Recent progress in ab-initio studies of light nuclei and few-nucleon reactions

Laura E. Marcucci University of Pisa
 INFN-Pisa

Exploring low-energy nuclear properties:

latest advances on reaction mechanisms with light nuclei

Workshop in honor of Pierre Descouvemont

Bruxelles, June 1, 2023

Outline

- Introduction
- Microscopic ab-initio approach
- Chiral effective field theory (χ EFT) framework
- The Hyperspherical Harmonics (HH) ab-initio method
- Selected results
- $A=2$ reactions: $p p$ weak capture, muon capture on deuteron
- $A=4$ reactions of interest for Big Bang Nucleosynthesis (BBN)
- Outlook

Introduction: microscopic ab-initio studies

Nuclear observable X

- Microscopic \rightarrow
- Nucleus $=$ system of A nucleons
- interacting among themselves \rightarrow structure
- interacting with external electroweak probes \rightarrow reactions
- Microscopic \rightarrow ab-initio
- realistic description of nuclear interactions
- realistic description of electroweak currents
- exact ${ }^{1}$ (ab-initio) method to solve the quantum-mechanical problem

$$
\Rightarrow \quad \text { True predictions for observable } X
$$

Ideal case: robust procedure to estimate the theoretical error
${ }^{1}$ exact \equiv no uncontrolled approximations

The nuclear Hamiltonian: $H=T+V$

Nuclear interaction: $V=V_{N N}+V_{N N N}$
Until $\simeq 20-30$ years ago: phenomenological potentials

- $V_{N N}+V_{N N N}$ semi-phenomenological
- $V_{N N}$ with $\simeq 40$ parameters fitted to $A=2$ data $\rightarrow \chi^{2} /$ datum $\simeq 1$
- $V_{N N N}$ with 2-3 parameters fitted to $B(A=3,4)$

Very common models: AV18+UIX, AV18+Illinois

Very successful, but

- many parameters
- no connection with QCD
- no estimate of theoretical uncertainty

The nuclear Hamiltonian: $H=T+V$

Nuclear interaction: $V=V_{N N}+V_{N N N}$

Until $\simeq 20-30$ years ago: phenomenological potentials

- $V_{N N}+V_{N N N}$ semi-phenomenological
- $V_{N N}$ with $\simeq 40$ parameters fitted to $A=2$ data $\rightarrow \chi^{2} /$ datum $\simeq 1$
- $V_{N N N}$ with 2-3 parameters fitted to $B(A=3,4)$

Very common models: AV18+UIX, AV18+Illinois

Very successful, but

- many parameters
- no connection with QCD
- no estimate of theoretical uncertainty
\Rightarrow Chiral Effective Field Theory (χ EFT)

Chiral Effective Field Theory (χ EFT): a very short summary

- QCD \rightarrow quarks and gluons ("high-energy" d.o.f.)
- Nuclear physics \rightarrow nucleons and pions ("low-energy" d.o.f.)
- EFT \rightarrow processes with $E \simeq p \simeq m_{\pi} \ll \Lambda_{\mathrm{QCD}} \sim 1 \mathrm{GeV}$
\star keep the "I-e" d.o.f.: π and N (and sometimes Δ 's $-m_{\Delta}-m_{N} \sim 300 \mathrm{MeV}$)
\star Lagrangians describing the interactions of $\pi-N(\pi-\Delta)$ are expanded in powers of $O\left(p / \Lambda_{\mathrm{QCD}}\right)^{\nu} \rightarrow$ perturbative expansion
\star " h-e" d.o.f. integrated out \rightarrow contact interactions with "I-e" d.o.f. and low-energy constants (LECs) obtained from experiment
- χ EFT \rightarrow EFT with spontaneous breaking of QCD's χ-symmetry
- Regularization of short-range terms with cutoff function $\rightarrow \Lambda \simeq 400-600 \mathrm{MeV}$

Disadvantage: limited to processes with $E \leq[2 \div 3] m_{\pi}$

Advantages

- nuclear force "hierarchy" \rightarrow accurate $V_{N N}+V_{N N N}$
- consistent framework for interactions + currents (just add electroweak field as d.o.f.)
- possibility to estimate the theoretical uncertainty (perturbative expansion)

Chiral Effective Field Theory (χ EFT): a very short summary

- QCD \rightarrow quarks and gluons ("high-energy" d.o.f.)
- Nuclear physics \rightarrow nucleons and pions ("low-energy" d.o.f.)
- EFT \rightarrow processes with $E \simeq p \simeq m_{\pi} \ll \Lambda_{\mathrm{QCD}} \sim 1 \mathrm{GeV}$
\star keep the "I-e" d.o.f.: π and N (and sometimes Δ 's $-m_{\Delta}-m_{N} \sim 300 \mathrm{MeV}$)
\star Lagrangians describing the interactions of $\pi-N(\pi-\Delta)$ are expanded in powers of $O\left(p / \Lambda_{\mathrm{QCD}}\right)^{\nu} \rightarrow$ perturbative expansion
\star "h-e" d.o.f. integrated out \rightarrow contact interactions with "l-e" d.o.f. and low-energy constants (LECs) obtained from experiment
- $\chi \mathrm{EFT} \rightarrow \mathrm{EFT}$ with spontaneous breaking of QCD's χ-symmetry
- Regularization of short-range terms with cutoff function $\rightarrow \Lambda \simeq 400-600 \mathrm{MeV}$

Disadvantage: limited to processes with $E \leq[2 \div 3] m_{\pi}$

Advantages

- nuclear force "hierarchy" \rightarrow accurate $V_{N N}+V_{N N N}$
- consistent framework for interactions + currents (just add electroweak field as d.o.f.)
- possibility to estimate the theoretical uncertainty (perturbative expansion)

χ EFT potentials

- Idaho potentials: N3LO-Idaho $(\Lambda=500 \mathrm{MeV}) \rightarrow \mathrm{EMN}$
[D. Entem et al., Front. Phys. 8, 57 (2020)]
- Norfolk potentials (NV)
[M. Piarulli and I. Tews, Front. Phys. 7, 245 (2019)]
- N2LOsim potentials
[B.D. Carlsson et al., Phys. Rev. X 6, 011019 (2016)]
- SMS-RS: semi-local regularization scheme (local for TPE and non-local for contact part) [P. Reinert, H. Krebs, E. Epelbaum, Eur. Phys. J. A 54, 86 (2018)]
For instance:

Name	DOF	O_{χ}	$\left(R_{\mathrm{S}}, R_{\mathrm{L}}\right)$ or Λ	E range	Space
NVIa	π, N, Δ	N3LO	$(0.8,1.2) \mathrm{fm}$	$0-125 \mathrm{MeV}$	r
NVIb	π, N, Δ	N3LO	$(0.7,1.0) \mathrm{fm}$	$0-125 \mathrm{MeV}$	r
NVIla	π, N, Δ	N3LO	$(0.8,1.2) \mathrm{fm}$	$0-200 \mathrm{MeV}$	r
NVIIb	π, N, Δ	N3LO	$(0.7,1.0) \mathrm{fm}$	$0-200 \mathrm{MeV}$	r
EMN450	π, N	up to N4LO	450 MeV	$0-300 \mathrm{MeV}$	p
EMN500	π, N	up to N4LO	500 MeV	$0-300 \mathrm{MeV}$	p
EMN550	π, N	up to N4LO	550 MeV	$0-300 \mathrm{MeV}$	p

A. Gnech, L.E. Marcucci, M. Viviani, arXiv:2305.07568

χ EFT potentials

- Idaho potentials: N3LO-Idaho $(\Lambda=500 \mathrm{MeV}) \rightarrow \mathrm{EMN}$
[D. Entem et al., Front. Phys. 8, 57 (2020)]
- Norfolk potentials (NV)
[M. Piarulli and I. Tews, Front. Phys. 7, 245 (2019)]
- N2LOsim potentials
[B.D. Carlsson et al., Phys. Rev. X 6, 011019 (2016)]
- SMS-RS: semi-local regularization scheme (local for TPE and non-local for contact part) [P. Reinert, H. Krebs, E. Epelbaum, Eur. Phys. J. A 54, 86 (2018)]
For instance:

Name	DOF	O_{χ}	$\left(R_{\mathrm{S}}, R_{\mathrm{L}}\right)$ or Λ	E range	Space
NVIa	π, N, Δ	N3LO	$(0.8,1.2) \mathrm{fm}$	$0-125 \mathrm{MeV}$	r
NVIb	π, N, Δ	N3LO	$(0.7,1.0) \mathrm{fm}$	$0-125 \mathrm{MeV}$	r
NVIIa	π, N, Δ	N3LO	$(0.8,1.2) \mathrm{fm}$	$0-200 \mathrm{MeV}$	r
NVIIb	π, N, Δ	N3LO	$(0.7,1.0) \mathrm{fm}$	$0-200 \mathrm{MeV}$	r
EMN450	π, N	up to N4LO	450 MeV	$0-300 \mathrm{MeV}$	p
EMN500	π, N	up to N4LO	500 MeV	$0-300 \mathrm{MeV}$	p
EMN550	π, N	up to N4LO	550 MeV	$0-300 \mathrm{MeV}$	p

A. Gnech, L.E. Marcucci, M. Viviani, arXiv:2305.07568
$\boldsymbol{V}_{N N N} \rightarrow$ see later

Electromagnetic current in χ EFT

(f)

(g)

(b)
N3LO

Axial current in χ EFT

10

N2LO

(f)
 (h)
N3LO

(k) 2

A. Baroni et al., Phys. Rev. C 98, 044003 (2018)

- Ignore pion-pole terms [(b), (d), (f), (h), (j), (I)]
- diagrams (g) and (h) vanish; diagram (e) $\rightarrow c_{3}^{\Delta} ; c_{4}^{\Delta}$ (similar to $c_{3} ; c_{4}$ of diagram (i))
- CTs in (i) and (k)

$$
\begin{aligned}
\mathrm{j}_{5, a}^{N 3 L O}(\mathbf{q} ; C T) & =z_{0} \mathrm{e}^{i \mathbf{q} \cdot R_{i j}} \frac{\mathrm{e}^{-\left(r_{i j} / R_{S}\right)^{2}}}{\pi^{3 / 2}}\left(\tau_{i} \times \boldsymbol{\tau}_{j}\right)_{a}\left(\boldsymbol{\sigma}_{i} \times \boldsymbol{\sigma}_{j}\right) \\
z_{0} & =\frac{g_{A}}{2} \frac{m_{\pi}^{2}}{f_{\pi}^{2}} \frac{1}{\left(m_{\pi} R_{S}\right)^{3}}\left[-\frac{1}{4} \frac{m_{\pi}}{g_{A} \Lambda_{\chi}} c_{D}+\frac{m_{\pi}}{3}\left(c_{3}+2 c_{4}+c_{3}^{\Delta}+2 c_{4}^{\Delta}\right)+\frac{m_{\pi}}{6 m}\right]
\end{aligned}
$$

$$
z_{0} / d_{R} \leftrightarrow c_{D}\left(\operatorname{LEC} \text { in } V_{N N N}\right) \longrightarrow G T^{\exp } \text { in }{ }^{3} \mathrm{H} \beta \text {-decay }
$$

Factor $-1 / 4$ missing in many calculation (error spread in 2012-2018)

Interplay potential-current in χ EFT

- NV2+3/nY: fit c_{D} \& c_{E} to $B\left({ }^{3} \mathrm{H}\right)$ and $a_{n d}^{E x p}=(0.645 \pm 0.010) \mathrm{fm}$ M. Piarulli et al., Phys. Rev. Lett. 120, 052503 (2018)

$$
\rightarrow \text { correlation } B\left({ }^{3} \mathrm{H}\right) / a_{n d}
$$

- Use $B\left({ }^{3} \mathrm{H}\right)$ and $G T^{\text {exp }}$ of ${ }^{3} \mathrm{H} \beta$-decay $\rightarrow \mathrm{NV} 2+3 / \mathrm{n} Y^{*}$

	$\mathrm{NV} 2+3 / \mathrm{la}$	$\mathrm{NV} 2+3 / \mathrm{lb}$
c_{D}	3.666	-2.061
c_{E}	-1.638	-0.982
GT	0.9885	0.9730
	$\mathrm{NV} 2+3 / \mathrm{la}^{*}$	$\mathrm{NV} 2+3 / \mathrm{lb}^{*}$
c_{D}	-0.635	-4.71
c_{E}	-0.09	0.55

$\mathrm{GT}^{\text {exp }}=0.9511 \pm 0.0013$

$A=3,4 \mathrm{HH}$ binding energies and scattering lengths

Model	$\mathrm{B}\left({ }^{3} \mathrm{H}\right)$	$\mathrm{B}\left({ }^{3} \mathrm{He}\right)$	$\mathrm{B}\left({ }^{4} \mathrm{He}\right)$	$a_{n d}^{(2)}$	$a_{n d}^{(4)}$
NV2/la	8.718	7.090	25.15	1.119	6.326
NV2/lb	7.599	6.885	23.96	1.307	6.327
NV2+3/la	$\underline{8.475}$	7.735	28.33	$\underline{0.645}$	6.327
NV2+3/lb	$\underline{8.475}$	7.737	28.30	$\underline{0.645}$	6.327
NV2+3/la*	$\underline{8.477}$	$\underline{7.727}$	28.30	0.638	6.326
NV2+3/lb*	$\underline{8.469}$	$\underline{7.724}$	28.21	0.650	6.327
Exp.	$\underline{8.475}$	$\mathbf{7 . 7 2 5}$	28.30	$0.645(10)$	$6.35(2)$

L.E. Marcucci et al., Front. Phys. 8, 69 (2020)

The Hyperspherical Harmonics (HH) method

Bound states

Scattering states

$$
\Psi^{J J_{z}}=\sum_{\mu} c_{\mu} \Psi_{\mu}
$$

- $\Psi_{\mu} \rightarrow$ known functions (spin-isospin HH functions)
- Rayleigh-Ritz var. principle: $\delta_{c}\left\langle\Psi^{J J_{z}}\right| H-E\left|\Psi^{J J_{z}}\right\rangle=0$ \Rightarrow Solve for E and c_{μ}

Strength

and

 weakness- very accurate
- both r - and p-space
- both bound and scattering states

$$
\Psi_{L S J}=\Psi_{\text {core }}^{L S J}+\Psi_{\text {asym }}^{L S J}
$$

- $\Psi_{\text {core }}^{\text {LSJ }}=\sum_{\mu} c_{\mu} \Psi_{\mu}$
- $\Psi_{\text {asym }}^{L S J} \propto \Omega_{L S}^{R}+\sum_{L^{\prime} S^{\prime}} R_{L L^{\prime}, S S^{\prime}} \Omega_{L^{\prime} S^{\prime}}^{\prime}$
- Kohn var. principle:
$\left[R_{L L^{\prime}, S S^{\prime}}\right]=R_{L L^{\prime}, S S^{\prime}}-\left\langle\Psi_{L^{\prime} S^{\prime} J}\right| H-E\left|\Psi_{L S J}\right\rangle$
\Rightarrow Solve for c_{μ} and $R_{L L^{\prime}, S S^{\prime}} \rightarrow$
phase-shifts and mixing angles
- at present limited to $A=6$
- in prospective $A=8$
- not much more ...
L.E. Marcucci et al., Front. Phys. 8, 69 (2020)

SELECTED RESULTS

- $A=2$ reactions: $p p$ and $\mu-d$ weak captures

The pp fusion in χ EFT: an update

B. Acharya, L.E. Marcucci, L. Platter, arXiv:2304.03327

- updated constants (especially $g_{A}=1.2754$)
- correct the $-1 / 4$ factor
- better techniques (Bayesian methods) to estimate the theoretical error
- benchmark of two approaches (Var. Method and Lippmann-Schwinger)
- various χ EFT potentials

Model	Method	$1 / m_{N}^{2}$ term	c_{D}	Goal
SMS-RS	LS	excluded	from nd scatt.	$\Delta(\chi)$
N2LOsim	LS	excluded	from GT exp	update
LO ... $\mathrm{N} 2 \mathrm{LO}^{\dagger}$	LS	excluded	from GT exp	$\Delta\left(c_{D}\right)$
N3LO-Idaho	VM/LS	included/excluded	from GT ${ }^{\text {exp }}$	+ benchmark

${ }^{\dagger}$ Bayesian analysis of S. Wesolowski et al., Phys. Rev. C 104, 064001 (2021)

Order-by-order convergence (SMS-RS)

Order	$S(0)$ $\times 10^{-23} \mathrm{MeV} \mathrm{fm}^{2}$	$S^{\prime}(0) / S(0)$ MeV^{-1}	$S^{\prime \prime}(0) / S(0)$ MeV^{-2}	$S^{\prime \prime \prime}(0) / S(0)$ MeV^{-3}
LO	4.143	10.75	306.75	-5150
NLO	4.094	10.81	312.78	-5370
NNLO [N3LO]	4.100	10.83	313.72	-5382

Benchmark VM vs. LS (N3LO-Idaho)

$f t_{3}{ }_{3}$-value s^{-1}	Method	$S(0)$ $\times 10^{-23} \mathrm{MeV} \mathrm{fm}^{2}$	$S^{\prime}(0) / S(0)$ MeV^{-1}	$S^{\prime \prime}(0) / S(0)$ MeV^{-2}	$S^{\prime \prime \prime}(0) / S(0)$ MeV^{-3}
$1134.6(3.1)$	VM	$4.115(4)$	10.60	347.1	-6908
	LS	$4.101(4)$	10.83	313.8	-5382
$1129.6(3.0)$	VM	$4.118(4)$	10.60	347.1	-6907
	LS	$4.104(4)$	10.83	313.8	-5381
$1132.1(4.3)$	VM	$4.117(4)$	10.60	347.1	-6908
	LS	$4.104(4)$	10.83	313.8	-5382

$S(0)=\left[4.100 \pm 0.024(\right.$ syst $) \pm 0.013($ stat $\left.) \pm 0.008\left(g_{A}\right)\right] \times 10^{-23} \mathrm{MeV} \mathrm{fm}^{2}$

The muon capture on deuteron in χ EFT (I)

A. Gnech, L.E. Marcucci, M. Viviani, arXiv:2305.07568
$\mu^{-}+d \rightarrow n+n+\nu_{\mu} \quad$ Two hyperfine states $(1 / 2 \& 3 / 2) \Rightarrow \Gamma^{D} \& \Gamma^{Q}$

MuSun Collab. at PSI $\rightarrow 1.5 \%$ exp. error

The muon capture on deuteron in χ EFT (II)

$$
\begin{aligned}
\Gamma\left(E_{1}^{\prime}\right) & =\frac{G_{V}^{\prime 2}}{\pi}\left|\psi_{1 s}(0)\right|^{2} E_{1} p_{1} \int d \cos \theta_{1} \frac{E_{2} k_{\nu}^{2}}{E_{2}+k_{\nu}+p_{1} \cos \theta_{1}} \sum_{s_{1} s_{2} h_{\nu}} \sum_{f_{z}}\left|M_{f i}\left(f_{z}, s_{1}, s_{2}, h_{\nu} ; p_{1}, \cos \theta_{1}\right)\right|^{2} \\
\Gamma & =\int_{0}^{E_{1}^{\prime \max }} d E_{1}^{\prime} \Gamma\left(E_{1}^{\prime}\right)
\end{aligned}
$$

with $\cos \theta_{1}=\mathbf{q} \cdot \mathbf{p}_{1}$

- update previous work with most recent potentials and currents
- provide $\Gamma\left(E_{1}^{\prime}\right)$ to experimentalists (rather than $\Gamma(p)$)
- robust estimate of theoretical uncertainties

Theoretical uncertainties from:

- $g_{A}\left(q^{2}\right)=g_{A}\left(1-\frac{1}{6} r_{A}^{2} q^{2}\right)$ with $r_{A}^{2}=0.46(16) \mathrm{fm}^{2}$ R.J. Hill et al., Rep. Prog. Phys. 81, 096301 (2018)
- chiral truncation of interaction and current (Bayesian analysis)
- model dependence

Bands $=2 \sigma$ truncation error

Inter.	$\Gamma($ comp $)$	$M_{k=3}^{C}$	$M_{k=4}^{T}$	$\Gamma(\infty)$	$\sigma_{k=3}^{C}(68 \% \mathrm{CL})$	$\sigma_{k=4}^{T}(68 \% \mathrm{CL})$	$\sigma_{\mathrm{LECs}}(68 \% \mathrm{CL})$
NVIa	394.6	0.1	n.a.	394.7	$0.8(0.7)$	n.a.	3.9
NVIb	395.0	0.1	n.a.	395.1	$1.4(0.8)$	n.a.	3.9
NVIIa	393.6	0.1	n.a.	393.7	$0.8(0.7)$	n.a.	3.9
NVIIb	394.0	0.1	n.a.	394.1	$1.5(0.8)$	n.a.	3.9
EMN450	389.8	0.1	-0.2	389.7	$0.8(0.7)$	$0.4(0.4)$	3.8
EMN500	393.4	0.1	0.2	393.7	$0.8(0.7)$	$0.3(0.2)$	3.9
EMN550	395.2	0.1	0.2	395.5	$0.8(0.7)$	$0.4(0.2)$	3.9

$\Gamma=(393.8 \pm 4.4) \mathrm{s}^{-1} \quad(68 \% \mathrm{CL})$

Impact on the MuSun Experiment

- c_{D}-uncertainty \rightarrow minimal impact on Γ
- present r_{A}-uncertainty $\rightarrow \sim 1 \%$ error on Γ
$\Rightarrow r_{\text {A }}$-uncertainty $\sim 10 \% \rightarrow$ error on Γ of $0.6 \% \ll$ MuSun quoted error (1.5%)

SELECTED RESULTS

- $A=4$ reactions of interest for BBN

The primordial deuterium abundance

$$
10^{5}(\mathrm{D} / \mathrm{H})_{\exp }=2.527 \pm 0.030
$$

R.J. Cooke et al., Astrophys. J. 885, 102 (2018)

Crucial inputs for BBN

- $p(d, \gamma)^{3} \mathrm{He}$
- $d(d, p)^{3} \mathrm{H} \& d(d, n)^{3} \mathrm{He}$

LUNA experiment for $p(d, \gamma)^{3} \mathrm{He}$

The ${ }^{2} \mathrm{H}(p, \gamma)^{3} \mathrm{He}$ reaction - The LUNA experiment

- - - - Phenomenological approach (AV18/UIX)
\longrightarrow what is the theoretical uncertainty? $\Rightarrow \chi$ EFT (work in progress)
BBN error now dominated by $d(d, p)^{3} \mathbf{H} \& d(d, n)^{3} \mathbf{H e}$
V. Mossa et al., Nature 587, 210 (2020)

The $d(d, p)^{3} \mathrm{H}$ and $d(d, n)^{3} \mathrm{He}$ processes

M. Viviani et al., Phys. Rev. Lett. 130, 122501 (2023)

Nice agreement theory vs. experiment

The "quintic" suppression factor

\Rightarrow "neutron lean" reactors

Outlook

- HH method: systematic study of $A \geq 4$ bound- and scattering states
- Further ab-initio predictions in χ EFT for
- Reactions involved in the BBN network or stellar evolution
- $e^{+} e^{-}$production in $p+{ }^{7} \mathrm{Li}(\mathrm{ATOMKI})$ (but also in $p+{ }^{2} \mathbf{H}$)
- Muon capture on $A=3,4,6$ nuclei (work in progress)
- β-decay of $6 \leq A \leq 8$ systems
- Low energies \longrightarrow "new" framework: $\not \subset E F T$

Pionless EFT (\not tEFT): going lower in energy ...

Advantages

- drastic simplification in the operatorial structure for both potentials and currents
- faster convergence in the HH expansion
- more direct match with lattice QCD calculations (performed at large m_{π})
- large $a_{N N} \Rightarrow$ short-range $N N$ dynamics does not decouple in the $N N N$ sector $\Rightarrow V_{N N N}$ at LO

Local $V_{N N}+V_{N N N}$ in $\not \approx E F T$

- $V_{N N} \rightarrow$ contact terms up to Q^{4} (N3LO)

$$
\begin{aligned}
C(r) & =C_{0}(r) P_{0}^{\tau}+C_{1}(r) P_{1}^{\tau} \\
C_{\alpha}(r) & =\frac{e^{-\left(r / R_{\alpha}\right)^{2}}}{\pi^{3 / 2} R_{\alpha}^{3}}
\end{aligned}
$$

Model	a	b	c	d	o
$R_{0}(\mathrm{fm})$	1.7	1.9	2.1	2.3	1.54592984
$R_{1}(\mathrm{fm})$	1.5	2.0	2.5	3.0	1.83039397

Model	Order	$T_{\text {lab }}(\mathrm{MeV})$	$N_{n p}$	$\chi^{2}(n p) /$ datum	$N_{p p}$	$\chi^{2}(p p) /$ datum	N	$\chi^{2} /$ datum
a	LO	$0-1$	91	5.54	157		248	
	NLO	$0-15$	381	1.83	394	1.53	776	1.67
	N3LO	$0-25$	643	1.60	451	1.24	1096	1.45
b	LO	$0-1$	91	37.6	157		248	
	NLO	$0-15$	382	1.39	395	1.09	778	1.24
	N3LO	$0-25$	646	1.42	452	1.06	1099	1.27
c	LO	$0-1$	91	24.8	157		248	
	NLO	$0-15$	378	2.34	392	1.97	771	2.15
	N3LO	$0-25$	645	1.83	453	1.33	1099	1.62
	LO	$0-1$	91	41.2	157		248	
	NLO	$0-15$	377	10.2	392	6.88	770	8.51
	N3LO	$0-25$	638	2.03	446	8.09	1085	4.52
	LO	$0-1$	91	2.16	157		248	
	NLO	$0-15$	382	1.27	394	1.08	777	1.17
	N3LO	$0-25$	650	1.25	452	1.10	1103	1.19

- $V_{N N N}$ up to LO $\rightarrow c_{E}$ fitted to $B\left({ }^{3} \mathrm{H}\right)$
R. Schiavilla et al., Phys. Rev. C 103, 054003 (2021)

$\not \approx E F T$: from few- to many-body systems (I)

R. Schiavilla et al., Phys. Rev. C 103, 054003 (2021)

- $V_{N N}$ LO-N3LO fitted to $N N$ systems
- $V_{N N N}$ only at LO fitted to $B\left({ }^{3} \mathrm{H}\right) \Rightarrow B\left({ }^{3} \mathrm{He}\right), B\left({ }^{4} \mathrm{He}\right), \ldots$ = predictions

đEFT: from few- to many-body systems (II)

R. Schiavilla et al., Phys. Rev. C 103, 054003 (2021)
$V_{N N}+V_{N N N}$ applied to

- ${ }^{4} \mathrm{He},{ }^{6} \mathrm{Li},{ }^{6} \mathrm{He} \rightarrow \mathrm{HH}+$ AFDMC (benchmark)
- ${ }^{16} \mathrm{O},{ }^{40} \mathrm{Ca},{ }^{48} \mathrm{Ca},{ }^{90} \mathrm{Zr} \rightarrow$ AFDMC

Outlook:
(1) Go beyond $V_{N N N}(\mathrm{LO}) \rightarrow V_{N N N}(N 3 L O)$ (A_{y}-puzzle)
(2) Develop the consistent electroweak transition operators

In collaboration with

- A. Kievsky and M. Viviani (INFN-Pisa)
- D. Logoteta (Univ. Pisa)
- L. Girlanda (Univ. del Salento)
- A. Gnech (ECT*)
- R. Schiavilla (JLab-ODU)
- B. Acharya and L. Platter (ORNL)

In collaboration with

- A. Kievsky and M. Viviani (INFN-Pisa)
- D. Logoteta (Univ. Pisa)
- L. Girlanda (Univ. del Salento)
- A. Gnech (ECT*)
- R. Schiavilla (JLab-ODU)
- B. Acharya and L. Platter (ORNL)

Thank you, Pierre, for all your inspiring work!

In collaboration with

- A. Kievsky and M. Viviani (INFN-Pisa)
- D. Logoteta (Univ. Pisa)
- L. Girlanda (Univ. del Salento)
- A. Gnech (ECT*)
- R. Schiavilla (JLab-ODU)
- B. Acharya and L. Platter (ORNL)

Thank you, Pierre, for all your inspiring work!

Thank you All for your attention!

