightarrow$ short-range NN dynamics does not decouple in the NNN sector $\Rightarrow V_{NNN}$ at LO

Local $V_{NN} + V_{NNN}$ in #EFT

• V_l	$_{\rm NN} \rightarrow$	contact ter	ms up to	Q^4 (N3LO)					
C(r)	=	$C_0(r)P_0^{\tau} +$	$-C_1(r)P_1^{\tau}$		Model	а	b	с	d	0
$C_{lpha}(r)$	=	$\frac{e^{-(r/R_{\alpha})^2}}{\pi^{3/2}R_{\alpha}^3}$			$\frac{R_0 \text{ (fm)}}{R_1 \text{ (fm)}}$	1.7 1.5	1.9 2.0	2.1 2.5	2.3 3.0	1.54592984 1.83039397
	Model	 Order	T _{lab} (MeV)	N _{np}	$\chi^2(np)/c$	latum	N _{pp}	$\chi^2(pp)/datum$	N	$\chi^2/datum$
	a	LO NLO N3LO	0-1 0-15 0-25	91 381 643	5.54 1.83 1.60	- -)	157 394 451	1.53 1.24	248 776 1096	1.67 1.45
	b	LO NLO N3LO	0-1 0-15 0-25	91 382 646	37.6 1.39 1.42		157 395 452	1.09 1.06	248 778 1099	1.24 1.27
	с	LO NLO N3LO	0-1 0-15 0-25	91 378 645	24.8 2.34 1.83		157 392 453	1.97 1.33	248 771 1099	2.15 1.62
	d	LO NLO N3LO	0-1 0-15 0-25	91 377 638	41.2 10.2 2.03		157 392 446	6.88 8.09	248 770 1085	8.51 4.52
	0	LO NLO N3LO	0–1 0–15 0–25	91 382 650	2.16 1.27 1.25		157 394 452	1.08 1.10	248 777 1103	1.17 1.19

• V_{NNN} up to LO $\rightarrow c_E$ fitted to $B(^{3}\text{H})$

R. Schiavilla et al., Phys. Rev. C 103, 054003 (2021)

#EFT: from few- to many-body systems (I)

R. Schiavilla et al., Phys. Rev. C 103, 054003 (2021)

- V_{NN} LO-N3LO fitted to NN systems
- V_{NNN} only at LO fitted to $B(^{3}\text{H}) \Rightarrow B(^{3}\text{He}), B(^{4}\text{He}), \ldots = \text{predictions}$

Laura E. Marcucci (Univ. Pisa & INFN-Pisa) Ab-initio studies of few-nucleon systems

#EFT: from few- to many-body systems (II)

R. Schiavilla et al., Phys. Rev. C 103, 054003 (2021)

 $V_{NN} + V_{NNN}$ applied to

- ⁴He, ⁶Li, ⁶He \rightarrow HH + AFDMC (benchmark)
- 16 O, 40 Ca, 48 Ca, 90 Zr \rightarrow AFDMC

Outlook:

• Go beyond $V_{NNN}(LO) \rightarrow V_{NNN}(N3LO) (A_y$ -puzzle)

2 Develop the consistent electroweak transition operators

In collaboration with

- A. Kievsky and M. Viviani (INFN-Pisa)
- D. Logoteta (Univ. Pisa)
- L. Girlanda (Univ. del Salento)
- A. Gnech (ECT*)
- R. Schiavilla (JLab-ODU)
- B. Acharya and L. Platter (ORNL)

In collaboration with

- A. Kievsky and M. Viviani (INFN-Pisa)
- D. Logoteta (Univ. Pisa)
- L. Girlanda (Univ. del Salento)
- A. Gnech (ECT*)
- R. Schiavilla (JLab-ODU)
- B. Acharya and L. Platter (ORNL)

Thank you, Pierre, for all your inspiring work!

In collaboration with

- A. Kievsky and M. Viviani (INFN-Pisa)
- D. Logoteta (Univ. Pisa)
- L. Girlanda (Univ. del Salento)
- A. Gnech (ECT*)
- R. Schiavilla (JLab-ODU)
- B. Acharya and L. Platter (ORNL)

Thank you, Pierre, for all your inspiring work!

Thank you All for your attention!